ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  en2eqpr GIF version

Theorem en2eqpr 6801
Description: Building a set with two elements. (Contributed by FL, 11-Aug-2008.) (Revised by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
en2eqpr ((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) → (𝐴𝐵𝐶 = {𝐴, 𝐵}))

Proof of Theorem en2eqpr
Dummy variables 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bren 6641 . . . . . 6 (𝐶 ≈ 2o ↔ ∃𝑓 𝑓:𝐶1-1-onto→2o)
21biimpi 119 . . . . 5 (𝐶 ≈ 2o → ∃𝑓 𝑓:𝐶1-1-onto→2o)
323ad2ant1 1002 . . . 4 ((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) → ∃𝑓 𝑓:𝐶1-1-onto→2o)
43adantr 274 . . 3 (((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) → ∃𝑓 𝑓:𝐶1-1-onto→2o)
5 simplr 519 . . . . . . . . . . 11 (((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = ∅) ∧ (𝑓𝐵) = ∅) → (𝑓𝑥) = ∅)
6 simpr 109 . . . . . . . . . . 11 (((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = ∅) ∧ (𝑓𝐵) = ∅) → (𝑓𝐵) = ∅)
75, 6eqtr4d 2175 . . . . . . . . . 10 (((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = ∅) ∧ (𝑓𝐵) = ∅) → (𝑓𝑥) = (𝑓𝐵))
8 f1of1 5366 . . . . . . . . . . . . . 14 (𝑓:𝐶1-1-onto→2o𝑓:𝐶1-1→2o)
98adantl 275 . . . . . . . . . . . . 13 ((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) → 𝑓:𝐶1-1→2o)
109adantr 274 . . . . . . . . . . . 12 (((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) → 𝑓:𝐶1-1→2o)
11 simpr 109 . . . . . . . . . . . 12 (((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) → 𝑥𝐶)
12 simpll3 1022 . . . . . . . . . . . . 13 ((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) → 𝐵𝐶)
1312adantr 274 . . . . . . . . . . . 12 (((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) → 𝐵𝐶)
14 f1fveq 5673 . . . . . . . . . . . 12 ((𝑓:𝐶1-1→2o ∧ (𝑥𝐶𝐵𝐶)) → ((𝑓𝑥) = (𝑓𝐵) ↔ 𝑥 = 𝐵))
1510, 11, 13, 14syl12anc 1214 . . . . . . . . . . 11 (((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) → ((𝑓𝑥) = (𝑓𝐵) ↔ 𝑥 = 𝐵))
1615ad2antrr 479 . . . . . . . . . 10 (((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = ∅) ∧ (𝑓𝐵) = ∅) → ((𝑓𝑥) = (𝑓𝐵) ↔ 𝑥 = 𝐵))
177, 16mpbid 146 . . . . . . . . 9 (((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = ∅) ∧ (𝑓𝐵) = ∅) → 𝑥 = 𝐵)
18 prid2g 3628 . . . . . . . . . . 11 (𝐵𝐶𝐵 ∈ {𝐴, 𝐵})
1913, 18syl 14 . . . . . . . . . 10 (((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) → 𝐵 ∈ {𝐴, 𝐵})
2019ad2antrr 479 . . . . . . . . 9 (((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = ∅) ∧ (𝑓𝐵) = ∅) → 𝐵 ∈ {𝐴, 𝐵})
2117, 20eqeltrd 2216 . . . . . . . 8 (((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = ∅) ∧ (𝑓𝐵) = ∅) → 𝑥 ∈ {𝐴, 𝐵})
22 simpllr 523 . . . . . . . . . . . 12 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = ∅) ∧ (𝑓𝐵) = 1o) ∧ (𝑓𝐴) = ∅) → (𝑓𝑥) = ∅)
23 simpr 109 . . . . . . . . . . . 12 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = ∅) ∧ (𝑓𝐵) = 1o) ∧ (𝑓𝐴) = ∅) → (𝑓𝐴) = ∅)
