Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xmetunirn | GIF version |
Description: Two ways to express an extended metric on an unspecified base. (Contributed by Mario Carneiro, 13-Oct-2015.) |
Ref | Expression |
---|---|
xmetunirn | ⊢ (𝐷 ∈ ∪ ran ∞Met ↔ 𝐷 ∈ (∞Met‘dom dom 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnmap 6621 | . . . . . . 7 ⊢ ↑𝑚 Fn (V × V) | |
2 | xrex 9792 | . . . . . . 7 ⊢ ℝ* ∈ V | |
3 | sqxpexg 4720 | . . . . . . . 8 ⊢ (𝑥 ∈ V → (𝑥 × 𝑥) ∈ V) | |
4 | 3 | elv 2730 | . . . . . . 7 ⊢ (𝑥 × 𝑥) ∈ V |
5 | fnovex 5875 | . . . . . . 7 ⊢ (( ↑𝑚 Fn (V × V) ∧ ℝ* ∈ V ∧ (𝑥 × 𝑥) ∈ V) → (ℝ* ↑𝑚 (𝑥 × 𝑥)) ∈ V) | |
6 | 1, 2, 4, 5 | mp3an 1327 | . . . . . 6 ⊢ (ℝ* ↑𝑚 (𝑥 × 𝑥)) ∈ V |
7 | 6 | rabex 4126 | . . . . 5 ⊢ {𝑑 ∈ (ℝ* ↑𝑚 (𝑥 × 𝑥)) ∣ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (((𝑦𝑑𝑧) = 0 ↔ 𝑦 = 𝑧) ∧ ∀𝑤 ∈ 𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)))} ∈ V |
8 | df-xmet 12638 | . . . . 5 ⊢ ∞Met = (𝑥 ∈ V ↦ {𝑑 ∈ (ℝ* ↑𝑚 (𝑥 × 𝑥)) ∣ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (((𝑦𝑑𝑧) = 0 ↔ 𝑦 = 𝑧) ∧ ∀𝑤 ∈ 𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)))}) | |
9 | 7, 8 | fnmpti 5316 | . . . 4 ⊢ ∞Met Fn V |
10 | fnunirn 5735 | . . . 4 ⊢ (∞Met Fn V → (𝐷 ∈ ∪ ran ∞Met ↔ ∃𝑥 ∈ V 𝐷 ∈ (∞Met‘𝑥))) | |
11 | 9, 10 | ax-mp 5 | . . 3 ⊢ (𝐷 ∈ ∪ ran ∞Met ↔ ∃𝑥 ∈ V 𝐷 ∈ (∞Met‘𝑥)) |
12 | id 19 | . . . . 5 ⊢ (𝐷 ∈ (∞Met‘𝑥) → 𝐷 ∈ (∞Met‘𝑥)) | |
13 | xmetdmdm 13006 | . . . . . 6 ⊢ (𝐷 ∈ (∞Met‘𝑥) → 𝑥 = dom dom 𝐷) | |
14 | 13 | fveq2d 5490 | . . . . 5 ⊢ (𝐷 ∈ (∞Met‘𝑥) → (∞Met‘𝑥) = (∞Met‘dom dom 𝐷)) |
15 | 12, 14 | eleqtrd 2245 | . . . 4 ⊢ (𝐷 ∈ (∞Met‘𝑥) → 𝐷 ∈ (∞Met‘dom dom 𝐷)) |
16 | 15 | rexlimivw 2579 | . . 3 ⊢ (∃𝑥 ∈ V 𝐷 ∈ (∞Met‘𝑥) → 𝐷 ∈ (∞Met‘dom dom 𝐷)) |
17 | 11, 16 | sylbi 120 | . 2 ⊢ (𝐷 ∈ ∪ ran ∞Met → 𝐷 ∈ (∞Met‘dom dom 𝐷)) |
18 | elex 2737 | . . . . . 6 ⊢ (𝐷 ∈ (∞Met‘dom dom 𝐷) → 𝐷 ∈ V) | |
19 | dmexg 4868 | . . . . . 6 ⊢ (𝐷 ∈ V → dom 𝐷 ∈ V) | |
20 | dmexg 4868 | . . . . . 6 ⊢ (dom 𝐷 ∈ V → dom dom 𝐷 ∈ V) | |
21 | 18, 19, 20 | 3syl 17 | . . . . 5 ⊢ (𝐷 ∈ (∞Met‘dom dom 𝐷) → dom dom 𝐷 ∈ V) |
22 | fvssunirng 5501 | . . . . 5 ⊢ (dom dom 𝐷 ∈ V → (∞Met‘dom dom 𝐷) ⊆ ∪ ran ∞Met) | |
23 | 21, 22 | syl 14 | . . . 4 ⊢ (𝐷 ∈ (∞Met‘dom dom 𝐷) → (∞Met‘dom dom 𝐷) ⊆ ∪ ran ∞Met) |
24 | 23 | sseld 3141 | . . 3 ⊢ (𝐷 ∈ (∞Met‘dom dom 𝐷) → (𝐷 ∈ (∞Met‘dom dom 𝐷) → 𝐷 ∈ ∪ ran ∞Met)) |
25 | 24 | pm2.43i 49 | . 2 ⊢ (𝐷 ∈ (∞Met‘dom dom 𝐷) → 𝐷 ∈ ∪ ran ∞Met) |
26 | 17, 25 | impbii 125 | 1 ⊢ (𝐷 ∈ ∪ ran ∞Met ↔ 𝐷 ∈ (∞Met‘dom dom 𝐷)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 = wceq 1343 ∈ wcel 2136 ∀wral 2444 ∃wrex 2445 {crab 2448 Vcvv 2726 ⊆ wss 3116 ∪ cuni 3789 class class class wbr 3982 × cxp 4602 dom cdm 4604 ran crn 4605 Fn wfn 5183 ‘cfv 5188 (class class class)co 5842 ↑𝑚 cmap 6614 0cc0 7753 ℝ*cxr 7932 ≤ cle 7934 +𝑒 cxad 9706 ∞Metcxmet 12630 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-map 6616 df-pnf 7935 df-mnf 7936 df-xr 7937 df-xmet 12638 |
This theorem is referenced by: isxms2 13102 |
Copyright terms: Public domain | W3C validator |