ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onsuc GIF version

Theorem onsuc 4592
Description: The successor of an ordinal number is an ordinal number. Closed form of onsuci 4607. Forward implication of onsucb 4594. Proposition 7.24 of [TakeutiZaring] p. 41. (Contributed by NM, 6-Jun-1994.)
Assertion
Ref Expression
onsuc (𝐴 ∈ On → suc 𝐴 ∈ On)

Proof of Theorem onsuc
StepHypRef Expression
1 eloni 4465 . . 3 (𝐴 ∈ On → Ord 𝐴)
2 ordsucim 4591 . . 3 (Ord 𝐴 → Ord suc 𝐴)
31, 2syl 14 . 2 (𝐴 ∈ On → Ord suc 𝐴)
4 sucexg 4589 . . 3 (𝐴 ∈ On → suc 𝐴 ∈ V)
5 elong 4463 . . 3 (suc 𝐴 ∈ V → (suc 𝐴 ∈ On ↔ Ord suc 𝐴))
64, 5syl 14 . 2 (𝐴 ∈ On → (suc 𝐴 ∈ On ↔ Ord suc 𝐴))
73, 6mpbird 167 1 (𝐴 ∈ On → suc 𝐴 ∈ On)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wcel 2200  Vcvv 2799  Ord word 4452  Oncon0 4453  suc csuc 4455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-uni 3888  df-tr 4182  df-iord 4456  df-on 4458  df-suc 4461
This theorem is referenced by:  onsucb  4594  unon  4602  onsuci  4607  ordsucunielexmid  4622  tfrlemisucaccv  6469  tfrexlem  6478  tfri1dALT  6495  rdgisuc1  6528  rdgon  6530  oacl  6604  oasuc  6608  omsuc  6616
  Copyright terms: Public domain W3C validator