ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  en2eqpr GIF version

Theorem en2eqpr 6901
Description: Building a set with two elements. (Contributed by FL, 11-Aug-2008.) (Revised by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
en2eqpr ((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) → (𝐴𝐵𝐶 = {𝐴, 𝐵}))

Proof of Theorem en2eqpr
Dummy variables 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bren 6741 . . . . . 6 (𝐶 ≈ 2o ↔ ∃𝑓 𝑓:𝐶1-1-onto→2o)
21biimpi 120 . . . . 5 (𝐶 ≈ 2o → ∃𝑓 𝑓:𝐶1-1-onto→2o)
323ad2ant1 1018 . . . 4 ((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) → ∃𝑓 𝑓:𝐶1-1-onto→2o)
43adantr 276 . . 3 (((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) → ∃𝑓 𝑓:𝐶1-1-onto→2o)
5 simplr 528 . . . . . . . . . . 11 (((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = ∅) ∧ (𝑓𝐵) = ∅) → (𝑓𝑥) = ∅)
6 simpr 110 . . . . . . . . . . 11 (((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = ∅) ∧ (𝑓𝐵) = ∅) → (𝑓𝐵) = ∅)
75, 6eqtr4d 2213 . . . . . . . . . 10 (((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = ∅) ∧ (𝑓𝐵) = ∅) → (𝑓𝑥) = (𝑓𝐵))
8 f1of1 5456 . . . . . . . . . . . . . 14 (𝑓:𝐶1-1-onto→2o𝑓:𝐶1-1→2o)
98adantl 277 . . . . . . . . . . . . 13 ((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) → 𝑓:𝐶1-1→2o)
109adantr 276 . . . . . . . . . . . 12 (((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) → 𝑓:𝐶1-1→2o)
11 simpr 110 . . . . . . . . . . . 12 (((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) → 𝑥𝐶)
12 simpll3 1038 . . . . . . . . . . . . 13 ((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) → 𝐵𝐶)
1312adantr 276 . . . . . . . . . . . 12 (((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) → 𝐵𝐶)
14 f1fveq 5767 . . . . . . . . . . . 12 ((𝑓:𝐶1-1→2o ∧ (𝑥𝐶𝐵𝐶)) → ((𝑓𝑥) = (𝑓𝐵) ↔ 𝑥 = 𝐵))
1510, 11, 13, 14syl12anc 1236 . . . . . . . . . . 11 (((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) → ((𝑓𝑥) = (𝑓𝐵) ↔ 𝑥 = 𝐵))
1615ad2antrr 488 . . . . . . . . . 10 (((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = ∅) ∧ (𝑓𝐵) = ∅) → ((𝑓𝑥) = (𝑓𝐵) ↔ 𝑥 = 𝐵))
177, 16mpbid 147 . . . . . . . . 9 (((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = ∅) ∧ (𝑓𝐵) = ∅) → 𝑥 = 𝐵)
18 prid2g 3696 . . . . . . . . . . 11 (𝐵𝐶𝐵 ∈ {𝐴, 𝐵})
1913, 18syl 14 . . . . . . . . . 10 (((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) → 𝐵 ∈ {𝐴, 𝐵})
2019ad2antrr 488 . . . . . . . . 9 (((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = ∅) ∧ (𝑓𝐵) = ∅) → 𝐵 ∈ {𝐴, 𝐵})
2117, 20eqeltrd 2254 . . . . . . . 8 (((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = ∅) ∧ (𝑓𝐵) = ∅) → 𝑥 ∈ {𝐴, 𝐵})
22 simpllr 534 . . . . . . . . . . . 12 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = ∅) ∧ (𝑓𝐵) = 1o) ∧ (𝑓𝐴) = ∅) → (𝑓𝑥) = ∅)
23 simpr 110 . . . . . . . . . . . 12 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = ∅) ∧ (𝑓𝐵) = 1o) ∧ (𝑓𝐴) = ∅) → (𝑓𝐴) = ∅)
2422, 23eqtr4d 2213 . . . . . . . . . . 11 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = ∅) ∧ (𝑓𝐵) = 1o) ∧ (𝑓𝐴) = ∅) → (𝑓𝑥) = (𝑓𝐴))
25 simpll2 1037 . . . . . . . . . . . . . 14 ((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) → 𝐴𝐶)
2625adantr 276 . . . . . . . . . . . . 13 (((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) → 𝐴𝐶)
27 f1fveq 5767 . . . . . . . . . . . . 13 ((𝑓:𝐶1-1→2o ∧ (𝑥𝐶𝐴𝐶)) → ((𝑓𝑥) = (𝑓𝐴) ↔ 𝑥 = 𝐴))
2810, 11, 26, 27syl12anc 1236 . . . . . . . . . . . 12 (((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) → ((𝑓𝑥) = (𝑓𝐴) ↔ 𝑥 = 𝐴))
2928ad3antrrr 492 . . . . . . . . . . 11 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = ∅) ∧ (𝑓𝐵) = 1o) ∧ (𝑓𝐴) = ∅) → ((𝑓𝑥) = (𝑓𝐴) ↔ 𝑥 = 𝐴))
3024, 29mpbid 147 . . . . . . . . . 10 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = ∅) ∧ (𝑓𝐵) = 1o) ∧ (𝑓𝐴) = ∅) → 𝑥 = 𝐴)
31 prid1g 3695 . . . . . . . . . . . 12 (𝐴𝐶𝐴 ∈ {𝐴, 𝐵})
3226, 31syl 14 . . . . . . . . . . 11 (((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) → 𝐴 ∈ {𝐴, 𝐵})
3332ad3antrrr 492 . . . . . . . . . 10 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = ∅) ∧ (𝑓𝐵) = 1o) ∧ (𝑓𝐴) = ∅) → 𝐴 ∈ {𝐴, 𝐵})
3430, 33eqeltrd 2254 . . . . . . . . 9 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = ∅) ∧ (𝑓𝐵) = 1o) ∧ (𝑓𝐴) = ∅) → 𝑥 ∈ {𝐴, 𝐵})
35 simpr 110 . . . . . . . . . . 11 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = ∅) ∧ (𝑓𝐵) = 1o) ∧ (𝑓𝐴) = 1o) → (𝑓𝐴) = 1o)
36 simplr 528 . . . . . . . . . . 11 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = ∅) ∧ (𝑓𝐵) = 1o) ∧ (𝑓𝐴) = 1o) → (𝑓𝐵) = 1o)
3735, 36eqtr4d 2213 . . . . . . . . . 10 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = ∅) ∧ (𝑓𝐵) = 1o) ∧ (𝑓𝐴) = 1o) → (𝑓𝐴) = (𝑓𝐵))
38 simplr 528 . . . . . . . . . . . . 13 ((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) → 𝐴𝐵)
3938neneqd 2368 . . . . . . . . . . . 12 ((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) → ¬ 𝐴 = 𝐵)
40 f1fveq 5767 . . . . . . . . . . . . 13 ((𝑓:𝐶1-1→2o ∧ (𝐴𝐶𝐵𝐶)) → ((𝑓𝐴) = (𝑓𝐵) ↔ 𝐴 = 𝐵))
419, 25, 12, 40syl12anc 1236 . . . . . . . . . . . 12 ((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) → ((𝑓𝐴) = (𝑓𝐵) ↔ 𝐴 = 𝐵))
4239, 41mtbird 673 . . . . . . . . . . 11 ((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) → ¬ (𝑓𝐴) = (𝑓𝐵))
4342ad4antr 494 . . . . . . . . . 10 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = ∅) ∧ (𝑓𝐵) = 1o) ∧ (𝑓𝐴) = 1o) → ¬ (𝑓𝐴) = (𝑓𝐵))
4437, 43pm2.21dd 620 . . . . . . . . 9 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = ∅) ∧ (𝑓𝐵) = 1o) ∧ (𝑓𝐴) = 1o) → 𝑥 ∈ {𝐴, 𝐵})
45 f1of 5457 . . . . . . . . . . . . 13 (𝑓:𝐶1-1-onto→2o𝑓:𝐶⟶2o)
4645adantl 277 . . . . . . . . . . . 12 ((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) → 𝑓:𝐶⟶2o)
4746, 25ffvelcdmd 5648 . . . . . . . . . . 11 ((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) → (𝑓𝐴) ∈ 2o)
48 elpri 3614 . . . . . . . . . . . 12 ((𝑓𝐴) ∈ {∅, 1o} → ((𝑓𝐴) = ∅ ∨ (𝑓𝐴) = 1o))
49 df2o3 6425 . . . . . . . . . . . 12 2o = {∅, 1o}
