| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xmetunirn | GIF version | ||
| Description: Two ways to express an extended metric on an unspecified base. (Contributed by Mario Carneiro, 13-Oct-2015.) |
| Ref | Expression |
|---|---|
| xmetunirn | ⊢ (𝐷 ∈ ∪ ran ∞Met ↔ 𝐷 ∈ (∞Met‘dom dom 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnmap 6714 | . . . . . . 7 ⊢ ↑𝑚 Fn (V × V) | |
| 2 | xrex 9931 | . . . . . . 7 ⊢ ℝ* ∈ V | |
| 3 | sqxpexg 4779 | . . . . . . . 8 ⊢ (𝑥 ∈ V → (𝑥 × 𝑥) ∈ V) | |
| 4 | 3 | elv 2767 | . . . . . . 7 ⊢ (𝑥 × 𝑥) ∈ V |
| 5 | fnovex 5955 | . . . . . . 7 ⊢ (( ↑𝑚 Fn (V × V) ∧ ℝ* ∈ V ∧ (𝑥 × 𝑥) ∈ V) → (ℝ* ↑𝑚 (𝑥 × 𝑥)) ∈ V) | |
| 6 | 1, 2, 4, 5 | mp3an 1348 | . . . . . 6 ⊢ (ℝ* ↑𝑚 (𝑥 × 𝑥)) ∈ V |
| 7 | 6 | rabex 4177 | . . . . 5 ⊢ {𝑑 ∈ (ℝ* ↑𝑚 (𝑥 × 𝑥)) ∣ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (((𝑦𝑑𝑧) = 0 ↔ 𝑦 = 𝑧) ∧ ∀𝑤 ∈ 𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)))} ∈ V |
| 8 | df-xmet 14100 | . . . . 5 ⊢ ∞Met = (𝑥 ∈ V ↦ {𝑑 ∈ (ℝ* ↑𝑚 (𝑥 × 𝑥)) ∣ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (((𝑦𝑑𝑧) = 0 ↔ 𝑦 = 𝑧) ∧ ∀𝑤 ∈ 𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)))}) | |
| 9 | 7, 8 | fnmpti 5386 | . . . 4 ⊢ ∞Met Fn V |
| 10 | fnunirn 5814 | . . . 4 ⊢ (∞Met Fn V → (𝐷 ∈ ∪ ran ∞Met ↔ ∃𝑥 ∈ V 𝐷 ∈ (∞Met‘𝑥))) | |
| 11 | 9, 10 | ax-mp 5 | . . 3 ⊢ (𝐷 ∈ ∪ ran ∞Met ↔ ∃𝑥 ∈ V 𝐷 ∈ (∞Met‘𝑥)) |
| 12 | id 19 | . . . . 5 ⊢ (𝐷 ∈ (∞Met‘𝑥) → 𝐷 ∈ (∞Met‘𝑥)) | |
| 13 | xmetdmdm 14592 | . . . . . 6 ⊢ (𝐷 ∈ (∞Met‘𝑥) → 𝑥 = dom dom 𝐷) | |
| 14 | 13 | fveq2d 5562 | . . . . 5 ⊢ (𝐷 ∈ (∞Met‘𝑥) → (∞Met‘𝑥) = (∞Met‘dom dom 𝐷)) |
| 15 | 12, 14 | eleqtrd 2275 | . . . 4 ⊢ (𝐷 ∈ (∞Met‘𝑥) → 𝐷 ∈ (∞Met‘dom dom 𝐷)) |
| 16 | 15 | rexlimivw 2610 | . . 3 ⊢ (∃𝑥 ∈ V 𝐷 ∈ (∞Met‘𝑥) → 𝐷 ∈ (∞Met‘dom dom 𝐷)) |
| 17 | 11, 16 | sylbi 121 | . 2 ⊢ (𝐷 ∈ ∪ ran ∞Met → 𝐷 ∈ (∞Met‘dom dom 𝐷)) |
| 18 | elex 2774 | . . . . . 6 ⊢ (𝐷 ∈ (∞Met‘dom dom 𝐷) → 𝐷 ∈ V) | |
| 19 | dmexg 4930 | . . . . . 6 ⊢ (𝐷 ∈ V → dom 𝐷 ∈ V) | |
| 20 | dmexg 4930 | . . . . . 6 ⊢ (dom 𝐷 ∈ V → dom dom 𝐷 ∈ V) | |
| 21 | 18, 19, 20 | 3syl 17 | . . . . 5 ⊢ (𝐷 ∈ (∞Met‘dom dom 𝐷) → dom dom 𝐷 ∈ V) |
| 22 | fvssunirng 5573 | . . . . 5 ⊢ (dom dom 𝐷 ∈ V → (∞Met‘dom dom 𝐷) ⊆ ∪ ran ∞Met) | |
| 23 | 21, 22 | syl 14 | . . . 4 ⊢ (𝐷 ∈ (∞Met‘dom dom 𝐷) → (∞Met‘dom dom 𝐷) ⊆ ∪ ran ∞Met) |
| 24 | 23 | sseld 3182 | . . 3 ⊢ (𝐷 ∈ (∞Met‘dom dom 𝐷) → (𝐷 ∈ (∞Met‘dom dom 𝐷) → 𝐷 ∈ ∪ ran ∞Met)) |
| 25 | 24 | pm2.43i 49 | . 2 ⊢ (𝐷 ∈ (∞Met‘dom dom 𝐷) → 𝐷 ∈ ∪ ran ∞Met) |
| 26 | 17, 25 | impbii 126 | 1 ⊢ (𝐷 ∈ ∪ ran ∞Met ↔ 𝐷 ∈ (∞Met‘dom dom 𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 ∀wral 2475 ∃wrex 2476 {crab 2479 Vcvv 2763 ⊆ wss 3157 ∪ cuni 3839 class class class wbr 4033 × cxp 4661 dom cdm 4663 ran crn 4664 Fn wfn 5253 ‘cfv 5258 (class class class)co 5922 ↑𝑚 cmap 6707 0cc0 7879 ℝ*cxr 8060 ≤ cle 8062 +𝑒 cxad 9845 ∞Metcxmet 14092 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-map 6709 df-pnf 8063 df-mnf 8064 df-xr 8065 df-xmet 14100 |
| This theorem is referenced by: isxms2 14688 |
| Copyright terms: Public domain | W3C validator |