2422, 23eqtr4d 2175 . . . . . . . . . . 11 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = ∅) ∧ (𝑓𝐵) = 1o) ∧ (𝑓𝐴) = ∅) → (𝑓𝑥) = (𝑓𝐴))
25 simpll2 1021 . . . . . . . . . . . . . 14 ((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) → 𝐴𝐶)
2625adantr 274 . . . . . . . . . . . . 13 (((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) → 𝐴𝐶)
27 f1fveq 5673 . . . . . . . . . . . . 13 ((𝑓:𝐶1-1→2o ∧ (𝑥𝐶𝐴𝐶)) → ((𝑓𝑥) = (𝑓𝐴) ↔ 𝑥 = 𝐴))
2810, 11, 26, 27syl12anc 1214 . . . . . . . . . . . 12 (((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) → ((𝑓𝑥) = (𝑓𝐴) ↔ 𝑥 = 𝐴))
2928ad3antrrr 483 . . . . . . . . . . 11 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = ∅) ∧ (𝑓𝐵) = 1o) ∧ (𝑓𝐴) = ∅) → ((𝑓𝑥) = (𝑓𝐴) ↔ 𝑥 = 𝐴))
3024, 29mpbid 146 . . . . . . . . . 10 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = ∅) ∧ (𝑓𝐵) = 1o) ∧ (𝑓𝐴) = ∅) → 𝑥 = 𝐴)
31 prid1g 3627 . . . . . . . . . . . 12 (𝐴𝐶𝐴 ∈ {𝐴, 𝐵})
3226, 31syl 14 . . . . . . . . . . 11 (((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) → 𝐴 ∈ {𝐴, 𝐵})
3332ad3antrrr 483 . . . . . . . . . 10 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = ∅) ∧ (𝑓𝐵) = 1o) ∧ (𝑓𝐴) = ∅) → 𝐴 ∈ {𝐴, 𝐵})
3430, 33eqeltrd 2216 . . . . . . . . 9 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = ∅) ∧ (𝑓𝐵) = 1o) ∧ (𝑓𝐴) = ∅) → 𝑥 ∈ {𝐴, 𝐵})
35 simpr 109 . . . . . . . . . . 11 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = ∅) ∧ (𝑓𝐵) = 1o) ∧ (𝑓𝐴) = 1o) → (𝑓𝐴) = 1o)
36 simplr 519 . . . . . . . . . . 11 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = ∅) ∧ (𝑓𝐵) = 1o) ∧ (𝑓𝐴) = 1o) → (𝑓𝐵) = 1o)
3735, 36eqtr4d 2175 . . . . . . . . . 10 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = ∅) ∧ (𝑓𝐵) = 1o) ∧ (𝑓𝐴) = 1o) → (𝑓𝐴) = (𝑓𝐵))
38 simplr 519 . . . . . . . . . . . . 13 ((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) → 𝐴𝐵)
3938neneqd 2329 . . . . . . . . . . . 12 ((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) → ¬ 𝐴 = 𝐵)
40 f1fveq 5673 . . . . . . . . . . . . 13 ((𝑓:𝐶1-1→2o ∧ (𝐴𝐶𝐵𝐶)) → ((𝑓𝐴) = (𝑓𝐵) ↔ 𝐴 = 𝐵))
419, 25, 12, 40syl12anc 1214 . . . . . . . . . . . 12 ((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) → ((𝑓𝐴) = (𝑓𝐵) ↔ 𝐴 = 𝐵))
4239, 41mtbird 662 . . . . . . . . . . 11 ((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) → ¬ (𝑓𝐴) = (𝑓𝐵))
4342ad4antr 485 . . . . . . . . . 10 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = ∅) ∧ (𝑓𝐵) = 1o) ∧ (𝑓𝐴) = 1o) → ¬ (𝑓𝐴) = (𝑓𝐵))
4437, 43pm2.21dd 609 . . . . . . . . 9 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = ∅) ∧ (𝑓𝐵) = 1o) ∧ (𝑓𝐴) = 1o) → 𝑥 ∈ {𝐴, 𝐵})
45 f1of 5367 . . . . . . . . . . . . 13 (𝑓:𝐶1-1-onto→2o𝑓:𝐶⟶2o)
4645adantl 275 . . . . . . . . . . . 12 ((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) → 𝑓:𝐶⟶2o)
4746, 25ffvelrnd 5556 . . . . . . . . . . 11 ((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) → (𝑓𝐴) ∈ 2o)
48 elpri 3550 . . . . . . . . . . . 12 ((𝑓𝐴) ∈ {∅, 1o} → ((𝑓𝐴) = ∅ ∨ (𝑓𝐴) = 1o))
49 df2o3 6327 . . . . . . . . . . . 12 2o = {∅, 1o}
