Step | Hyp | Ref
| Expression |
1 | | fnmap 6657 |
. . . . . . 7
β’
βπ Fn (V Γ V) |
2 | | xrex 9858 |
. . . . . . 7
β’
β* β V |
3 | | sqxpexg 4744 |
. . . . . . . 8
β’ (π₯ β V β (π₯ Γ π₯) β V) |
4 | 3 | elv 2743 |
. . . . . . 7
β’ (π₯ Γ π₯) β V |
5 | | fnovex 5910 |
. . . . . . 7
β’ ((
βπ Fn (V Γ V) β§ β* β V
β§ (π₯ Γ π₯) β V) β
(β* βπ (π₯ Γ π₯)) β V) |
6 | 1, 2, 4, 5 | mp3an 1337 |
. . . . . 6
β’
(β* βπ (π₯ Γ π₯)) β V |
7 | 6 | rabex 4149 |
. . . . 5
β’ {π β (β*
βπ (π₯ Γ π₯)) β£ βπ¦ β π₯ βπ§ β π₯ (((π¦ππ§) = 0 β π¦ = π§) β§ βπ€ β π₯ (π¦ππ§) β€ ((π€ππ¦) +π (π€ππ§)))} β V |
8 | | df-xmet 13533 |
. . . . 5
β’
βMet = (π₯
β V β¦ {π β
(β* βπ (π₯ Γ π₯)) β£ βπ¦ β π₯ βπ§ β π₯ (((π¦ππ§) = 0 β π¦ = π§) β§ βπ€ β π₯ (π¦ππ§) β€ ((π€ππ¦) +π (π€ππ§)))}) |
9 | 7, 8 | fnmpti 5346 |
. . . 4
β’
βMet Fn V |
10 | | fnunirn 5770 |
. . . 4
β’
(βMet Fn V β (π· β βͺ ran
βMet β βπ₯
β V π· β
(βMetβπ₯))) |
11 | 9, 10 | ax-mp 5 |
. . 3
β’ (π· β βͺ ran βMet β βπ₯ β V π· β (βMetβπ₯)) |
12 | | id 19 |
. . . . 5
β’ (π· β (βMetβπ₯) β π· β (βMetβπ₯)) |
13 | | xmetdmdm 13941 |
. . . . . 6
β’ (π· β (βMetβπ₯) β π₯ = dom dom π·) |
14 | 13 | fveq2d 5521 |
. . . . 5
β’ (π· β (βMetβπ₯) β (βMetβπ₯) = (βMetβdom dom
π·)) |
15 | 12, 14 | eleqtrd 2256 |
. . . 4
β’ (π· β (βMetβπ₯) β π· β (βMetβdom dom π·)) |
16 | 15 | rexlimivw 2590 |
. . 3
β’
(βπ₯ β V
π· β
(βMetβπ₯) β
π· β
(βMetβdom dom π·)) |
17 | 11, 16 | sylbi 121 |
. 2
β’ (π· β βͺ ran βMet β π· β (βMetβdom dom π·)) |
18 | | elex 2750 |
. . . . . 6
β’ (π· β (βMetβdom
dom π·) β π· β V) |
19 | | dmexg 4893 |
. . . . . 6
β’ (π· β V β dom π· β V) |
20 | | dmexg 4893 |
. . . . . 6
β’ (dom
π· β V β dom dom
π· β
V) |
21 | 18, 19, 20 | 3syl 17 |
. . . . 5
β’ (π· β (βMetβdom
dom π·) β dom dom π· β V) |
22 | | fvssunirng 5532 |
. . . . 5
β’ (dom dom
π· β V β
(βMetβdom dom π·) β βͺ ran
βMet) |
23 | 21, 22 | syl 14 |
. . . 4
β’ (π· β (βMetβdom
dom π·) β
(βMetβdom dom π·) β βͺ ran
βMet) |
24 | 23 | sseld 3156 |
. . 3
β’ (π· β (βMetβdom
dom π·) β (π· β (βMetβdom
dom π·) β π· β βͺ ran βMet)) |
25 | 24 | pm2.43i 49 |
. 2
β’ (π· β (βMetβdom
dom π·) β π· β βͺ ran βMet) |
26 | 17, 25 | impbii 126 |
1
β’ (π· β βͺ ran βMet β π· β (βMetβdom dom π·)) |