| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xmetunirn | GIF version | ||
| Description: Two ways to express an extended metric on an unspecified base. (Contributed by Mario Carneiro, 13-Oct-2015.) |
| Ref | Expression |
|---|---|
| xmetunirn | ⊢ (𝐷 ∈ ∪ ran ∞Met ↔ 𝐷 ∈ (∞Met‘dom dom 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnmap 6765 | . . . . . . 7 ⊢ ↑𝑚 Fn (V × V) | |
| 2 | xrex 10013 | . . . . . . 7 ⊢ ℝ* ∈ V | |
| 3 | sqxpexg 4809 | . . . . . . . 8 ⊢ (𝑥 ∈ V → (𝑥 × 𝑥) ∈ V) | |
| 4 | 3 | elv 2780 | . . . . . . 7 ⊢ (𝑥 × 𝑥) ∈ V |
| 5 | fnovex 6000 | . . . . . . 7 ⊢ (( ↑𝑚 Fn (V × V) ∧ ℝ* ∈ V ∧ (𝑥 × 𝑥) ∈ V) → (ℝ* ↑𝑚 (𝑥 × 𝑥)) ∈ V) | |
| 6 | 1, 2, 4, 5 | mp3an 1350 | . . . . . 6 ⊢ (ℝ* ↑𝑚 (𝑥 × 𝑥)) ∈ V |
| 7 | 6 | rabex 4204 | . . . . 5 ⊢ {𝑑 ∈ (ℝ* ↑𝑚 (𝑥 × 𝑥)) ∣ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (((𝑦𝑑𝑧) = 0 ↔ 𝑦 = 𝑧) ∧ ∀𝑤 ∈ 𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)))} ∈ V |
| 8 | df-xmet 14421 | . . . . 5 ⊢ ∞Met = (𝑥 ∈ V ↦ {𝑑 ∈ (ℝ* ↑𝑚 (𝑥 × 𝑥)) ∣ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (((𝑦𝑑𝑧) = 0 ↔ 𝑦 = 𝑧) ∧ ∀𝑤 ∈ 𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)))}) | |
| 9 | 7, 8 | fnmpti 5424 | . . . 4 ⊢ ∞Met Fn V |
| 10 | fnunirn 5859 | . . . 4 ⊢ (∞Met Fn V → (𝐷 ∈ ∪ ran ∞Met ↔ ∃𝑥 ∈ V 𝐷 ∈ (∞Met‘𝑥))) | |
| 11 | 9, 10 | ax-mp 5 | . . 3 ⊢ (𝐷 ∈ ∪ ran ∞Met ↔ ∃𝑥 ∈ V 𝐷 ∈ (∞Met‘𝑥)) |
| 12 | id 19 | . . . . 5 ⊢ (𝐷 ∈ (∞Met‘𝑥) → 𝐷 ∈ (∞Met‘𝑥)) | |
| 13 | xmetdmdm 14943 | . . . . . 6 ⊢ (𝐷 ∈ (∞Met‘𝑥) → 𝑥 = dom dom 𝐷) | |
| 14 | 13 | fveq2d 5603 | . . . . 5 ⊢ (𝐷 ∈ (∞Met‘𝑥) → (∞Met‘𝑥) = (∞Met‘dom dom 𝐷)) |
| 15 | 12, 14 | eleqtrd 2286 | . . . 4 ⊢ (𝐷 ∈ (∞Met‘𝑥) → 𝐷 ∈ (∞Met‘dom dom 𝐷)) |
| 16 | 15 | rexlimivw 2621 | . . 3 ⊢ (∃𝑥 ∈ V 𝐷 ∈ (∞Met‘𝑥) → 𝐷 ∈ (∞Met‘dom dom 𝐷)) |
| 17 | 11, 16 | sylbi 121 | . 2 ⊢ (𝐷 ∈ ∪ ran ∞Met → 𝐷 ∈ (∞Met‘dom dom 𝐷)) |
| 18 | elex 2788 | . . . . . 6 ⊢ (𝐷 ∈ (∞Met‘dom dom 𝐷) → 𝐷 ∈ V) | |
| 19 | dmexg 4961 | . . . . . 6 ⊢ (𝐷 ∈ V → dom 𝐷 ∈ V) | |
| 20 | dmexg 4961 | . . . . . 6 ⊢ (dom 𝐷 ∈ V → dom dom 𝐷 ∈ V) | |
| 21 | 18, 19, 20 | 3syl 17 | . . . . 5 ⊢ (𝐷 ∈ (∞Met‘dom dom 𝐷) → dom dom 𝐷 ∈ V) |
| 22 | fvssunirng 5614 | . . . . 5 ⊢ (dom dom 𝐷 ∈ V → (∞Met‘dom dom 𝐷) ⊆ ∪ ran ∞Met) | |
| 23 | 21, 22 | syl 14 | . . . 4 ⊢ (𝐷 ∈ (∞Met‘dom dom 𝐷) → (∞Met‘dom dom 𝐷) ⊆ ∪ ran ∞Met) |
| 24 | 23 | sseld 3200 | . . 3 ⊢ (𝐷 ∈ (∞Met‘dom dom 𝐷) → (𝐷 ∈ (∞Met‘dom dom 𝐷) → 𝐷 ∈ ∪ ran ∞Met)) |
| 25 | 24 | pm2.43i 49 | . 2 ⊢ (𝐷 ∈ (∞Met‘dom dom 𝐷) → 𝐷 ∈ ∪ ran ∞Met) |
| 26 | 17, 25 | impbii 126 | 1 ⊢ (𝐷 ∈ ∪ ran ∞Met ↔ 𝐷 ∈ (∞Met‘dom dom 𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2178 ∀wral 2486 ∃wrex 2487 {crab 2490 Vcvv 2776 ⊆ wss 3174 ∪ cuni 3864 class class class wbr 4059 × cxp 4691 dom cdm 4693 ran crn 4694 Fn wfn 5285 ‘cfv 5290 (class class class)co 5967 ↑𝑚 cmap 6758 0cc0 7960 ℝ*cxr 8141 ≤ cle 8143 +𝑒 cxad 9927 ∞Metcxmet 14413 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-map 6760 df-pnf 8144 df-mnf 8145 df-xr 8146 df-xmet 14421 |
| This theorem is referenced by: isxms2 15039 |
| Copyright terms: Public domain | W3C validator |