ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  en2eqpr GIF version

Theorem en2eqpr 7065
Description: Building a set with two elements. (Contributed by FL, 11-Aug-2008.) (Revised by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
en2eqpr ((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) → (𝐴𝐵𝐶 = {𝐴, 𝐵}))

Proof of Theorem en2eqpr
Dummy variables 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bren 6893 . . . . . 6 (𝐶 ≈ 2o ↔ ∃𝑓 𝑓:𝐶1-1-onto→2o)
21biimpi 120 . . . . 5 (𝐶 ≈ 2o → ∃𝑓 𝑓:𝐶1-1-onto→2o)
323ad2ant1 1042 . . . 4 ((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) → ∃𝑓 𝑓:𝐶1-1-onto→2o)
43adantr 276 . . 3 (((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) → ∃𝑓 𝑓:𝐶1-1-onto→2o)
5 simplr 528 . . . . . . . . . . 11 (((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = ∅) ∧ (𝑓𝐵) = ∅) → (𝑓𝑥) = ∅)
6 simpr 110 . . . . . . . . . . 11 (((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = ∅) ∧ (𝑓𝐵) = ∅) → (𝑓𝐵) = ∅)
75, 6eqtr4d 2265 . . . . . . . . . 10 (((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = ∅) ∧ (𝑓𝐵) = ∅) → (𝑓𝑥) = (𝑓𝐵))
8 f1of1 5570 . . . . . . . . . . . . . 14 (𝑓:𝐶1-1-onto→2o𝑓:𝐶1-1→2o)
98adantl 277 . . . . . . . . . . . . 13 ((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) → 𝑓:𝐶1-1→2o)
109adantr 276 . . . . . . . . . . . 12 (((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) → 𝑓:𝐶1-1→2o)
11 simpr 110 . . . . . . . . . . . 12 (((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) → 𝑥𝐶)
12 simpll3 1062 . . . . . . . . . . . . 13 ((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) → 𝐵𝐶)
1312adantr 276 . . . . . . . . . . . 12 (((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) → 𝐵𝐶)
14 f1fveq 5895 . . . . . . . . . . . 12 ((𝑓:𝐶1-1→2o ∧ (𝑥𝐶𝐵𝐶)) → ((𝑓𝑥) = (𝑓𝐵) ↔ 𝑥 = 𝐵))
1510, 11, 13, 14syl12anc 1269 . . . . . . . . . . 11 (((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) → ((𝑓𝑥) = (𝑓𝐵) ↔ 𝑥 = 𝐵))
1615ad2antrr 488 . . . . . . . . . 10 (((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = ∅) ∧ (𝑓𝐵) = ∅) → ((𝑓𝑥) = (𝑓𝐵) ↔ 𝑥 = 𝐵))
177, 16mpbid 147 . . . . . . . . 9 (((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = ∅) ∧ (𝑓𝐵) = ∅) → 𝑥 = 𝐵)
18 prid2g 3771 . . . . . . . . . . 11 (𝐵𝐶𝐵 ∈ {𝐴, 𝐵})
1913, 18syl 14 . . . . . . . . . 10 (((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) → 𝐵 ∈ {𝐴, 𝐵})
2019ad2antrr 488 . . . . . . . . 9 (((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = ∅) ∧ (𝑓𝐵) = ∅) → 𝐵 ∈ {𝐴, 𝐵})
2117, 20eqeltrd 2306 . . . . . . . 8 (((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = ∅) ∧ (𝑓𝐵) = ∅) → 𝑥 ∈ {𝐴, 𝐵})
22 simpllr 534 . . . . . . . . . . . 12 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = ∅) ∧ (𝑓𝐵) = 1o) ∧ (𝑓𝐴) = ∅) → (𝑓𝑥) = ∅)
23 simpr 110 . . . . . . . . . . . 12 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = ∅) ∧ (𝑓𝐵) = 1o) ∧ (𝑓𝐴) = ∅) → (𝑓𝐴) = ∅)
