Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xmetunirn | GIF version |
Description: Two ways to express an extended metric on an unspecified base. (Contributed by Mario Carneiro, 13-Oct-2015.) |
Ref | Expression |
---|---|
xmetunirn | ⊢ (𝐷 ∈ ∪ ran ∞Met ↔ 𝐷 ∈ (∞Met‘dom dom 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnmap 6645 | . . . . . . 7 ⊢ ↑𝑚 Fn (V × V) | |
2 | xrex 9827 | . . . . . . 7 ⊢ ℝ* ∈ V | |
3 | sqxpexg 4736 | . . . . . . . 8 ⊢ (𝑥 ∈ V → (𝑥 × 𝑥) ∈ V) | |
4 | 3 | elv 2739 | . . . . . . 7 ⊢ (𝑥 × 𝑥) ∈ V |
5 | fnovex 5898 | . . . . . . 7 ⊢ (( ↑𝑚 Fn (V × V) ∧ ℝ* ∈ V ∧ (𝑥 × 𝑥) ∈ V) → (ℝ* ↑𝑚 (𝑥 × 𝑥)) ∈ V) | |
6 | 1, 2, 4, 5 | mp3an 1337 | . . . . . 6 ⊢ (ℝ* ↑𝑚 (𝑥 × 𝑥)) ∈ V |
7 | 6 | rabex 4142 | . . . . 5 ⊢ {𝑑 ∈ (ℝ* ↑𝑚 (𝑥 × 𝑥)) ∣ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (((𝑦𝑑𝑧) = 0 ↔ 𝑦 = 𝑧) ∧ ∀𝑤 ∈ 𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)))} ∈ V |
8 | df-xmet 13068 | . . . . 5 ⊢ ∞Met = (𝑥 ∈ V ↦ {𝑑 ∈ (ℝ* ↑𝑚 (𝑥 × 𝑥)) ∣ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (((𝑦𝑑𝑧) = 0 ↔ 𝑦 = 𝑧) ∧ ∀𝑤 ∈ 𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)))}) | |
9 | 7, 8 | fnmpti 5336 | . . . 4 ⊢ ∞Met Fn V |
10 | fnunirn 5758 | . . . 4 ⊢ (∞Met Fn V → (𝐷 ∈ ∪ ran ∞Met ↔ ∃𝑥 ∈ V 𝐷 ∈ (∞Met‘𝑥))) | |
11 | 9, 10 | ax-mp 5 | . . 3 ⊢ (𝐷 ∈ ∪ ran ∞Met ↔ ∃𝑥 ∈ V 𝐷 ∈ (∞Met‘𝑥)) |
12 | id 19 | . . . . 5 ⊢ (𝐷 ∈ (∞Met‘𝑥) → 𝐷 ∈ (∞Met‘𝑥)) | |
13 | xmetdmdm 13436 | . . . . . 6 ⊢ (𝐷 ∈ (∞Met‘𝑥) → 𝑥 = dom dom 𝐷) | |
14 | 13 | fveq2d 5511 | . . . . 5 ⊢ (𝐷 ∈ (∞Met‘𝑥) → (∞Met‘𝑥) = (∞Met‘dom dom 𝐷)) |
15 | 12, 14 | eleqtrd 2254 | . . . 4 ⊢ (𝐷 ∈ (∞Met‘𝑥) → 𝐷 ∈ (∞Met‘dom dom 𝐷)) |
16 | 15 | rexlimivw 2588 | . . 3 ⊢ (∃𝑥 ∈ V 𝐷 ∈ (∞Met‘𝑥) → 𝐷 ∈ (∞Met‘dom dom 𝐷)) |
17 | 11, 16 | sylbi 121 | . 2 ⊢ (𝐷 ∈ ∪ ran ∞Met → 𝐷 ∈ (∞Met‘dom dom 𝐷)) |
18 | elex 2746 | . . . . . 6 ⊢ (𝐷 ∈ (∞Met‘dom dom 𝐷) → 𝐷 ∈ V) | |
19 | dmexg 4884 | . . . . . 6 ⊢ (𝐷 ∈ V → dom 𝐷 ∈ V) | |
20 | dmexg 4884 | . . . . . 6 ⊢ (dom 𝐷 ∈ V → dom dom 𝐷 ∈ V) | |
21 | 18, 19, 20 | 3syl 17 | . . . . 5 ⊢ (𝐷 ∈ (∞Met‘dom dom 𝐷) → dom dom 𝐷 ∈ V) |
22 | fvssunirng 5522 | . . . . 5 ⊢ (dom dom 𝐷 ∈ V → (∞Met‘dom dom 𝐷) ⊆ ∪ ran ∞Met) | |
23 | 21, 22 | syl 14 | . . . 4 ⊢ (𝐷 ∈ (∞Met‘dom dom 𝐷) → (∞Met‘dom dom 𝐷) ⊆ ∪ ran ∞Met) |
24 | 23 | sseld 3152 | . . 3 ⊢ (𝐷 ∈ (∞Met‘dom dom 𝐷) → (𝐷 ∈ (∞Met‘dom dom 𝐷) → 𝐷 ∈ ∪ ran ∞Met)) |
25 | 24 | pm2.43i 49 | . 2 ⊢ (𝐷 ∈ (∞Met‘dom dom 𝐷) → 𝐷 ∈ ∪ ran ∞Met) |
26 | 17, 25 | impbii 126 | 1 ⊢ (𝐷 ∈ ∪ ran ∞Met ↔ 𝐷 ∈ (∞Met‘dom dom 𝐷)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1353 ∈ wcel 2146 ∀wral 2453 ∃wrex 2454 {crab 2457 Vcvv 2735 ⊆ wss 3127 ∪ cuni 3805 class class class wbr 3998 × cxp 4618 dom cdm 4620 ran crn 4621 Fn wfn 5203 ‘cfv 5208 (class class class)co 5865 ↑𝑚 cmap 6638 0cc0 7786 ℝ*cxr 7965 ≤ cle 7967 +𝑒 cxad 9741 ∞Metcxmet 13060 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-ral 2458 df-rex 2459 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-fv 5216 df-ov 5868 df-oprab 5869 df-mpo 5870 df-1st 6131 df-2nd 6132 df-map 6640 df-pnf 7968 df-mnf 7969 df-xr 7970 df-xmet 13068 |
This theorem is referenced by: isxms2 13532 |
Copyright terms: Public domain | W3C validator |