![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > xmetunirn | GIF version |
Description: Two ways to express an extended metric on an unspecified base. (Contributed by Mario Carneiro, 13-Oct-2015.) |
Ref | Expression |
---|---|
xmetunirn | ⊢ (𝐷 ∈ ∪ ran ∞Met ↔ 𝐷 ∈ (∞Met‘dom dom 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnmap 6682 | . . . . . . 7 ⊢ ↑𝑚 Fn (V × V) | |
2 | xrex 9888 | . . . . . . 7 ⊢ ℝ* ∈ V | |
3 | sqxpexg 4760 | . . . . . . . 8 ⊢ (𝑥 ∈ V → (𝑥 × 𝑥) ∈ V) | |
4 | 3 | elv 2756 | . . . . . . 7 ⊢ (𝑥 × 𝑥) ∈ V |
5 | fnovex 5930 | . . . . . . 7 ⊢ (( ↑𝑚 Fn (V × V) ∧ ℝ* ∈ V ∧ (𝑥 × 𝑥) ∈ V) → (ℝ* ↑𝑚 (𝑥 × 𝑥)) ∈ V) | |
6 | 1, 2, 4, 5 | mp3an 1348 | . . . . . 6 ⊢ (ℝ* ↑𝑚 (𝑥 × 𝑥)) ∈ V |
7 | 6 | rabex 4162 | . . . . 5 ⊢ {𝑑 ∈ (ℝ* ↑𝑚 (𝑥 × 𝑥)) ∣ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (((𝑦𝑑𝑧) = 0 ↔ 𝑦 = 𝑧) ∧ ∀𝑤 ∈ 𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)))} ∈ V |
8 | df-xmet 13874 | . . . . 5 ⊢ ∞Met = (𝑥 ∈ V ↦ {𝑑 ∈ (ℝ* ↑𝑚 (𝑥 × 𝑥)) ∣ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (((𝑦𝑑𝑧) = 0 ↔ 𝑦 = 𝑧) ∧ ∀𝑤 ∈ 𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)))}) | |
9 | 7, 8 | fnmpti 5363 | . . . 4 ⊢ ∞Met Fn V |
10 | fnunirn 5789 | . . . 4 ⊢ (∞Met Fn V → (𝐷 ∈ ∪ ran ∞Met ↔ ∃𝑥 ∈ V 𝐷 ∈ (∞Met‘𝑥))) | |
11 | 9, 10 | ax-mp 5 | . . 3 ⊢ (𝐷 ∈ ∪ ran ∞Met ↔ ∃𝑥 ∈ V 𝐷 ∈ (∞Met‘𝑥)) |
12 | id 19 | . . . . 5 ⊢ (𝐷 ∈ (∞Met‘𝑥) → 𝐷 ∈ (∞Met‘𝑥)) | |
13 | xmetdmdm 14333 | . . . . . 6 ⊢ (𝐷 ∈ (∞Met‘𝑥) → 𝑥 = dom dom 𝐷) | |
14 | 13 | fveq2d 5538 | . . . . 5 ⊢ (𝐷 ∈ (∞Met‘𝑥) → (∞Met‘𝑥) = (∞Met‘dom dom 𝐷)) |
15 | 12, 14 | eleqtrd 2268 | . . . 4 ⊢ (𝐷 ∈ (∞Met‘𝑥) → 𝐷 ∈ (∞Met‘dom dom 𝐷)) |
16 | 15 | rexlimivw 2603 | . . 3 ⊢ (∃𝑥 ∈ V 𝐷 ∈ (∞Met‘𝑥) → 𝐷 ∈ (∞Met‘dom dom 𝐷)) |
17 | 11, 16 | sylbi 121 | . 2 ⊢ (𝐷 ∈ ∪ ran ∞Met → 𝐷 ∈ (∞Met‘dom dom 𝐷)) |
18 | elex 2763 | . . . . . 6 ⊢ (𝐷 ∈ (∞Met‘dom dom 𝐷) → 𝐷 ∈ V) | |
19 | dmexg 4909 | . . . . . 6 ⊢ (𝐷 ∈ V → dom 𝐷 ∈ V) | |
20 | dmexg 4909 | . . . . . 6 ⊢ (dom 𝐷 ∈ V → dom dom 𝐷 ∈ V) | |
21 | 18, 19, 20 | 3syl 17 | . . . . 5 ⊢ (𝐷 ∈ (∞Met‘dom dom 𝐷) → dom dom 𝐷 ∈ V) |
22 | fvssunirng 5549 | . . . . 5 ⊢ (dom dom 𝐷 ∈ V → (∞Met‘dom dom 𝐷) ⊆ ∪ ran ∞Met) | |
23 | 21, 22 | syl 14 | . . . 4 ⊢ (𝐷 ∈ (∞Met‘dom dom 𝐷) → (∞Met‘dom dom 𝐷) ⊆ ∪ ran ∞Met) |
24 | 23 | sseld 3169 | . . 3 ⊢ (𝐷 ∈ (∞Met‘dom dom 𝐷) → (𝐷 ∈ (∞Met‘dom dom 𝐷) → 𝐷 ∈ ∪ ran ∞Met)) |
25 | 24 | pm2.43i 49 | . 2 ⊢ (𝐷 ∈ (∞Met‘dom dom 𝐷) → 𝐷 ∈ ∪ ran ∞Met) |
26 | 17, 25 | impbii 126 | 1 ⊢ (𝐷 ∈ ∪ ran ∞Met ↔ 𝐷 ∈ (∞Met‘dom dom 𝐷)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2160 ∀wral 2468 ∃wrex 2469 {crab 2472 Vcvv 2752 ⊆ wss 3144 ∪ cuni 3824 class class class wbr 4018 × cxp 4642 dom cdm 4644 ran crn 4645 Fn wfn 5230 ‘cfv 5235 (class class class)co 5897 ↑𝑚 cmap 6675 0cc0 7842 ℝ*cxr 8022 ≤ cle 8024 +𝑒 cxad 9802 ∞Metcxmet 13866 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-cnex 7933 ax-resscn 7934 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-ral 2473 df-rex 2474 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4311 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-fv 5243 df-ov 5900 df-oprab 5901 df-mpo 5902 df-1st 6166 df-2nd 6167 df-map 6677 df-pnf 8025 df-mnf 8026 df-xr 8027 df-xmet 13874 |
This theorem is referenced by: isxms2 14429 |
Copyright terms: Public domain | W3C validator |