| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > onsuc | GIF version | ||
| Description: The successor of an ordinal number is an ordinal number. Closed form of onsuci 4582. Forward implication of onsucb 4569. Proposition 7.24 of [TakeutiZaring] p. 41. (Contributed by NM, 6-Jun-1994.) |
| Ref | Expression |
|---|---|
| onsuc | ⊢ (𝐴 ∈ On → suc 𝐴 ∈ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloni 4440 | . . 3 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
| 2 | ordsucim 4566 | . . 3 ⊢ (Ord 𝐴 → Ord suc 𝐴) | |
| 3 | 1, 2 | syl 14 | . 2 ⊢ (𝐴 ∈ On → Ord suc 𝐴) |
| 4 | sucexg 4564 | . . 3 ⊢ (𝐴 ∈ On → suc 𝐴 ∈ V) | |
| 5 | elong 4438 | . . 3 ⊢ (suc 𝐴 ∈ V → (suc 𝐴 ∈ On ↔ Ord suc 𝐴)) | |
| 6 | 4, 5 | syl 14 | . 2 ⊢ (𝐴 ∈ On → (suc 𝐴 ∈ On ↔ Ord suc 𝐴)) |
| 7 | 3, 6 | mpbird 167 | 1 ⊢ (𝐴 ∈ On → suc 𝐴 ∈ On) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∈ wcel 2178 Vcvv 2776 Ord word 4427 Oncon0 4428 suc csuc 4430 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-uni 3865 df-tr 4159 df-iord 4431 df-on 4433 df-suc 4436 |
| This theorem is referenced by: onsucb 4569 unon 4577 onsuci 4582 ordsucunielexmid 4597 tfrlemisucaccv 6434 tfrexlem 6443 tfri1dALT 6460 rdgisuc1 6493 rdgon 6495 oacl 6569 oasuc 6573 omsuc 6581 |
| Copyright terms: Public domain | W3C validator |