ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suprnubex GIF version

Theorem suprnubex 8803
Description: An upper bound is not less than the supremum of a nonempty bounded set of reals. (Contributed by Jim Kingdon, 19-Jan-2022.)
Hypotheses
Ref Expression
suprubex.ex (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
suprubex.ss (𝜑𝐴 ⊆ ℝ)
suprlubex.b (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
suprnubex (𝜑 → (¬ 𝐵 < sup(𝐴, ℝ, < ) ↔ ∀𝑧𝐴 ¬ 𝐵 < 𝑧))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝜑,𝑥   𝑧,𝐵
Allowed substitution hints:   𝜑(𝑦,𝑧)   𝐵(𝑥,𝑦)

Proof of Theorem suprnubex
StepHypRef Expression
1 suprubex.ex . . . 4 (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
2 suprubex.ss . . . 4 (𝜑𝐴 ⊆ ℝ)
3 suprlubex.b . . . 4 (𝜑𝐵 ∈ ℝ)
41, 2, 3suprlubex 8802 . . 3 (𝜑 → (𝐵 < sup(𝐴, ℝ, < ) ↔ ∃𝑧𝐴 𝐵 < 𝑧))
54notbid 657 . 2 (𝜑 → (¬ 𝐵 < sup(𝐴, ℝ, < ) ↔ ¬ ∃𝑧𝐴 𝐵 < 𝑧))
6 ralnex 2442 . 2 (∀𝑧𝐴 ¬ 𝐵 < 𝑧 ↔ ¬ ∃𝑧𝐴 𝐵 < 𝑧)
75, 6bitr4di 197 1 (𝜑 → (¬ 𝐵 < sup(𝐴, ℝ, < ) ↔ ∀𝑧𝐴 ¬ 𝐵 < 𝑧))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wcel 2125  wral 2432  wrex 2433  wss 3098   class class class wbr 3961  supcsup 6914  cr 7710   < clt 7891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-sep 4078  ax-pow 4130  ax-pr 4164  ax-un 4388  ax-setind 4490  ax-cnex 7802  ax-resscn 7803  ax-pre-ltirr 7823  ax-pre-ltwlin 7824  ax-pre-lttrn 7825  ax-pre-apti 7826
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-nel 2420  df-ral 2437  df-rex 2438  df-reu 2439  df-rmo 2440  df-rab 2441  df-v 2711  df-sbc 2934  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-br 3962  df-opab 4022  df-po 4251  df-iso 4252  df-xp 4585  df-iota 5128  df-riota 5770  df-sup 6916  df-pnf 7893  df-mnf 7894  df-ltxr 7896
This theorem is referenced by:  suprleubex  8804
  Copyright terms: Public domain W3C validator