![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > suprnubex | GIF version |
Description: An upper bound is not less than the supremum of a nonempty bounded set of reals. (Contributed by Jim Kingdon, 19-Jan-2022.) |
Ref | Expression |
---|---|
suprubex.ex | ⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) |
suprubex.ss | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
suprlubex.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
Ref | Expression |
---|---|
suprnubex | ⊢ (𝜑 → (¬ 𝐵 < sup(𝐴, ℝ, < ) ↔ ∀𝑧 ∈ 𝐴 ¬ 𝐵 < 𝑧)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suprubex.ex | . . . 4 ⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) | |
2 | suprubex.ss | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
3 | suprlubex.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
4 | 1, 2, 3 | suprlubex 8923 | . . 3 ⊢ (𝜑 → (𝐵 < sup(𝐴, ℝ, < ) ↔ ∃𝑧 ∈ 𝐴 𝐵 < 𝑧)) |
5 | 4 | notbid 668 | . 2 ⊢ (𝜑 → (¬ 𝐵 < sup(𝐴, ℝ, < ) ↔ ¬ ∃𝑧 ∈ 𝐴 𝐵 < 𝑧)) |
6 | ralnex 2475 | . 2 ⊢ (∀𝑧 ∈ 𝐴 ¬ 𝐵 < 𝑧 ↔ ¬ ∃𝑧 ∈ 𝐴 𝐵 < 𝑧) | |
7 | 5, 6 | bitr4di 198 | 1 ⊢ (𝜑 → (¬ 𝐵 < sup(𝐴, ℝ, < ) ↔ ∀𝑧 ∈ 𝐴 ¬ 𝐵 < 𝑧)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2158 ∀wral 2465 ∃wrex 2466 ⊆ wss 3141 class class class wbr 4015 supcsup 6995 ℝcr 7824 < clt 8006 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-sep 4133 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-setind 4548 ax-cnex 7916 ax-resscn 7917 ax-pre-ltirr 7937 ax-pre-ltwlin 7938 ax-pre-lttrn 7939 ax-pre-apti 7940 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-nel 2453 df-ral 2470 df-rex 2471 df-reu 2472 df-rmo 2473 df-rab 2474 df-v 2751 df-sbc 2975 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-br 4016 df-opab 4077 df-po 4308 df-iso 4309 df-xp 4644 df-iota 5190 df-riota 5844 df-sup 6997 df-pnf 8008 df-mnf 8009 df-ltxr 8011 |
This theorem is referenced by: suprleubex 8925 |
Copyright terms: Public domain | W3C validator |