ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  icc0r GIF version

Theorem icc0r 9883
Description: An empty closed interval of extended reals. (Contributed by Jim Kingdon, 30-Mar-2020.)
Assertion
Ref Expression
icc0r ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐵 < 𝐴 → (𝐴[,]𝐵) = ∅))

Proof of Theorem icc0r
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 xrletr 9765 . . . . . . 7 ((𝐴 ∈ ℝ*𝑥 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴𝑥𝑥𝐵) → 𝐴𝐵))
213com23 1204 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ ℝ*) → ((𝐴𝑥𝑥𝐵) → 𝐴𝐵))
323expa 1198 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℝ*) → ((𝐴𝑥𝑥𝐵) → 𝐴𝐵))
43rexlimdva 2587 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (∃𝑥 ∈ ℝ* (𝐴𝑥𝑥𝐵) → 𝐴𝐵))
5 xrlenlt 7984 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
64, 5sylibd 148 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (∃𝑥 ∈ ℝ* (𝐴𝑥𝑥𝐵) → ¬ 𝐵 < 𝐴))
76con2d 619 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐵 < 𝐴 → ¬ ∃𝑥 ∈ ℝ* (𝐴𝑥𝑥𝐵)))
8 iccval 9877 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴[,]𝐵) = {𝑥 ∈ ℝ* ∣ (𝐴𝑥𝑥𝐵)})
98eqeq1d 2179 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴[,]𝐵) = ∅ ↔ {𝑥 ∈ ℝ* ∣ (𝐴𝑥𝑥𝐵)} = ∅))
10 rabeq0 3444 . . . 4 ({𝑥 ∈ ℝ* ∣ (𝐴𝑥𝑥𝐵)} = ∅ ↔ ∀𝑥 ∈ ℝ* ¬ (𝐴𝑥𝑥𝐵))
11 ralnex 2458 . . . 4 (∀𝑥 ∈ ℝ* ¬ (𝐴𝑥𝑥𝐵) ↔ ¬ ∃𝑥 ∈ ℝ* (𝐴𝑥𝑥𝐵))
1210, 11bitri 183 . . 3 ({𝑥 ∈ ℝ* ∣ (𝐴𝑥𝑥𝐵)} = ∅ ↔ ¬ ∃𝑥 ∈ ℝ* (𝐴𝑥𝑥𝐵))
139, 12bitrdi 195 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴[,]𝐵) = ∅ ↔ ¬ ∃𝑥 ∈ ℝ* (𝐴𝑥𝑥𝐵)))
147, 13sylibrd 168 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐵 < 𝐴 → (𝐴[,]𝐵) = ∅))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103   = wceq 1348  wcel 2141  wral 2448  wrex 2449  {crab 2452  c0 3414   class class class wbr 3989  (class class class)co 5853  *cxr 7953   < clt 7954  cle 7955  [,]cicc 9848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-id 4278  df-po 4281  df-iso 4282  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-icc 9852
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator