![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > onsuc | GIF version |
Description: The successor of an ordinal number is an ordinal number. Closed form of onsuci 4548. Forward implication of onsucb 4535. Proposition 7.24 of [TakeutiZaring] p. 41. (Contributed by NM, 6-Jun-1994.) |
Ref | Expression |
---|---|
onsuc | ⊢ (𝐴 ∈ On → suc 𝐴 ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloni 4406 | . . 3 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
2 | ordsucim 4532 | . . 3 ⊢ (Ord 𝐴 → Ord suc 𝐴) | |
3 | 1, 2 | syl 14 | . 2 ⊢ (𝐴 ∈ On → Ord suc 𝐴) |
4 | sucexg 4530 | . . 3 ⊢ (𝐴 ∈ On → suc 𝐴 ∈ V) | |
5 | elong 4404 | . . 3 ⊢ (suc 𝐴 ∈ V → (suc 𝐴 ∈ On ↔ Ord suc 𝐴)) | |
6 | 4, 5 | syl 14 | . 2 ⊢ (𝐴 ∈ On → (suc 𝐴 ∈ On ↔ Ord suc 𝐴)) |
7 | 3, 6 | mpbird 167 | 1 ⊢ (𝐴 ∈ On → suc 𝐴 ∈ On) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∈ wcel 2164 Vcvv 2760 Ord word 4393 Oncon0 4394 suc csuc 4396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-uni 3836 df-tr 4128 df-iord 4397 df-on 4399 df-suc 4402 |
This theorem is referenced by: onsucb 4535 unon 4543 onsuci 4548 ordsucunielexmid 4563 tfrlemisucaccv 6378 tfrexlem 6387 tfri1dALT 6404 rdgisuc1 6437 rdgon 6439 oacl 6513 oasuc 6517 omsuc 6525 |
Copyright terms: Public domain | W3C validator |