Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > icc0r | GIF version |
Description: An empty closed interval of extended reals. (Contributed by Jim Kingdon, 30-Mar-2020.) |
Ref | Expression |
---|---|
icc0r | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐵 < 𝐴 → (𝐴[,]𝐵) = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrletr 9765 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵) → 𝐴 ≤ 𝐵)) | |
2 | 1 | 3com23 1204 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑥 ∈ ℝ*) → ((𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵) → 𝐴 ≤ 𝐵)) |
3 | 2 | 3expa 1198 | . . . . 5 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℝ*) → ((𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵) → 𝐴 ≤ 𝐵)) |
4 | 3 | rexlimdva 2587 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (∃𝑥 ∈ ℝ* (𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵) → 𝐴 ≤ 𝐵)) |
5 | xrlenlt 7984 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) | |
6 | 4, 5 | sylibd 148 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (∃𝑥 ∈ ℝ* (𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵) → ¬ 𝐵 < 𝐴)) |
7 | 6 | con2d 619 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐵 < 𝐴 → ¬ ∃𝑥 ∈ ℝ* (𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵))) |
8 | iccval 9877 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴[,]𝐵) = {𝑥 ∈ ℝ* ∣ (𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)}) | |
9 | 8 | eqeq1d 2179 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴[,]𝐵) = ∅ ↔ {𝑥 ∈ ℝ* ∣ (𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)} = ∅)) |
10 | rabeq0 3444 | . . . 4 ⊢ ({𝑥 ∈ ℝ* ∣ (𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)} = ∅ ↔ ∀𝑥 ∈ ℝ* ¬ (𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)) | |
11 | ralnex 2458 | . . . 4 ⊢ (∀𝑥 ∈ ℝ* ¬ (𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵) ↔ ¬ ∃𝑥 ∈ ℝ* (𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)) | |
12 | 10, 11 | bitri 183 | . . 3 ⊢ ({𝑥 ∈ ℝ* ∣ (𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)} = ∅ ↔ ¬ ∃𝑥 ∈ ℝ* (𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)) |
13 | 9, 12 | bitrdi 195 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴[,]𝐵) = ∅ ↔ ¬ ∃𝑥 ∈ ℝ* (𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵))) |
14 | 7, 13 | sylibrd 168 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐵 < 𝐴 → (𝐴[,]𝐵) = ∅)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 = wceq 1348 ∈ wcel 2141 ∀wral 2448 ∃wrex 2449 {crab 2452 ∅c0 3414 class class class wbr 3989 (class class class)co 5853 ℝ*cxr 7953 < clt 7954 ≤ cle 7955 [,]cicc 9848 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-po 4281 df-iso 4282 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-icc 9852 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |