| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > sselda | GIF version | ||
| Description: Membership deduction from subclass relationship. (Contributed by NM, 26-Jun-2014.) | 
| Ref | Expression | 
|---|---|
| sseld.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | 
| Ref | Expression | 
|---|---|
| sselda | ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐴) → 𝐶 ∈ 𝐵) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sseld.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | 1 | sseld 3182 | . 2 ⊢ (𝜑 → (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵)) | 
| 3 | 2 | imp 124 | 1 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐴) → 𝐶 ∈ 𝐵) | 
| Copyright terms: Public domain | W3C validator |