ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  en2eqpr GIF version

Theorem en2eqpr 6809
Description: Building a set with two elements. (Contributed by FL, 11-Aug-2008.) (Revised by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
en2eqpr ((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) → (𝐴𝐵𝐶 = {𝐴, 𝐵}))

Proof of Theorem en2eqpr
Dummy variables 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bren 6649 . . . . . 6 (𝐶 ≈ 2o ↔ ∃𝑓 𝑓:𝐶1-1-onto→2o)
21biimpi 119 . . . . 5 (𝐶 ≈ 2o → ∃𝑓 𝑓:𝐶1-1-onto→2o)
323ad2ant1 1003 . . . 4 ((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) → ∃𝑓 𝑓:𝐶1-1-onto→2o)
43adantr 274 . . 3 (((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) → ∃𝑓 𝑓:𝐶1-1-onto→2o)
5 simplr 520 . . . . . . . . . . 11 (((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = ∅) ∧ (𝑓𝐵) = ∅) → (𝑓𝑥) = ∅)
6 simpr 109 . . . . . . . . . . 11 (((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = ∅) ∧ (𝑓𝐵) = ∅) → (𝑓𝐵) = ∅)
75, 6eqtr4d 2176 . . . . . . . . . 10 (((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = ∅) ∧ (𝑓𝐵) = ∅) → (𝑓𝑥) = (𝑓𝐵))
8 f1of1 5374 . . . . . . . . . . . . . 14 (𝑓:𝐶1-1-onto→2o𝑓:𝐶1-1→2o)
98adantl 275 . . . . . . . . . . . . 13 ((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) → 𝑓:𝐶1-1→2o)
109adantr 274 . . . . . . . . . . . 12 (((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) → 𝑓:𝐶1-1→2o)
11 simpr 109 . . . . . . . . . . . 12 (((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) → 𝑥𝐶)
12 simpll3 1023 . . . . . . . . . . . . 13 ((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) → 𝐵𝐶)
1312adantr 274 . . . . . . . . . . . 12 (((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) → 𝐵𝐶)
14 f1fveq 5681 . . . . . . . . . . . 12 ((𝑓:𝐶1-1→2o ∧ (𝑥𝐶𝐵𝐶)) → ((𝑓𝑥) = (𝑓𝐵) ↔ 𝑥 = 𝐵))
1510, 11, 13, 14syl12anc 1215 . . . . . . . . . . 11 (((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) → ((𝑓𝑥) = (𝑓𝐵) ↔ 𝑥 = 𝐵))
1615ad2antrr 480 . . . . . . . . . 10 (((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = ∅) ∧ (𝑓𝐵) = ∅) → ((𝑓𝑥) = (𝑓𝐵) ↔ 𝑥 = 𝐵))
177, 16mpbid 146 . . . . . . . . 9 (((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = ∅) ∧ (𝑓𝐵) = ∅) → 𝑥 = 𝐵)
18 prid2g 3636 . . . . . . . . . . 11 (𝐵𝐶𝐵 ∈ {𝐴, 𝐵})
1913, 18syl 14 . . . . . . . . . 10 (((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) → 𝐵 ∈ {𝐴, 𝐵})
2019ad2antrr 480 . . . . . . . . 9 (((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = ∅) ∧ (𝑓𝐵) = ∅) → 𝐵 ∈ {𝐴, 𝐵})
2117, 20eqeltrd 2217 . . . . . . . 8 (((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = ∅) ∧ (𝑓𝐵) = ∅) → 𝑥 ∈ {𝐴, 𝐵})
22 simpllr 524 . . . . . . . . . . . 12 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = ∅) ∧ (𝑓𝐵) = 1o) ∧ (𝑓𝐴) = ∅) → (𝑓𝑥) = ∅)
23 simpr 109 . . . . . . . . . . . 12 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = ∅) ∧ (𝑓𝐵) = 1o) ∧ (𝑓𝐴) = ∅) → (𝑓𝐴) = ∅)