5048, 49eleq2s 2272 . . . . . . . . . . 11 ((𝑓𝐴) ∈ 2o → ((𝑓𝐴) = ∅ ∨ (𝑓𝐴) = 1o))
5147, 50syl 14 . . . . . . . . . 10 ((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) → ((𝑓𝐴) = ∅ ∨ (𝑓𝐴) = 1o))
5251ad3antrrr 492 . . . . . . . . 9 (((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = ∅) ∧ (𝑓𝐵) = 1o) → ((𝑓𝐴) = ∅ ∨ (𝑓𝐴) = 1o))
5334, 44, 52mpjaodan 798 . . . . . . . 8 (((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = ∅) ∧ (𝑓𝐵) = 1o) → 𝑥 ∈ {𝐴, 𝐵})
5446, 12ffvelcdmd 5648 . . . . . . . . . 10 ((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) → (𝑓𝐵) ∈ 2o)
55 elpri 3614 . . . . . . . . . . 11 ((𝑓𝐵) ∈ {∅, 1o} → ((𝑓𝐵) = ∅ ∨ (𝑓𝐵) = 1o))
5655, 49eleq2s 2272 . . . . . . . . . 10 ((𝑓𝐵) ∈ 2o → ((𝑓𝐵) = ∅ ∨ (𝑓𝐵) = 1o))
5754, 56syl 14 . . . . . . . . 9 ((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) → ((𝑓𝐵) = ∅ ∨ (𝑓𝐵) = 1o))
5857ad2antrr 488 . . . . . . . 8 ((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = ∅) → ((𝑓𝐵) = ∅ ∨ (𝑓𝐵) = 1o))
5921, 53, 58mpjaodan 798 . . . . . . 7 ((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = ∅) → 𝑥 ∈ {𝐴, 𝐵})
60 simpr 110 . . . . . . . . . . 11 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = 1o) ∧ (𝑓𝐵) = ∅) ∧ (𝑓𝐴) = ∅) → (𝑓𝐴) = ∅)
61 simplr 528 . . . . . . . . . . 11 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = 1o) ∧ (𝑓𝐵) = ∅) ∧ (𝑓𝐴) = ∅) → (𝑓𝐵) = ∅)
6260, 61eqtr4d 2213 . . . . . . . . . 10 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = 1o) ∧ (𝑓𝐵) = ∅) ∧ (𝑓𝐴) = ∅) → (𝑓𝐴) = (𝑓𝐵))
6342ad4antr 494 . . . . . . . . . 10 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = 1o) ∧ (𝑓𝐵) = ∅) ∧ (𝑓𝐴) = ∅) → ¬ (𝑓𝐴) = (𝑓𝐵))
6462, 63pm2.21dd 620 . . . . . . . . 9 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = 1o) ∧ (𝑓𝐵) = ∅) ∧ (𝑓𝐴) = ∅) → 𝑥 ∈ {𝐴, 𝐵})
65 simpllr 534 . . . . . . . . . . . 12 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = 1o) ∧ (𝑓𝐵) = ∅) ∧ (𝑓𝐴) = 1o) → (𝑓𝑥) = 1o)
66 simpr 110 . . . . . . . . . . . 12 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = 1o) ∧ (𝑓𝐵) = ∅) ∧ (𝑓𝐴) = 1o) → (𝑓𝐴) = 1o)
6765, 66eqtr4d 2213 . . . . . . . . . . 11 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = 1o) ∧ (𝑓𝐵) = ∅) ∧ (𝑓𝐴) = 1o) → (𝑓𝑥) = (𝑓𝐴))
6828ad3antrrr 492 . . . . . . . . . . 11 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = 1o) ∧ (𝑓𝐵) = ∅) ∧ (𝑓𝐴) = 1o) → ((𝑓𝑥) = (𝑓𝐴) ↔ 𝑥 = 𝐴))
6967, 68mpbid 147 . . . . . . . . . 10 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = 1o) ∧ (𝑓𝐵) = ∅) ∧ (𝑓𝐴) = 1o) → 𝑥 = 𝐴)
7032ad3antrrr 492 . . . . . . . . . 10 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = 1o) ∧ (𝑓𝐵) = ∅) ∧ (𝑓𝐴) = 1o) → 𝐴 ∈ {𝐴, 𝐵})
7169, 70eqeltrd 2254 . . . . . . . . 9 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = 1o) ∧ (𝑓𝐵) = ∅) ∧ (𝑓𝐴) = 1o) → 𝑥 ∈ {𝐴, 𝐵})
7251ad3antrrr 492 . . . . . . . . 9 (((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = 1o) ∧ (𝑓𝐵) = ∅) → ((𝑓𝐴) = ∅ ∨ (𝑓𝐴) = 1o))
