![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > onsuc | GIF version |
Description: The successor of an ordinal number is an ordinal number. Closed form of onsuci 4516. Forward implication of onsucb 4503. Proposition 7.24 of [TakeutiZaring] p. 41. (Contributed by NM, 6-Jun-1994.) |
Ref | Expression |
---|---|
onsuc | ⊢ (𝐴 ∈ On → suc 𝐴 ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloni 4376 | . . 3 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
2 | ordsucim 4500 | . . 3 ⊢ (Ord 𝐴 → Ord suc 𝐴) | |
3 | 1, 2 | syl 14 | . 2 ⊢ (𝐴 ∈ On → Ord suc 𝐴) |
4 | sucexg 4498 | . . 3 ⊢ (𝐴 ∈ On → suc 𝐴 ∈ V) | |
5 | elong 4374 | . . 3 ⊢ (suc 𝐴 ∈ V → (suc 𝐴 ∈ On ↔ Ord suc 𝐴)) | |
6 | 4, 5 | syl 14 | . 2 ⊢ (𝐴 ∈ On → (suc 𝐴 ∈ On ↔ Ord suc 𝐴)) |
7 | 3, 6 | mpbird 167 | 1 ⊢ (𝐴 ∈ On → suc 𝐴 ∈ On) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∈ wcel 2148 Vcvv 2738 Ord word 4363 Oncon0 4364 suc csuc 4366 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4122 ax-pow 4175 ax-pr 4210 ax-un 4434 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2740 df-un 3134 df-in 3136 df-ss 3143 df-pw 3578 df-sn 3599 df-pr 3600 df-uni 3811 df-tr 4103 df-iord 4367 df-on 4369 df-suc 4372 |
This theorem is referenced by: onsucb 4503 unon 4511 onsuci 4516 ordsucunielexmid 4531 tfrlemisucaccv 6326 tfrexlem 6335 tfri1dALT 6352 rdgisuc1 6385 rdgon 6387 oacl 6461 oasuc 6465 omsuc 6473 |
Copyright terms: Public domain | W3C validator |