| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > onsuc | GIF version | ||
| Description: The successor of an ordinal number is an ordinal number. Closed form of onsuci 4563. Forward implication of onsucb 4550. Proposition 7.24 of [TakeutiZaring] p. 41. (Contributed by NM, 6-Jun-1994.) |
| Ref | Expression |
|---|---|
| onsuc | ⊢ (𝐴 ∈ On → suc 𝐴 ∈ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloni 4421 | . . 3 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
| 2 | ordsucim 4547 | . . 3 ⊢ (Ord 𝐴 → Ord suc 𝐴) | |
| 3 | 1, 2 | syl 14 | . 2 ⊢ (𝐴 ∈ On → Ord suc 𝐴) |
| 4 | sucexg 4545 | . . 3 ⊢ (𝐴 ∈ On → suc 𝐴 ∈ V) | |
| 5 | elong 4419 | . . 3 ⊢ (suc 𝐴 ∈ V → (suc 𝐴 ∈ On ↔ Ord suc 𝐴)) | |
| 6 | 4, 5 | syl 14 | . 2 ⊢ (𝐴 ∈ On → (suc 𝐴 ∈ On ↔ Ord suc 𝐴)) |
| 7 | 3, 6 | mpbird 167 | 1 ⊢ (𝐴 ∈ On → suc 𝐴 ∈ On) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∈ wcel 2175 Vcvv 2771 Ord word 4408 Oncon0 4409 suc csuc 4411 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-uni 3850 df-tr 4142 df-iord 4412 df-on 4414 df-suc 4417 |
| This theorem is referenced by: onsucb 4550 unon 4558 onsuci 4563 ordsucunielexmid 4578 tfrlemisucaccv 6410 tfrexlem 6419 tfri1dALT 6436 rdgisuc1 6469 rdgon 6471 oacl 6545 oasuc 6549 omsuc 6557 |
| Copyright terms: Public domain | W3C validator |