ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  icc0r GIF version

Theorem icc0r 9962
Description: An empty closed interval of extended reals. (Contributed by Jim Kingdon, 30-Mar-2020.)
Assertion
Ref Expression
icc0r ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐵 < 𝐴 → (𝐴[,]𝐵) = ∅))

Proof of Theorem icc0r
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 xrletr 9844 . . . . . . 7 ((𝐴 ∈ ℝ*𝑥 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴𝑥𝑥𝐵) → 𝐴𝐵))
213com23 1211 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ ℝ*) → ((𝐴𝑥𝑥𝐵) → 𝐴𝐵))
323expa 1205 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℝ*) → ((𝐴𝑥𝑥𝐵) → 𝐴𝐵))
43rexlimdva 2607 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (∃𝑥 ∈ ℝ* (𝐴𝑥𝑥𝐵) → 𝐴𝐵))
5 xrlenlt 8057 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
64, 5sylibd 149 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (∃𝑥 ∈ ℝ* (𝐴𝑥𝑥𝐵) → ¬ 𝐵 < 𝐴))
76con2d 625 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐵 < 𝐴 → ¬ ∃𝑥 ∈ ℝ* (𝐴𝑥𝑥𝐵)))
8 iccval 9956 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴[,]𝐵) = {𝑥 ∈ ℝ* ∣ (𝐴𝑥𝑥𝐵)})
98eqeq1d 2198 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴[,]𝐵) = ∅ ↔ {𝑥 ∈ ℝ* ∣ (𝐴𝑥𝑥𝐵)} = ∅))
10 rabeq0 3467 . . . 4 ({𝑥 ∈ ℝ* ∣ (𝐴𝑥𝑥𝐵)} = ∅ ↔ ∀𝑥 ∈ ℝ* ¬ (𝐴𝑥𝑥𝐵))
11 ralnex 2478 . . . 4 (∀𝑥 ∈ ℝ* ¬ (𝐴𝑥𝑥𝐵) ↔ ¬ ∃𝑥 ∈ ℝ* (𝐴𝑥𝑥𝐵))
1210, 11bitri 184 . . 3 ({𝑥 ∈ ℝ* ∣ (𝐴𝑥𝑥𝐵)} = ∅ ↔ ¬ ∃𝑥 ∈ ℝ* (𝐴𝑥𝑥𝐵))
139, 12bitrdi 196 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴[,]𝐵) = ∅ ↔ ¬ ∃𝑥 ∈ ℝ* (𝐴𝑥𝑥𝐵)))
147, 13sylibrd 169 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐵 < 𝐴 → (𝐴[,]𝐵) = ∅))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104   = wceq 1364  wcel 2160  wral 2468  wrex 2469  {crab 2472  c0 3437   class class class wbr 4021  (class class class)co 5900  *cxr 8026   < clt 8027  cle 8028  [,]cicc 9927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4139  ax-pow 4195  ax-pr 4230  ax-un 4454  ax-setind 4557  ax-cnex 7937  ax-resscn 7938  ax-pre-ltirr 7958  ax-pre-ltwlin 7959  ax-pre-lttrn 7960
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3595  df-sn 3616  df-pr 3617  df-op 3619  df-uni 3828  df-br 4022  df-opab 4083  df-id 4314  df-po 4317  df-iso 4318  df-xp 4653  df-rel 4654  df-cnv 4655  df-co 4656  df-dm 4657  df-iota 5199  df-fun 5240  df-fv 5246  df-ov 5903  df-oprab 5904  df-mpo 5905  df-pnf 8029  df-mnf 8030  df-xr 8031  df-ltxr 8032  df-le 8033  df-icc 9931
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator