ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xmetunirn GIF version

Theorem xmetunirn 14537
Description: Two ways to express an extended metric on an unspecified base. (Contributed by Mario Carneiro, 13-Oct-2015.)
Assertion
Ref Expression
xmetunirn (𝐷 ran ∞Met ↔ 𝐷 ∈ (∞Met‘dom dom 𝐷))

Proof of Theorem xmetunirn
Dummy variables 𝑥 𝑦 𝑧 𝑑 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fnmap 6711 . . . . . . 7 𝑚 Fn (V × V)
2 xrex 9925 . . . . . . 7 * ∈ V
3 sqxpexg 4776 . . . . . . . 8 (𝑥 ∈ V → (𝑥 × 𝑥) ∈ V)
43elv 2764 . . . . . . 7 (𝑥 × 𝑥) ∈ V
5 fnovex 5952 . . . . . . 7 (( ↑𝑚 Fn (V × V) ∧ ℝ* ∈ V ∧ (𝑥 × 𝑥) ∈ V) → (ℝ*𝑚 (𝑥 × 𝑥)) ∈ V)
61, 2, 4, 5mp3an 1348 . . . . . 6 (ℝ*𝑚 (𝑥 × 𝑥)) ∈ V
76rabex 4174 . . . . 5 {𝑑 ∈ (ℝ*𝑚 (𝑥 × 𝑥)) ∣ ∀𝑦𝑥𝑧𝑥 (((𝑦𝑑𝑧) = 0 ↔ 𝑦 = 𝑧) ∧ ∀𝑤𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)))} ∈ V
8 df-xmet 14043 . . . . 5 ∞Met = (𝑥 ∈ V ↦ {𝑑 ∈ (ℝ*𝑚 (𝑥 × 𝑥)) ∣ ∀𝑦𝑥𝑧𝑥 (((𝑦𝑑𝑧) = 0 ↔ 𝑦 = 𝑧) ∧ ∀𝑤𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)))})
97, 8fnmpti 5383 . . . 4 ∞Met Fn V
10 fnunirn 5811 . . . 4 (∞Met Fn V → (𝐷 ran ∞Met ↔ ∃𝑥 ∈ V 𝐷 ∈ (∞Met‘𝑥)))
119, 10ax-mp 5 . . 3 (𝐷 ran ∞Met ↔ ∃𝑥 ∈ V 𝐷 ∈ (∞Met‘𝑥))
12 id 19 . . . . 5 (𝐷 ∈ (∞Met‘𝑥) → 𝐷 ∈ (∞Met‘𝑥))
13 xmetdmdm 14535 . . . . . 6 (𝐷 ∈ (∞Met‘𝑥) → 𝑥 = dom dom 𝐷)
1413fveq2d 5559 . . . . 5 (𝐷 ∈ (∞Met‘𝑥) → (∞Met‘𝑥) = (∞Met‘dom dom 𝐷))
1512, 14eleqtrd 2272 . . . 4 (𝐷 ∈ (∞Met‘𝑥) → 𝐷 ∈ (∞Met‘dom dom 𝐷))
1615rexlimivw 2607 . . 3 (∃𝑥 ∈ V 𝐷 ∈ (∞Met‘𝑥) → 𝐷 ∈ (∞Met‘dom dom 𝐷))
1711, 16sylbi 121 . 2 (𝐷 ran ∞Met → 𝐷 ∈ (∞Met‘dom dom 𝐷))
18 elex 2771 . . . . . 6 (𝐷 ∈ (∞Met‘dom dom 𝐷) → 𝐷 ∈ V)
19 dmexg 4927 . . . . . 6 (𝐷 ∈ V → dom 𝐷 ∈ V)
20 dmexg 4927 . . . . . 6 (dom 𝐷 ∈ V → dom dom 𝐷 ∈ V)
2118, 19, 203syl 17 . . . . 5 (𝐷 ∈ (∞Met‘dom dom 𝐷) → dom dom 𝐷 ∈ V)
22 fvssunirng 5570 . . . . 5 (dom dom 𝐷 ∈ V → (∞Met‘dom dom 𝐷) ⊆ ran ∞Met)
2321, 22syl 14 . . . 4 (𝐷 ∈ (∞Met‘dom dom 𝐷) → (∞Met‘dom dom 𝐷) ⊆ ran ∞Met)
2423sseld 3179 . . 3 (𝐷 ∈ (∞Met‘dom dom 𝐷) → (𝐷 ∈ (∞Met‘dom dom 𝐷) → 𝐷 ran ∞Met))
2524pm2.43i 49 . 2 (𝐷 ∈ (∞Met‘dom dom 𝐷) → 𝐷 ran ∞Met)
2617, 25impbii 126 1 (𝐷 ran ∞Met ↔ 𝐷 ∈ (∞Met‘dom dom 𝐷))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1364  wcel 2164  wral 2472  wrex 2473  {crab 2476  Vcvv 2760  wss 3154   cuni 3836   class class class wbr 4030   × cxp 4658  dom cdm 4660  ran crn 4661   Fn wfn 5250  cfv 5255  (class class class)co 5919  𝑚 cmap 6704  0cc0 7874  *cxr 8055  cle 8057   +𝑒 cxad 9839  ∞Metcxmet 14035
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-map 6706  df-pnf 8058  df-mnf 8059  df-xr 8060  df-xmet 14043
This theorem is referenced by:  isxms2  14631
  Copyright terms: Public domain W3C validator