2422, 23eqtr4d 2265 . . . . . . . . . . 11 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = ∅) ∧ (𝑓𝐵) = 1o) ∧ (𝑓𝐴) = ∅) → (𝑓𝑥) = (𝑓𝐴))
25 simpll2 1061 . . . . . . . . . . . . . 14 ((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) → 𝐴𝐶)
2625adantr 276 . . . . . . . . . . . . 13 (((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) → 𝐴𝐶)
27 f1fveq 5895 . . . . . . . . . . . . 13 ((𝑓:𝐶1-1→2o ∧ (𝑥𝐶𝐴𝐶)) → ((𝑓𝑥) = (𝑓𝐴) ↔ 𝑥 = 𝐴))
2810, 11, 26, 27syl12anc 1269 . . . . . . . . . . . 12 (((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) → ((𝑓𝑥) = (𝑓𝐴) ↔ 𝑥 = 𝐴))
2928ad3antrrr 492 . . . . . . . . . . 11 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = ∅) ∧ (𝑓𝐵) = 1o) ∧ (𝑓𝐴) = ∅) → ((𝑓𝑥) = (𝑓𝐴) ↔ 𝑥 = 𝐴))
3024, 29mpbid 147 . . . . . . . . . 10 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = ∅) ∧ (𝑓𝐵) = 1o) ∧ (𝑓𝐴) = ∅) → 𝑥 = 𝐴)
31 prid1g 3770 . . . . . . . . . . . 12 (𝐴𝐶𝐴 ∈ {𝐴, 𝐵})
3226, 31syl 14 . . . . . . . . . . 11 (((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) → 𝐴 ∈ {𝐴, 𝐵})
3332ad3antrrr 492 . . . . . . . . . 10 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = ∅) ∧ (𝑓𝐵) = 1o) ∧ (𝑓𝐴) = ∅) → 𝐴 ∈ {𝐴, 𝐵})
3430, 33eqeltrd 2306 . . . . . . . . 9 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = ∅) ∧ (𝑓𝐵) = 1o) ∧ (𝑓𝐴) = ∅) → 𝑥 ∈ {𝐴, 𝐵})
35 simpr 110 . . . . . . . . . . 11 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = ∅) ∧ (𝑓𝐵) = 1o) ∧ (𝑓𝐴) = 1o) → (𝑓𝐴) = 1o)
36 simplr 528 . . . . . . . . . . 11 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = ∅) ∧ (𝑓𝐵) = 1o) ∧ (𝑓𝐴) = 1o) → (𝑓𝐵) = 1o)
3735, 36eqtr4d 2265 . . . . . . . . . 10 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = ∅) ∧ (𝑓𝐵) = 1o) ∧ (𝑓𝐴) = 1o) → (𝑓𝐴) = (𝑓𝐵))
38 simplr 528 . . . . . . . . . . . . 13 ((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) → 𝐴𝐵)
3938neneqd 2421 . . . . . . . . . . . 12 ((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) → ¬ 𝐴 = 𝐵)
40 f1fveq 5895 . . . . . . . . . . . . 13 ((𝑓:𝐶1-1→2o ∧ (𝐴𝐶𝐵𝐶)) → ((𝑓𝐴) = (𝑓𝐵) ↔ 𝐴 = 𝐵))
419, 25, 12, 40syl12anc 1269 . . . . . . . . . . . 12 ((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) → ((𝑓𝐴) = (𝑓𝐵) ↔ 𝐴 = 𝐵))
4239, 41mtbird 677 . . . . . . . . . . 11 ((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) → ¬ (𝑓𝐴) = (𝑓𝐵))
4342ad4antr 494 . . . . . . . . . 10 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = ∅) ∧ (𝑓𝐵) = 1o) ∧ (𝑓𝐴) = 1o) → ¬ (𝑓𝐴) = (𝑓𝐵))
4437, 43pm2.21dd 623 . . . . . . . . 9 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = ∅) ∧ (𝑓𝐵) = 1o) ∧ (𝑓𝐴) = 1o) → 𝑥 ∈ {𝐴, 𝐵})
45 f1of 5571 . . . . . . . . . . . . 13 (𝑓:𝐶1-1-onto→2o𝑓:𝐶⟶2o)
4645adantl 277 . . . . . . . . . . . 12 ((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) → 𝑓:𝐶⟶2o)
4746, 25ffvelcdmd 5770 . . . . . . . . . . 11 ((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) → (𝑓𝐴) ∈ 2o)
48 elpri 3689 . . . . . . . . . . . 12 ((𝑓𝐴) ∈ {∅, 1o} → ((𝑓𝐴) = ∅ ∨ (𝑓𝐴) = 1o))
49 df2o3 6574 . . . . . . . . . . . 12 2o = {∅, 1o}