2422, 23eqtr4d 2176 . . . . . . . . . . 11 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = ∅) ∧ (𝑓𝐵) = 1o) ∧ (𝑓𝐴) = ∅) → (𝑓𝑥) = (𝑓𝐴))
25 simpll2 1022 . . . . . . . . . . . . . 14 ((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) → 𝐴𝐶)
2625adantr 274 . . . . . . . . . . . . 13 (((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) → 𝐴𝐶)
27 f1fveq 5681 . . . . . . . . . . . . 13 ((𝑓:𝐶1-1→2o ∧ (𝑥𝐶𝐴𝐶)) → ((𝑓𝑥) = (𝑓𝐴) ↔ 𝑥 = 𝐴))
2810, 11, 26, 27syl12anc 1215 . . . . . . . . . . . 12 (((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) → ((𝑓𝑥) = (𝑓𝐴) ↔ 𝑥 = 𝐴))
2928ad3antrrr 484 . . . . . . . . . . 11 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = ∅) ∧ (𝑓𝐵) = 1o) ∧ (𝑓𝐴) = ∅) → ((𝑓𝑥) = (𝑓𝐴) ↔ 𝑥 = 𝐴))
3024, 29mpbid 146 . . . . . . . . . 10 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = ∅) ∧ (𝑓𝐵) = 1o) ∧ (𝑓𝐴) = ∅) → 𝑥 = 𝐴)
31 prid1g 3635 . . . . . . . . . . . 12 (𝐴𝐶𝐴 ∈ {𝐴, 𝐵})
3226, 31syl 14 . . . . . . . . . . 11 (((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) → 𝐴 ∈ {𝐴, 𝐵})
3332ad3antrrr 484 . . . . . . . . . 10 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = ∅) ∧ (𝑓𝐵) = 1o) ∧ (𝑓𝐴) = ∅) → 𝐴 ∈ {𝐴, 𝐵})
3430, 33eqeltrd 2217 . . . . . . . . 9 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = ∅) ∧ (𝑓𝐵) = 1o) ∧ (𝑓𝐴) = ∅) → 𝑥 ∈ {𝐴, 𝐵})
35 simpr 109 . . . . . . . . . . 11 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = ∅) ∧ (𝑓𝐵) = 1o) ∧ (𝑓𝐴) = 1o) → (𝑓𝐴) = 1o)
36 simplr 520 . . . . . . . . . . 11 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = ∅) ∧ (𝑓𝐵) = 1o) ∧ (𝑓𝐴) = 1o) → (𝑓𝐵) = 1o)
3735, 36eqtr4d 2176 . . . . . . . . . 10 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = ∅) ∧ (𝑓𝐵) = 1o) ∧ (𝑓𝐴) = 1o) → (𝑓𝐴) = (𝑓𝐵))
38 simplr 520 . . . . . . . . . . . . 13 ((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) → 𝐴𝐵)
3938neneqd 2330 . . . . . . . . . . . 12 ((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) → ¬ 𝐴 = 𝐵)
40 f1fveq 5681 . . . . . . . . . . . . 13 ((𝑓:𝐶1-1→2o ∧ (𝐴𝐶𝐵𝐶)) → ((𝑓𝐴) = (𝑓𝐵) ↔ 𝐴 = 𝐵))
419, 25, 12, 40syl12anc 1215 . . . . . . . . . . . 12 ((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) → ((𝑓𝐴) = (𝑓𝐵) ↔ 𝐴 = 𝐵))
4239, 41mtbird 663 . . . . . . . . . . 11 ((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) → ¬ (𝑓𝐴) = (𝑓𝐵))
4342ad4antr 486 . . . . . . . . . 10 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = ∅) ∧ (𝑓𝐵) = 1o) ∧ (𝑓𝐴) = 1o) → ¬ (𝑓𝐴) = (𝑓𝐵))
4437, 43pm2.21dd 610 . . . . . . . . 9 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = ∅) ∧ (𝑓𝐵) = 1o) ∧ (𝑓𝐴) = 1o) → 𝑥 ∈ {𝐴, 𝐵})
45 f1of 5375 . . . . . . . . . . . . 13 (𝑓:𝐶1-1-onto→2o𝑓:𝐶⟶2o)
4645adantl 275 . . . . . . . . . . . 12 ((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) → 𝑓:𝐶⟶2o)
4746, 25ffvelrnd 5564 . . . . . . . . . . 11 ((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) → (𝑓𝐴) ∈ 2o)
48 elpri 3555 . . . . . . . . . . . 12 ((𝑓𝐴) ∈ {∅, 1o} → ((𝑓𝐴) = ∅ ∨ (𝑓𝐴) = 1o))
49 df2o3 6335 . . . . . . . . . . . 12 2o = {∅, 1o}
