Step | Hyp | Ref
| Expression |
1 | | iseqid3s.2 |
. . 3
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
2 | | eluzfz2 9975 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑁 ∈ (𝑀...𝑁)) |
3 | | fveqeq2 5503 |
. . . . 5
⊢ (𝑤 = 𝑀 → ((seq𝑀( + , 𝐹)‘𝑤) = 𝑍 ↔ (seq𝑀( + , 𝐹)‘𝑀) = 𝑍)) |
4 | 3 | imbi2d 229 |
. . . 4
⊢ (𝑤 = 𝑀 → ((𝜑 → (seq𝑀( + , 𝐹)‘𝑤) = 𝑍) ↔ (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) = 𝑍))) |
5 | | fveqeq2 5503 |
. . . . 5
⊢ (𝑤 = 𝑘 → ((seq𝑀( + , 𝐹)‘𝑤) = 𝑍 ↔ (seq𝑀( + , 𝐹)‘𝑘) = 𝑍)) |
6 | 5 | imbi2d 229 |
. . . 4
⊢ (𝑤 = 𝑘 → ((𝜑 → (seq𝑀( + , 𝐹)‘𝑤) = 𝑍) ↔ (𝜑 → (seq𝑀( + , 𝐹)‘𝑘) = 𝑍))) |
7 | | fveqeq2 5503 |
. . . . 5
⊢ (𝑤 = (𝑘 + 1) → ((seq𝑀( + , 𝐹)‘𝑤) = 𝑍 ↔ (seq𝑀( + , 𝐹)‘(𝑘 + 1)) = 𝑍)) |
8 | 7 | imbi2d 229 |
. . . 4
⊢ (𝑤 = (𝑘 + 1) → ((𝜑 → (seq𝑀( + , 𝐹)‘𝑤) = 𝑍) ↔ (𝜑 → (seq𝑀( + , 𝐹)‘(𝑘 + 1)) = 𝑍))) |
9 | | fveqeq2 5503 |
. . . . 5
⊢ (𝑤 = 𝑁 → ((seq𝑀( + , 𝐹)‘𝑤) = 𝑍 ↔ (seq𝑀( + , 𝐹)‘𝑁) = 𝑍)) |
10 | 9 | imbi2d 229 |
. . . 4
⊢ (𝑤 = 𝑁 → ((𝜑 → (seq𝑀( + , 𝐹)‘𝑤) = 𝑍) ↔ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = 𝑍))) |
11 | | eluzel2 9479 |
. . . . . . . 8
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
12 | 1, 11 | syl 14 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ ℤ) |
13 | | iseqid3s.f |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) |
14 | | iseqid3s.cl |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
15 | 12, 13, 14 | seq3-1 10403 |
. . . . . 6
⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹‘𝑀)) |
16 | | iseqid3s.3 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐹‘𝑥) = 𝑍) |
17 | 16 | ralrimiva 2543 |
. . . . . . 7
⊢ (𝜑 → ∀𝑥 ∈ (𝑀...𝑁)(𝐹‘𝑥) = 𝑍) |
18 | | eluzfz1 9974 |
. . . . . . . 8
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ (𝑀...𝑁)) |
19 | | fveqeq2 5503 |
. . . . . . . . 9
⊢ (𝑥 = 𝑀 → ((𝐹‘𝑥) = 𝑍 ↔ (𝐹‘𝑀) = 𝑍)) |
20 | 19 | rspcv 2830 |
. . . . . . . 8
⊢ (𝑀 ∈ (𝑀...𝑁) → (∀𝑥 ∈ (𝑀...𝑁)(𝐹‘𝑥) = 𝑍 → (𝐹‘𝑀) = 𝑍)) |
21 | 1, 18, 20 | 3syl 17 |
. . . . . . 7
⊢ (𝜑 → (∀𝑥 ∈ (𝑀...𝑁)(𝐹‘𝑥) = 𝑍 → (𝐹‘𝑀) = 𝑍)) |
22 | 17, 21 | mpd 13 |
. . . . . 6
⊢ (𝜑 → (𝐹‘𝑀) = 𝑍) |
23 | 15, 22 | eqtrd 2203 |
. . . . 5
⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) = 𝑍) |
24 | 23 | a1i 9 |
. . . 4
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) = 𝑍)) |
25 | | elfzouz 10094 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ (𝑀..^𝑁) → 𝑘 ∈ (ℤ≥‘𝑀)) |
26 | 25 | adantl 275 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → 𝑘 ∈ (ℤ≥‘𝑀)) |