5048, 49eleq2s 2324 . . . . . . . . . . 11 ((𝑓𝐴) ∈ 2o → ((𝑓𝐴) = ∅ ∨ (𝑓𝐴) = 1o))
5147, 50syl 14 . . . . . . . . . 10 ((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) → ((𝑓𝐴) = ∅ ∨ (𝑓𝐴) = 1o))
5251ad3antrrr 492 . . . . . . . . 9 (((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = ∅) ∧ (𝑓𝐵) = 1o) → ((𝑓𝐴) = ∅ ∨ (𝑓𝐴) = 1o))
5334, 44, 52mpjaodan 803 . . . . . . . 8 (((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = ∅) ∧ (𝑓𝐵) = 1o) → 𝑥 ∈ {𝐴, 𝐵})
5446, 12ffvelcdmd 5770 . . . . . . . . . 10 ((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) → (𝑓𝐵) ∈ 2o)
55 elpri 3689 . . . . . . . . . . 11 ((𝑓𝐵) ∈ {∅, 1o} → ((𝑓𝐵) = ∅ ∨ (𝑓𝐵) = 1o))
5655, 49eleq2s 2324 . . . . . . . . . 10 ((𝑓𝐵) ∈ 2o → ((𝑓𝐵) = ∅ ∨ (𝑓𝐵) = 1o))
5754, 56syl 14 . . . . . . . . 9 ((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) → ((𝑓𝐵) = ∅ ∨ (𝑓𝐵) = 1o))
5857ad2antrr 488 . . . . . . . 8 ((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = ∅) → ((𝑓𝐵) = ∅ ∨ (𝑓𝐵) = 1o))
5921, 53, 58mpjaodan 803 . . . . . . 7 ((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = ∅) → 𝑥 ∈ {𝐴, 𝐵})
60 simpr 110 . . . . . . . . . . 11 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = 1o) ∧ (𝑓𝐵) = ∅) ∧ (𝑓𝐴) = ∅) → (𝑓𝐴) = ∅)
61 simplr 528 . . . . . . . . . . 11 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = 1o) ∧ (𝑓𝐵) = ∅) ∧ (𝑓𝐴) = ∅) → (𝑓𝐵) = ∅)
6260, 61eqtr4d 2265 . . . . . . . . . 10 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = 1o) ∧ (𝑓𝐵) = ∅) ∧ (𝑓𝐴) = ∅) → (𝑓𝐴) = (𝑓𝐵))
6342ad4antr 494 . . . . . . . . . 10 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = 1o) ∧ (𝑓𝐵) = ∅) ∧ (𝑓𝐴) = ∅) → ¬ (𝑓𝐴) = (𝑓𝐵))
6462, 63pm2.21dd 623 . . . . . . . . 9 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = 1o) ∧ (𝑓𝐵) = ∅) ∧ (𝑓𝐴) = ∅) → 𝑥 ∈ {𝐴, 𝐵})
65 simpllr 534 . . . . . . . . . . . 12 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = 1o) ∧ (𝑓𝐵) = ∅) ∧ (𝑓𝐴) = 1o) → (𝑓𝑥) = 1o)
66 simpr 110 . . . . . . . . . . . 12 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = 1o) ∧ (𝑓𝐵) = ∅) ∧ (𝑓𝐴) = 1o) → (𝑓𝐴) = 1o)
6765, 66eqtr4d 2265 . . . . . . . . . . 11 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = 1o) ∧ (𝑓𝐵) = ∅) ∧ (𝑓𝐴) = 1o) → (𝑓𝑥) = (𝑓𝐴))
6828ad3antrrr 492 . . . . . . . . . . 11 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = 1o) ∧ (𝑓𝐵) = ∅) ∧ (𝑓𝐴) = 1o) → ((𝑓𝑥) = (𝑓𝐴) ↔ 𝑥 = 𝐴))
6967, 68mpbid 147 . . . . . . . . . 10 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = 1o) ∧ (𝑓𝐵) = ∅) ∧ (𝑓𝐴) = 1o) → 𝑥 = 𝐴)
7032ad3antrrr 492 . . . . . . . . . 10 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = 1o) ∧ (𝑓𝐵) = ∅) ∧ (𝑓𝐴) = 1o) → 𝐴 ∈ {𝐴, 𝐵})
7169, 70eqeltrd 2306 . . . . . . . . 9 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = 1o) ∧ (𝑓𝐵) = ∅) ∧ (𝑓𝐴) = 1o) → 𝑥 ∈ {𝐴, 𝐵})
7251ad3antrrr 492 . . . . . . . . 9 (((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = 1o) ∧ (𝑓𝐵) = ∅) → ((𝑓𝐴) = ∅ ∨ (𝑓𝐴) = 1o))
