ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onsuc GIF version

Theorem onsuc 4548
Description: The successor of an ordinal number is an ordinal number. Closed form of onsuci 4563. Forward implication of onsucb 4550. Proposition 7.24 of [TakeutiZaring] p. 41. (Contributed by NM, 6-Jun-1994.)
Assertion
Ref Expression
onsuc (𝐴 ∈ On → suc 𝐴 ∈ On)

Proof of Theorem onsuc
StepHypRef Expression
1 eloni 4421 . . 3 (𝐴 ∈ On → Ord 𝐴)
2 ordsucim 4547 . . 3 (Ord 𝐴 → Ord suc 𝐴)
31, 2syl 14 . 2 (𝐴 ∈ On → Ord suc 𝐴)
4 sucexg 4545 . . 3 (𝐴 ∈ On → suc 𝐴 ∈ V)
5 elong 4419 . . 3 (suc 𝐴 ∈ V → (suc 𝐴 ∈ On ↔ Ord suc 𝐴))
64, 5syl 14 . 2 (𝐴 ∈ On → (suc 𝐴 ∈ On ↔ Ord suc 𝐴))
73, 6mpbird 167 1 (𝐴 ∈ On → suc 𝐴 ∈ On)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wcel 2175  Vcvv 2771  Ord word 4408  Oncon0 4409  suc csuc 4411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-uni 3850  df-tr 4142  df-iord 4412  df-on 4414  df-suc 4417
This theorem is referenced by:  onsucb  4550  unon  4558  onsuci  4563  ordsucunielexmid  4578  tfrlemisucaccv  6410  tfrexlem  6419  tfri1dALT  6436  rdgisuc1  6469  rdgon  6471  oacl  6545  oasuc  6549  omsuc  6557
  Copyright terms: Public domain W3C validator