27 | 13 | adantlr 474 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) |
28 | 14 | adantlr 474 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
29 | 26, 27, 28 | seq3p1 10405 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (seq𝑀( + , 𝐹)‘(𝑘 + 1)) = ((seq𝑀( + , 𝐹)‘𝑘) + (𝐹‘(𝑘 + 1)))) |
30 | 29 | adantr 274 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) ∧ (seq𝑀( + , 𝐹)‘𝑘) = 𝑍) → (seq𝑀( + , 𝐹)‘(𝑘 + 1)) = ((seq𝑀( + , 𝐹)‘𝑘) + (𝐹‘(𝑘 + 1)))) |
31 | | simpr 109 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) ∧ (seq𝑀( + , 𝐹)‘𝑘) = 𝑍) → (seq𝑀( + , 𝐹)‘𝑘) = 𝑍) |
32 | | fveqeq2 5503 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑘 + 1) → ((𝐹‘𝑥) = 𝑍 ↔ (𝐹‘(𝑘 + 1)) = 𝑍)) |
33 | 17 | adantr 274 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → ∀𝑥 ∈ (𝑀...𝑁)(𝐹‘𝑥) = 𝑍) |
34 | | fzofzp1 10170 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (𝑀..^𝑁) → (𝑘 + 1) ∈ (𝑀...𝑁)) |
35 | 34 | adantl 275 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (𝑘 + 1) ∈ (𝑀...𝑁)) |
36 | 32, 33, 35 | rspcdva 2839 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (𝐹‘(𝑘 + 1)) = 𝑍) |
37 | 36 | adantr 274 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) ∧ (seq𝑀( + , 𝐹)‘𝑘) = 𝑍) → (𝐹‘(𝑘 + 1)) = 𝑍) |
38 | 31, 37 | oveq12d 5868 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) ∧ (seq𝑀( + , 𝐹)‘𝑘) = 𝑍) → ((seq𝑀( + , 𝐹)‘𝑘) + (𝐹‘(𝑘 + 1))) = (𝑍 + 𝑍)) |
39 | | iseqid3s.1 |
. . . . . . . . 9
⊢ (𝜑 → (𝑍 + 𝑍) = 𝑍) |
40 | 39 | ad2antrr 485 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) ∧ (seq𝑀( + , 𝐹)‘𝑘) = 𝑍) → (𝑍 + 𝑍) = 𝑍) |
41 | 30, 38, 40 | 3eqtrd 2207 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) ∧ (seq𝑀( + , 𝐹)‘𝑘) = 𝑍) → (seq𝑀( + , 𝐹)‘(𝑘 + 1)) = 𝑍) |
42 | 41 | ex 114 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → ((seq𝑀( + , 𝐹)‘𝑘) = 𝑍 → (seq𝑀( + , 𝐹)‘(𝑘 + 1)) = 𝑍)) |
43 | 42 | expcom 115 |
. . . . 5
⊢ (𝑘 ∈ (𝑀..^𝑁) → (𝜑 → ((seq𝑀( + , 𝐹)‘𝑘) = 𝑍 → (seq𝑀( + , 𝐹)‘(𝑘 + 1)) = 𝑍))) |
44 | 43 | a2d 26 |
. . . 4
⊢ (𝑘 ∈ (𝑀..^𝑁) → ((𝜑 → (seq𝑀( + , 𝐹)‘𝑘) = 𝑍) → (𝜑 → (seq𝑀( + , 𝐹)‘(𝑘 + 1)) = 𝑍))) |
45 | 4, 6, 8, 10, 24, 44 | fzind2 10182 |
. . 3
⊢ (𝑁 ∈ (𝑀...𝑁) → (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = 𝑍)) |
46 | 1, 2, 45 | 3syl 17 |
. 2
⊢ (𝜑 → (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = 𝑍)) |
47 | 46 | pm2.43i 49 |
1
⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = 𝑍) |