7364, 71, 72mpjaodan 803 . . . . . . . 8 (((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = 1o) ∧ (𝑓𝐵) = ∅) → 𝑥 ∈ {𝐴, 𝐵})
74 simplr 528 . . . . . . . . . . 11 (((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = 1o) ∧ (𝑓𝐵) = 1o) → (𝑓𝑥) = 1o)
75 simpr 110 . . . . . . . . . . 11 (((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = 1o) ∧ (𝑓𝐵) = 1o) → (𝑓𝐵) = 1o)
7674, 75eqtr4d 2265 . . . . . . . . . 10 (((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = 1o) ∧ (𝑓𝐵) = 1o) → (𝑓𝑥) = (𝑓𝐵))
7715ad2antrr 488 . . . . . . . . . 10 (((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = 1o) ∧ (𝑓𝐵) = 1o) → ((𝑓𝑥) = (𝑓𝐵) ↔ 𝑥 = 𝐵))
7876, 77mpbid 147 . . . . . . . . 9 (((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = 1o) ∧ (𝑓𝐵) = 1o) → 𝑥 = 𝐵)
7919ad2antrr 488 . . . . . . . . 9 (((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = 1o) ∧ (𝑓𝐵) = 1o) → 𝐵 ∈ {𝐴, 𝐵})
8078, 79eqeltrd 2306 . . . . . . . 8 (((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = 1o) ∧ (𝑓𝐵) = 1o) → 𝑥 ∈ {𝐴, 𝐵})
8157ad2antrr 488 . . . . . . . 8 ((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = 1o) → ((𝑓𝐵) = ∅ ∨ (𝑓𝐵) = 1o))
8273, 80, 81mpjaodan 803 . . . . . . 7 ((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = 1o) → 𝑥 ∈ {𝐴, 𝐵})
8346ffvelcdmda 5769 . . . . . . . 8 (((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) → (𝑓𝑥) ∈ 2o)
84 elpri 3689 . . . . . . . . 9 ((𝑓𝑥) ∈ {∅, 1o} → ((𝑓𝑥) = ∅ ∨ (𝑓𝑥) = 1o))
8584, 49eleq2s 2324 . . . . . . . 8 ((𝑓𝑥) ∈ 2o → ((𝑓𝑥) = ∅ ∨ (𝑓𝑥) = 1o))
8683, 85syl 14 . . . . . . 7 (((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) → ((𝑓𝑥) = ∅ ∨ (𝑓𝑥) = 1o))
8759, 82, 86mpjaodan 803 . . . . . 6 (((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) → 𝑥 ∈ {𝐴, 𝐵})
8887ex 115 . . . . 5 ((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) → (𝑥𝐶𝑥 ∈ {𝐴, 𝐵}))
8988ssrdv 3230 . . . 4 ((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) → 𝐶 ⊆ {𝐴, 𝐵})
90 prssi 3825 . . . . 5 ((𝐴𝐶𝐵𝐶) → {𝐴, 𝐵} ⊆ 𝐶)
9125, 12, 90syl2anc 411 . . . 4 ((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) → {𝐴, 𝐵} ⊆ 𝐶)
9289, 91eqssd 3241 . . 3 ((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) → 𝐶 = {𝐴, 𝐵})
934, 92exlimddv 1945 . 2 (((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) → 𝐶 = {𝐴, 𝐵})
9493ex 115 1 ((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) → (𝐴𝐵𝐶 = {𝐴, 𝐵}))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 713  w3a 1002   = wceq 1395  wex 1538  wcel 2200  wne 2400  wss 3197  c0 3491  {cpr 3667   class class class wbr 4082  wf 5313  1-1wf1 5314  1-1-ontowf1o 5316  cfv 5317  1oc1o 6553  2oc2o 6554  cen 6883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4383  df-suc 4461  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-1o 6560  df-2o 6561  df-en 6886
This theorem is referenced by:  exmidpw  7066  en2eleq  7369  isprm2lem  12633
  Copyright terms: Public domain W3C validator