| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > onsuc | GIF version | ||
| Description: The successor of an ordinal number is an ordinal number. Closed form of onsuci 4607. Forward implication of onsucb 4594. Proposition 7.24 of [TakeutiZaring] p. 41. (Contributed by NM, 6-Jun-1994.) |
| Ref | Expression |
|---|---|
| onsuc | ⊢ (𝐴 ∈ On → suc 𝐴 ∈ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloni 4465 | . . 3 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
| 2 | ordsucim 4591 | . . 3 ⊢ (Ord 𝐴 → Ord suc 𝐴) | |
| 3 | 1, 2 | syl 14 | . 2 ⊢ (𝐴 ∈ On → Ord suc 𝐴) |
| 4 | sucexg 4589 | . . 3 ⊢ (𝐴 ∈ On → suc 𝐴 ∈ V) | |
| 5 | elong 4463 | . . 3 ⊢ (suc 𝐴 ∈ V → (suc 𝐴 ∈ On ↔ Ord suc 𝐴)) | |
| 6 | 4, 5 | syl 14 | . 2 ⊢ (𝐴 ∈ On → (suc 𝐴 ∈ On ↔ Ord suc 𝐴)) |
| 7 | 3, 6 | mpbird 167 | 1 ⊢ (𝐴 ∈ On → suc 𝐴 ∈ On) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∈ wcel 2200 Vcvv 2799 Ord word 4452 Oncon0 4453 suc csuc 4455 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-uni 3888 df-tr 4182 df-iord 4456 df-on 4458 df-suc 4461 |
| This theorem is referenced by: onsucb 4594 unon 4602 onsuci 4607 ordsucunielexmid 4622 tfrlemisucaccv 6469 tfrexlem 6478 tfri1dALT 6495 rdgisuc1 6528 rdgon 6530 oacl 6604 oasuc 6608 omsuc 6616 |
| Copyright terms: Public domain | W3C validator |