5048, 49eleq2s 2234 . . . . . . . . . . 11 ((𝑓𝐴) ∈ 2o → ((𝑓𝐴) = ∅ ∨ (𝑓𝐴) = 1o))
5147, 50syl 14 . . . . . . . . . 10 ((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) → ((𝑓𝐴) = ∅ ∨ (𝑓𝐴) = 1o))
5251ad3antrrr 483 . . . . . . . . 9 (((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = ∅) ∧ (𝑓𝐵) = 1o) → ((𝑓𝐴) = ∅ ∨ (𝑓𝐴) = 1o))
5334, 44, 52mpjaodan 787 . . . . . . . 8 (((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = ∅) ∧ (𝑓𝐵) = 1o) → 𝑥 ∈ {𝐴, 𝐵})
5446, 12ffvelrnd 5556 . . . . . . . . . 10 ((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) → (𝑓𝐵) ∈ 2o)
55 elpri 3550 . . . . . . . . . . 11 ((𝑓𝐵) ∈ {∅, 1o} → ((𝑓𝐵) = ∅ ∨ (𝑓𝐵) = 1o))
5655, 49eleq2s 2234 . . . . . . . . . 10 ((𝑓𝐵) ∈ 2o → ((𝑓𝐵) = ∅ ∨ (𝑓𝐵) = 1o))
5754, 56syl 14 . . . . . . . . 9 ((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) → ((𝑓𝐵) = ∅ ∨ (𝑓𝐵) = 1o))
5857ad2antrr 479 . . . . . . . 8 ((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = ∅) → ((𝑓𝐵) = ∅ ∨ (𝑓𝐵) = 1o))
5921, 53, 58mpjaodan 787 . . . . . . 7 ((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = ∅) → 𝑥 ∈ {𝐴, 𝐵})
60 simpr 109 . . . . . . . . . . 11 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = 1o) ∧ (𝑓𝐵) = ∅) ∧ (𝑓𝐴) = ∅) → (𝑓𝐴) = ∅)
61 simplr 519 . . . . . . . . . . 11 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = 1o) ∧ (𝑓𝐵) = ∅) ∧ (𝑓𝐴) = ∅) → (𝑓𝐵) = ∅)
6260, 61eqtr4d 2175 . . . . . . . . . 10 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = 1o) ∧ (𝑓𝐵) = ∅) ∧ (𝑓𝐴) = ∅) → (𝑓𝐴) = (𝑓𝐵))
6342ad4antr 485 . . . . . . . . . 10 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = 1o) ∧ (𝑓𝐵) = ∅) ∧ (𝑓𝐴) = ∅) → ¬ (𝑓𝐴) = (𝑓𝐵))
6462, 63pm2.21dd 609 . . . . . . . . 9 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = 1o) ∧ (𝑓𝐵) = ∅) ∧ (𝑓𝐴) = ∅) → 𝑥 ∈ {𝐴, 𝐵})
65 simpllr 523 . . . . . . . . . . . 12 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = 1o) ∧ (𝑓𝐵) = ∅) ∧ (𝑓𝐴) = 1o) → (𝑓𝑥) = 1o)
66 simpr 109 . . . . . . . . . . . 12 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = 1o) ∧ (𝑓𝐵) = ∅) ∧ (𝑓𝐴) = 1o) → (𝑓𝐴) = 1o)
6765, 66eqtr4d 2175 . . . . . . . . . . 11 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = 1o) ∧ (𝑓𝐵) = ∅) ∧ (𝑓𝐴) = 1o) → (𝑓𝑥) = (𝑓𝐴))
6828ad3antrrr 483 . . . . . . . . . . 11 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = 1o) ∧ (𝑓𝐵) = ∅) ∧ (𝑓𝐴) = 1o) → ((𝑓𝑥) = (𝑓𝐴) ↔ 𝑥 = 𝐴))
6967, 68mpbid 146 . . . . . . . . . 10 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = 1o) ∧ (𝑓𝐵) = ∅) ∧ (𝑓𝐴) = 1o) → 𝑥 = 𝐴)
7032ad3antrrr 483 . . . . . . . . . 10 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = 1o) ∧ (𝑓𝐵) = ∅) ∧ (𝑓𝐴) = 1o) → 𝐴 ∈ {𝐴, 𝐵})
7169, 70eqeltrd 2216 . . . . . . . . 9 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = 1o) ∧ (𝑓𝐵) = ∅) ∧ (𝑓𝐴) = 1o) → 𝑥 ∈ {𝐴, 𝐵})
7251ad3antrrr 483 . . . . . . . . 9 (((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = 1o) ∧ (𝑓𝐵) = ∅) → ((𝑓𝐴) = ∅ ∨ (𝑓𝐴) = 1o))