5048, 49eleq2s 2235 . . . . . . . . . . 11 ((𝑓𝐴) ∈ 2o → ((𝑓𝐴) = ∅ ∨ (𝑓𝐴) = 1o))
5147, 50syl 14 . . . . . . . . . 10 ((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) → ((𝑓𝐴) = ∅ ∨ (𝑓𝐴) = 1o))
5251ad3antrrr 484 . . . . . . . . 9 (((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = ∅) ∧ (𝑓𝐵) = 1o) → ((𝑓𝐴) = ∅ ∨ (𝑓𝐴) = 1o))
5334, 44, 52mpjaodan 788 . . . . . . . 8 (((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = ∅) ∧ (𝑓𝐵) = 1o) → 𝑥 ∈ {𝐴, 𝐵})
5446, 12ffvelrnd 5564 . . . . . . . . . 10 ((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) → (𝑓𝐵) ∈ 2o)
55 elpri 3555 . . . . . . . . . . 11 ((𝑓𝐵) ∈ {∅, 1o} → ((𝑓𝐵) = ∅ ∨ (𝑓𝐵) = 1o))
5655, 49eleq2s 2235 . . . . . . . . . 10 ((𝑓𝐵) ∈ 2o → ((𝑓𝐵) = ∅ ∨ (𝑓𝐵) = 1o))
5754, 56syl 14 . . . . . . . . 9 ((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) → ((𝑓𝐵) = ∅ ∨ (𝑓𝐵) = 1o))
5857ad2antrr 480 . . . . . . . 8 ((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = ∅) → ((𝑓𝐵) = ∅ ∨ (𝑓𝐵) = 1o))
5921, 53, 58mpjaodan 788 . . . . . . 7 ((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = ∅) → 𝑥 ∈ {𝐴, 𝐵})
60 simpr 109 . . . . . . . . . . 11 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = 1o) ∧ (𝑓𝐵) = ∅) ∧ (𝑓𝐴) = ∅) → (𝑓𝐴) = ∅)
61 simplr 520 . . . . . . . . . . 11 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = 1o) ∧ (𝑓𝐵) = ∅) ∧ (𝑓𝐴) = ∅) → (𝑓𝐵) = ∅)
6260, 61eqtr4d 2176 . . . . . . . . . 10 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = 1o) ∧ (𝑓𝐵) = ∅) ∧ (𝑓𝐴) = ∅) → (𝑓𝐴) = (𝑓𝐵))
6342ad4antr 486 . . . . . . . . . 10 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = 1o) ∧ (𝑓𝐵) = ∅) ∧ (𝑓𝐴) = ∅) → ¬ (𝑓𝐴) = (𝑓𝐵))
6462, 63pm2.21dd 610 . . . . . . . . 9 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = 1o) ∧ (𝑓𝐵) = ∅) ∧ (𝑓𝐴) = ∅) → 𝑥 ∈ {𝐴, 𝐵})
65 simpllr 524 . . . . . . . . . . . 12 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = 1o) ∧ (𝑓𝐵) = ∅) ∧ (𝑓𝐴) = 1o) → (𝑓𝑥) = 1o)
66 simpr 109 . . . . . . . . . . . 12 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = 1o) ∧ (𝑓𝐵) = ∅) ∧ (𝑓𝐴) = 1o) → (𝑓𝐴) = 1o)
6765, 66eqtr4d 2176 . . . . . . . . . . 11 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = 1o) ∧ (𝑓𝐵) = ∅) ∧ (𝑓𝐴) = 1o) → (𝑓𝑥) = (𝑓𝐴))
6828ad3antrrr 484 . . . . . . . . . . 11 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = 1o) ∧ (𝑓𝐵) = ∅) ∧ (𝑓𝐴) = 1o) → ((𝑓𝑥) = (𝑓𝐴) ↔ 𝑥 = 𝐴))
6967, 68mpbid 146 . . . . . . . . . 10 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = 1o) ∧ (𝑓𝐵) = ∅) ∧ (𝑓𝐴) = 1o) → 𝑥 = 𝐴)
7032ad3antrrr 484 . . . . . . . . . 10 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = 1o) ∧ (𝑓𝐵) = ∅) ∧ (𝑓𝐴) = 1o) → 𝐴 ∈ {𝐴, 𝐵})
7169, 70eqeltrd 2217 . . . . . . . . 9 ((((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = 1o) ∧ (𝑓𝐵) = ∅) ∧ (𝑓𝐴) = 1o) → 𝑥 ∈ {𝐴, 𝐵})
7251ad3antrrr 484 . . . . . . . . 9 (((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = 1o) ∧ (𝑓𝐵) = ∅) → ((𝑓𝐴) = ∅ ∨ (𝑓𝐴) = 1o))
