ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xmetunirn GIF version

Theorem xmetunirn 14830
Description: Two ways to express an extended metric on an unspecified base. (Contributed by Mario Carneiro, 13-Oct-2015.)
Assertion
Ref Expression
xmetunirn (𝐷 ran ∞Met ↔ 𝐷 ∈ (∞Met‘dom dom 𝐷))

Proof of Theorem xmetunirn
Dummy variables 𝑥 𝑦 𝑧 𝑑 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fnmap 6742 . . . . . . 7 𝑚 Fn (V × V)
2 xrex 9978 . . . . . . 7 * ∈ V
3 sqxpexg 4791 . . . . . . . 8 (𝑥 ∈ V → (𝑥 × 𝑥) ∈ V)
43elv 2776 . . . . . . 7 (𝑥 × 𝑥) ∈ V
5 fnovex 5977 . . . . . . 7 (( ↑𝑚 Fn (V × V) ∧ ℝ* ∈ V ∧ (𝑥 × 𝑥) ∈ V) → (ℝ*𝑚 (𝑥 × 𝑥)) ∈ V)
61, 2, 4, 5mp3an 1350 . . . . . 6 (ℝ*𝑚 (𝑥 × 𝑥)) ∈ V
76rabex 4188 . . . . 5 {𝑑 ∈ (ℝ*𝑚 (𝑥 × 𝑥)) ∣ ∀𝑦𝑥𝑧𝑥 (((𝑦𝑑𝑧) = 0 ↔ 𝑦 = 𝑧) ∧ ∀𝑤𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)))} ∈ V
8 df-xmet 14306 . . . . 5 ∞Met = (𝑥 ∈ V ↦ {𝑑 ∈ (ℝ*𝑚 (𝑥 × 𝑥)) ∣ ∀𝑦𝑥𝑧𝑥 (((𝑦𝑑𝑧) = 0 ↔ 𝑦 = 𝑧) ∧ ∀𝑤𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)))})
97, 8fnmpti 5404 . . . 4 ∞Met Fn V
10 fnunirn 5836 . . . 4 (∞Met Fn V → (𝐷 ran ∞Met ↔ ∃𝑥 ∈ V 𝐷 ∈ (∞Met‘𝑥)))
119, 10ax-mp 5 . . 3 (𝐷 ran ∞Met ↔ ∃𝑥 ∈ V 𝐷 ∈ (∞Met‘𝑥))
12 id 19 . . . . 5 (𝐷 ∈ (∞Met‘𝑥) → 𝐷 ∈ (∞Met‘𝑥))
13 xmetdmdm 14828 . . . . . 6 (𝐷 ∈ (∞Met‘𝑥) → 𝑥 = dom dom 𝐷)
1413fveq2d 5580 . . . . 5 (𝐷 ∈ (∞Met‘𝑥) → (∞Met‘𝑥) = (∞Met‘dom dom 𝐷))
1512, 14eleqtrd 2284 . . . 4 (𝐷 ∈ (∞Met‘𝑥) → 𝐷 ∈ (∞Met‘dom dom 𝐷))
1615rexlimivw 2619 . . 3 (∃𝑥 ∈ V 𝐷 ∈ (∞Met‘𝑥) → 𝐷 ∈ (∞Met‘dom dom 𝐷))
1711, 16sylbi 121 . 2 (𝐷 ran ∞Met → 𝐷 ∈ (∞Met‘dom dom 𝐷))
18 elex 2783 . . . . . 6 (𝐷 ∈ (∞Met‘dom dom 𝐷) → 𝐷 ∈ V)
19 dmexg 4942 . . . . . 6 (𝐷 ∈ V → dom 𝐷 ∈ V)
20 dmexg 4942 . . . . . 6 (dom 𝐷 ∈ V → dom dom 𝐷 ∈ V)
2118, 19, 203syl 17 . . . . 5 (𝐷 ∈ (∞Met‘dom dom 𝐷) → dom dom 𝐷 ∈ V)
22 fvssunirng 5591 . . . . 5 (dom dom 𝐷 ∈ V → (∞Met‘dom dom 𝐷) ⊆ ran ∞Met)
2321, 22syl 14 . . . 4 (𝐷 ∈ (∞Met‘dom dom 𝐷) → (∞Met‘dom dom 𝐷) ⊆ ran ∞Met)
2423sseld 3192 . . 3 (𝐷 ∈ (∞Met‘dom dom 𝐷) → (𝐷 ∈ (∞Met‘dom dom 𝐷) → 𝐷 ran ∞Met))
2524pm2.43i 49 . 2 (𝐷 ∈ (∞Met‘dom dom 𝐷) → 𝐷 ran ∞Met)
2617, 25impbii 126 1 (𝐷 ran ∞Met ↔ 𝐷 ∈ (∞Met‘dom dom 𝐷))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1373  wcel 2176  wral 2484  wrex 2485  {crab 2488  Vcvv 2772  wss 3166   cuni 3850   class class class wbr 4044   × cxp 4673  dom cdm 4675  ran crn 4676   Fn wfn 5266  cfv 5271  (class class class)co 5944  𝑚 cmap 6735  0cc0 7925  *cxr 8106  cle 8108   +𝑒 cxad 9892  ∞Metcxmet 14298
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-map 6737  df-pnf 8109  df-mnf 8110  df-xr 8111  df-xmet 14306
This theorem is referenced by:  isxms2  14924
  Copyright terms: Public domain W3C validator