7364, 71, 72mpjaodan 787 . . . . . . . 8 (((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = 1o) ∧ (𝑓𝐵) = ∅) → 𝑥 ∈ {𝐴, 𝐵})
74 simplr 519 . . . . . . . . . . 11 (((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = 1o) ∧ (𝑓𝐵) = 1o) → (𝑓𝑥) = 1o)
75 simpr 109 . . . . . . . . . . 11 (((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = 1o) ∧ (𝑓𝐵) = 1o) → (𝑓𝐵) = 1o)
7674, 75eqtr4d 2175 . . . . . . . . . 10 (((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = 1o) ∧ (𝑓𝐵) = 1o) → (𝑓𝑥) = (𝑓𝐵))
7715ad2antrr 479 . . . . . . . . . 10 (((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = 1o) ∧ (𝑓𝐵) = 1o) → ((𝑓𝑥) = (𝑓𝐵) ↔ 𝑥 = 𝐵))
7876, 77mpbid 146 . . . . . . . . 9 (((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = 1o) ∧ (𝑓𝐵) = 1o) → 𝑥 = 𝐵)
7919ad2antrr 479 . . . . . . . . 9 (((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = 1o) ∧ (𝑓𝐵) = 1o) → 𝐵 ∈ {𝐴, 𝐵})
8078, 79eqeltrd 2216 . . . . . . . 8 (((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = 1o) ∧ (𝑓𝐵) = 1o) → 𝑥 ∈ {𝐴, 𝐵})
8157ad2antrr 479 . . . . . . . 8 ((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = 1o) → ((𝑓𝐵) = ∅ ∨ (𝑓𝐵) = 1o))
8273, 80, 81mpjaodan 787 . . . . . . 7 ((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = 1o) → 𝑥 ∈ {𝐴, 𝐵})
8346ffvelrnda 5555 . . . . . . . 8 (((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) → (𝑓𝑥) ∈ 2o)
84 elpri 3550 . . . . . . . . 9 ((𝑓𝑥) ∈ {∅, 1o} → ((𝑓𝑥) = ∅ ∨ (𝑓𝑥) = 1o))
8584, 49eleq2s 2234 . . . . . . . 8 ((𝑓𝑥) ∈ 2o → ((𝑓𝑥) = ∅ ∨ (𝑓𝑥) = 1o))
8683, 85syl 14 . . . . . . 7 (((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) → ((𝑓𝑥) = ∅ ∨ (𝑓𝑥) = 1o))
8759, 82, 86mpjaodan 787 . . . . . 6 (((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) → 𝑥 ∈ {𝐴, 𝐵})
8887ex 114 . . . . 5 ((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) → (𝑥𝐶𝑥 ∈ {𝐴, 𝐵}))
8988ssrdv 3103 . . . 4 ((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) → 𝐶 ⊆ {𝐴, 𝐵})
90 prssi 3678 . . . . 5 ((𝐴𝐶𝐵𝐶) → {𝐴, 𝐵} ⊆ 𝐶)
9125, 12, 90syl2anc 408 . . . 4 ((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) → {𝐴, 𝐵} ⊆ 𝐶)
9289, 91eqssd 3114 . . 3 ((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) → 𝐶 = {𝐴, 𝐵})
934, 92exlimddv 1870 . 2 (((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) → 𝐶 = {𝐴, 𝐵})
9493ex 114 1 ((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) → (𝐴𝐵𝐶 = {𝐴, 𝐵}))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 697  w3a 962   = wceq 1331  wex 1468  wcel 1480  wne 2308  wss 3071  c0 3363  {cpr 3528   class class class wbr 3929  wf 5119  1-1wf1 5120  1-1-ontowf1o 5122  cfv 5123  1oc1o 6306  2oc2o 6307  cen 6632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-id 4215  df-suc 4293  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-1o 6313  df-2o 6314  df-en 6635
This theorem is referenced by:  exmidpw  6802  en2eleq  7051  isprm2lem  11804
  Copyright terms: Public domain W3C validator