ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suprnubex GIF version

Theorem suprnubex 8972
Description: An upper bound is not less than the supremum of a nonempty bounded set of reals. (Contributed by Jim Kingdon, 19-Jan-2022.)
Hypotheses
Ref Expression
suprubex.ex (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
suprubex.ss (𝜑𝐴 ⊆ ℝ)
suprlubex.b (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
suprnubex (𝜑 → (¬ 𝐵 < sup(𝐴, ℝ, < ) ↔ ∀𝑧𝐴 ¬ 𝐵 < 𝑧))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝜑,𝑥   𝑧,𝐵
Allowed substitution hints:   𝜑(𝑦,𝑧)   𝐵(𝑥,𝑦)

Proof of Theorem suprnubex
StepHypRef Expression
1 suprubex.ex . . . 4 (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
2 suprubex.ss . . . 4 (𝜑𝐴 ⊆ ℝ)
3 suprlubex.b . . . 4 (𝜑𝐵 ∈ ℝ)
41, 2, 3suprlubex 8971 . . 3 (𝜑 → (𝐵 < sup(𝐴, ℝ, < ) ↔ ∃𝑧𝐴 𝐵 < 𝑧))
54notbid 668 . 2 (𝜑 → (¬ 𝐵 < sup(𝐴, ℝ, < ) ↔ ¬ ∃𝑧𝐴 𝐵 < 𝑧))
6 ralnex 2482 . 2 (∀𝑧𝐴 ¬ 𝐵 < 𝑧 ↔ ¬ ∃𝑧𝐴 𝐵 < 𝑧)
75, 6bitr4di 198 1 (𝜑 → (¬ 𝐵 < sup(𝐴, ℝ, < ) ↔ ∀𝑧𝐴 ¬ 𝐵 < 𝑧))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wcel 2164  wral 2472  wrex 2473  wss 3153   class class class wbr 4029  supcsup 7041  cr 7871   < clt 8054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-po 4327  df-iso 4328  df-xp 4665  df-iota 5215  df-riota 5873  df-sup 7043  df-pnf 8056  df-mnf 8057  df-ltxr 8059
This theorem is referenced by:  suprleubex  8973
  Copyright terms: Public domain W3C validator