7364, 71, 72mpjaodan 788 . . . . . . . 8 (((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = 1o) ∧ (𝑓𝐵) = ∅) → 𝑥 ∈ {𝐴, 𝐵})
74 simplr 520 . . . . . . . . . . 11 (((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = 1o) ∧ (𝑓𝐵) = 1o) → (𝑓𝑥) = 1o)
75 simpr 109 . . . . . . . . . . 11 (((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = 1o) ∧ (𝑓𝐵) = 1o) → (𝑓𝐵) = 1o)
7674, 75eqtr4d 2176 . . . . . . . . . 10 (((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = 1o) ∧ (𝑓𝐵) = 1o) → (𝑓𝑥) = (𝑓𝐵))
7715ad2antrr 480 . . . . . . . . . 10 (((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = 1o) ∧ (𝑓𝐵) = 1o) → ((𝑓𝑥) = (𝑓𝐵) ↔ 𝑥 = 𝐵))
7876, 77mpbid 146 . . . . . . . . 9 (((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = 1o) ∧ (𝑓𝐵) = 1o) → 𝑥 = 𝐵)
7919ad2antrr 480 . . . . . . . . 9 (((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = 1o) ∧ (𝑓𝐵) = 1o) → 𝐵 ∈ {𝐴, 𝐵})
8078, 79eqeltrd 2217 . . . . . . . 8 (((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = 1o) ∧ (𝑓𝐵) = 1o) → 𝑥 ∈ {𝐴, 𝐵})
8157ad2antrr 480 . . . . . . . 8 ((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = 1o) → ((𝑓𝐵) = ∅ ∨ (𝑓𝐵) = 1o))
8273, 80, 81mpjaodan 788 . . . . . . 7 ((((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) ∧ (𝑓𝑥) = 1o) → 𝑥 ∈ {𝐴, 𝐵})
8346ffvelrnda 5563 . . . . . . . 8 (((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) → (𝑓𝑥) ∈ 2o)
84 elpri 3555 . . . . . . . . 9 ((𝑓𝑥) ∈ {∅, 1o} → ((𝑓𝑥) = ∅ ∨ (𝑓𝑥) = 1o))
8584, 49eleq2s 2235 . . . . . . . 8 ((𝑓𝑥) ∈ 2o → ((𝑓𝑥) = ∅ ∨ (𝑓𝑥) = 1o))
8683, 85syl 14 . . . . . . 7 (((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) → ((𝑓𝑥) = ∅ ∨ (𝑓𝑥) = 1o))
8759, 82, 86mpjaodan 788 . . . . . 6 (((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) ∧ 𝑥𝐶) → 𝑥 ∈ {𝐴, 𝐵})
8887ex 114 . . . . 5 ((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) → (𝑥𝐶𝑥 ∈ {𝐴, 𝐵}))
8988ssrdv 3108 . . . 4 ((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) → 𝐶 ⊆ {𝐴, 𝐵})
90 prssi 3686 . . . . 5 ((𝐴𝐶𝐵𝐶) → {𝐴, 𝐵} ⊆ 𝐶)
9125, 12, 90syl2anc 409 . . . 4 ((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) → {𝐴, 𝐵} ⊆ 𝐶)
9289, 91eqssd 3119 . . 3 ((((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) ∧ 𝑓:𝐶1-1-onto→2o) → 𝐶 = {𝐴, 𝐵})
934, 92exlimddv 1871 . 2 (((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) → 𝐶 = {𝐴, 𝐵})
9493ex 114 1 ((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) → (𝐴𝐵𝐶 = {𝐴, 𝐵}))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 698  w3a 963   = wceq 1332  wex 1469  wcel 1481  wne 2309  wss 3076  c0 3368  {cpr 3533   class class class wbr 3937  wf 5127  1-1wf1 5128  1-1-ontowf1o 5130  cfv 5131  1oc1o 6314  2oc2o 6315  cen 6640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-id 4223  df-suc 4301  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-1o 6321  df-2o 6322  df-en 6643
This theorem is referenced by:  exmidpw  6810  en2eleq  7068  isprm2lem  11833
  Copyright terms: Public domain W3C validator