7364, 71, 72mpjaodan 798 . . . . . . . 8 (((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = 1o) ∧ (𝑓𝐵) = ∅) → 𝑥 ∈ {𝐴, 𝐵})
74 simplr 528 . . . . . . . . . . 11 (((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = 1o) ∧ (𝑓𝐵) = 1o) → (𝑓𝑥) = 1o)
75 simpr 110 . . . . . . . . . . 11 (((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = 1o) ∧ (𝑓𝐵) = 1o) → (𝑓𝐵) = 1o)
7674, 75eqtr4d 2213 . . . . . . . . . 10 (((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = 1o) ∧ (𝑓𝐵) = 1o) → (𝑓𝑥) = (𝑓𝐵))
7715ad2antrr 488 . . . . . . . . . 10 (((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = 1o) ∧ (𝑓𝐵) = 1o) → ((𝑓𝑥) = (𝑓𝐵) ↔ 𝑥 = 𝐵))
7876, 77mpbid 147 . . . . . . . . 9 (((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = 1o) ∧ (𝑓𝐵) = 1o) → 𝑥 = 𝐵)
7919ad2antrr 488 . . . . . . . . 9 (((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = 1o) ∧ (𝑓𝐵) = 1o) → 𝐵 ∈ {𝐴, 𝐵})
8078, 79eqeltrd 2254 . . . . . . . 8 (((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = 1o) ∧ (𝑓𝐵) = 1o) → 𝑥 ∈ {𝐴, 𝐵})
8157ad2antrr 488 . . . . . . . 8 ((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = 1o) → ((𝑓𝐵) = ∅ ∨ (𝑓𝐵) = 1o))
8273, 80, 81mpjaodan 798 . . . . . . 7 ((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = 1o) → 𝑥 ∈ {𝐴, 𝐵})
8346ffvelcdmda 5647 . . . . . . . 8 (((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) → (𝑓𝑥) ∈ 2o)
84 elpri 3614 . . . . . . . . 9 ((𝑓𝑥) ∈ {∅, 1o} → ((𝑓𝑥) = ∅ ∨ (𝑓𝑥) = 1o))
8584, 49eleq2s 2272 . . . . . . . 8 ((𝑓𝑥) ∈ 2o → ((𝑓𝑥) = ∅ ∨ (𝑓𝑥) = 1o))
8683, 85syl 14 . . . . . . 7 (((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) → ((𝑓𝑥) = ∅ ∨ (𝑓𝑥) = 1o))
8759, 82, 86mpjaodan 798 . . . . . 6 (((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) → 𝑥 ∈ {𝐴, 𝐵})
8887ex 115 . . . . 5 ((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) → (𝑥𝐶𝑥 ∈ {𝐴, 𝐵}))
8988ssrdv 3161 . . . 4 ((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) → 𝐶 ⊆ {𝐴, 𝐵})
90 prssi 3749 . . . . 5 ((𝐴𝐶𝐵𝐶) → {𝐴, 𝐵} ⊆ 𝐶)
9125, 12, 90syl2anc 411 . . . 4 ((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) → {𝐴, 𝐵} ⊆ 𝐶)
9289, 91eqssd 3172 . . 3 ((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) → 𝐶 = {𝐴, 𝐵})
934, 92exlimddv 1898 . 2 (((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) → 𝐶 = {𝐴, 𝐵})
9493ex 115 1 ((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) → (𝐴𝐵𝐶 = {𝐴, 𝐵}))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 708  w3a 978   = wceq 1353  wex 1492  wcel 2148  wne 2347  wss 3129  c0 3422  {cpr 3592   class class class wbr 4000  wf 5208  1-1wf1 5209  1-1-ontowf1o 5211  cfv 5212  1oc1o 6404  2oc2o 6405  cen 6732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-br 4001  df-opab 4062  df-id 4290  df-suc 4368  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-1o 6411  df-2o 6412  df-en 6735
This theorem is referenced by:  exmidpw  6902  en2eleq  7188  isprm2lem  12099
  Copyright terms: Public domain W3C validator