ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onsuc GIF version

Theorem onsuc 4501
Description: The successor of an ordinal number is an ordinal number. Closed form of onsuci 4516. Forward implication of onsucb 4503. Proposition 7.24 of [TakeutiZaring] p. 41. (Contributed by NM, 6-Jun-1994.)
Assertion
Ref Expression
onsuc (𝐴 ∈ On → suc 𝐴 ∈ On)

Proof of Theorem onsuc
StepHypRef Expression
1 eloni 4376 . . 3 (𝐴 ∈ On → Ord 𝐴)
2 ordsucim 4500 . . 3 (Ord 𝐴 → Ord suc 𝐴)
31, 2syl 14 . 2 (𝐴 ∈ On → Ord suc 𝐴)
4 sucexg 4498 . . 3 (𝐴 ∈ On → suc 𝐴 ∈ V)
5 elong 4374 . . 3 (suc 𝐴 ∈ V → (suc 𝐴 ∈ On ↔ Ord suc 𝐴))
64, 5syl 14 . 2 (𝐴 ∈ On → (suc 𝐴 ∈ On ↔ Ord suc 𝐴))
73, 6mpbird 167 1 (𝐴 ∈ On → suc 𝐴 ∈ On)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wcel 2148  Vcvv 2738  Ord word 4363  Oncon0 4364  suc csuc 4366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2740  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-uni 3811  df-tr 4103  df-iord 4367  df-on 4369  df-suc 4372
This theorem is referenced by:  onsucb  4503  unon  4511  onsuci  4516  ordsucunielexmid  4531  tfrlemisucaccv  6326  tfrexlem  6335  tfri1dALT  6352  rdgisuc1  6385  rdgon  6387  oacl  6461  oasuc  6465  omsuc  6473
  Copyright terms: Public domain W3C validator