![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sselda | GIF version |
Description: Membership deduction from subclass relationship. (Contributed by NM, 26-Jun-2014.) |
Ref | Expression |
---|---|
sseld.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Ref | Expression |
---|---|
sselda | ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐴) → 𝐶 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseld.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | 1 | sseld 3025 | . 2 ⊢ (𝜑 → (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵)) |
3 | 2 | imp 123 | 1 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐴) → 𝐶 ∈ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 1439 ⊆ wss 3000 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-11 1443 ax-4 1446 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 |
This theorem depends on definitions: df-bi 116 df-nf 1396 df-sb 1694 df-clab 2076 df-cleq 2082 df-clel 2085 df-in 3006 df-ss 3013 |
This theorem is referenced by: elrel 4553 ffvresb 5475 1stdm 5966 tfrlem1 6087 tfrlemiubacc 6109 tfr1onlemubacc 6125 tfrcllemubacc 6138 erinxp 6380 fundmen 6577 supisolem 6757 ordiso2 6782 exmidfodomrlemeldju 6879 exmidfodomrlemreseldju 6880 elprnql 7094 elprnqu 7095 suprleubex 8469 un0addcl 8760 un0mulcl 8761 suprzclex 8898 supminfex 9139 icoshftf1o 9462 elfzom1elfzo 9668 zpnn0elfzo 9672 iseqfveq 9948 seq3fveq 9949 monoord2 9959 iseqcoll 10301 rexanre 10707 rexico 10708 isummolem2a 10825 isumss 10837 fisumss 10838 fsum3cvg3 10843 fsumsplit 10855 fsum2dlemstep 10882 fisum0diag2 10895 fsumlessfi 10908 fsumabs 10913 telfsumo 10914 fsumparts 10918 fsumrelem 10919 fsumiun 10925 hashuni 10930 binom1dif 10935 isumsplit 10939 isumrpcl 10942 isumlessdc 10944 mertenslemi1 10983 restid2 11715 tgclb 11819 tgidm 11828 climcncf 11906 |
Copyright terms: Public domain | W3C validator |