| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ioo0 | GIF version | ||
| Description: An empty open interval of extended reals. (Contributed by NM, 6-Feb-2007.) |
| Ref | Expression |
|---|---|
| ioo0 | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴(,)𝐵) = ∅ ↔ 𝐵 ≤ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iooval 10072 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴(,)𝐵) = {𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)}) | |
| 2 | 1 | eqeq1d 2218 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴(,)𝐵) = ∅ ↔ {𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)} = ∅)) |
| 3 | xrlttr 9959 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴 < 𝑥 ∧ 𝑥 < 𝐵) → 𝐴 < 𝐵)) | |
| 4 | 3 | 3com23 1214 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑥 ∈ ℝ*) → ((𝐴 < 𝑥 ∧ 𝑥 < 𝐵) → 𝐴 < 𝐵)) |
| 5 | 4 | 3expa 1208 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℝ*) → ((𝐴 < 𝑥 ∧ 𝑥 < 𝐵) → 𝐴 < 𝐵)) |
| 6 | 5 | rexlimdva 2628 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (∃𝑥 ∈ ℝ* (𝐴 < 𝑥 ∧ 𝑥 < 𝐵) → 𝐴 < 𝐵)) |
| 7 | qbtwnxr 10444 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) | |
| 8 | qre 9788 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ℚ → 𝑥 ∈ ℝ) | |
| 9 | 8 | rexrd 8164 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℚ → 𝑥 ∈ ℝ*) |
| 10 | 9 | anim1i 340 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) → (𝑥 ∈ ℝ* ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) |
| 11 | 10 | reximi2 2606 | . . . . . . 7 ⊢ (∃𝑥 ∈ ℚ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵) → ∃𝑥 ∈ ℝ* (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) |
| 12 | 7, 11 | syl 14 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → ∃𝑥 ∈ ℝ* (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) |
| 13 | 12 | 3expia 1210 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℝ* (𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) |
| 14 | 6, 13 | impbid 129 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (∃𝑥 ∈ ℝ* (𝐴 < 𝑥 ∧ 𝑥 < 𝐵) ↔ 𝐴 < 𝐵)) |
| 15 | 14 | notbid 671 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (¬ ∃𝑥 ∈ ℝ* (𝐴 < 𝑥 ∧ 𝑥 < 𝐵) ↔ ¬ 𝐴 < 𝐵)) |
| 16 | rabeq0 3501 | . . . . 5 ⊢ ({𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)} = ∅ ↔ ∀𝑥 ∈ ℝ* ¬ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) | |
| 17 | ralnex 2498 | . . . . 5 ⊢ (∀𝑥 ∈ ℝ* ¬ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵) ↔ ¬ ∃𝑥 ∈ ℝ* (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) | |
| 18 | 16, 17 | bitri 184 | . . . 4 ⊢ ({𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)} = ∅ ↔ ¬ ∃𝑥 ∈ ℝ* (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) |
| 19 | 18 | a1i 9 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ({𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)} = ∅ ↔ ¬ ∃𝑥 ∈ ℝ* (𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) |
| 20 | xrlenlt 8179 | . . . 4 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵)) | |
| 21 | 20 | ancoms 268 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵)) |
| 22 | 15, 19, 21 | 3bitr4d 220 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ({𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)} = ∅ ↔ 𝐵 ≤ 𝐴)) |
| 23 | 2, 22 | bitrd 188 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴(,)𝐵) = ∅ ↔ 𝐵 ≤ 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 983 = wceq 1375 ∈ wcel 2180 ∀wral 2488 ∃wrex 2489 {crab 2492 ∅c0 3471 class class class wbr 4062 (class class class)co 5974 ℝ*cxr 8148 < clt 8149 ≤ cle 8150 ℚcq 9782 (,)cioo 10052 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-mulrcl 8066 ax-addcom 8067 ax-mulcom 8068 ax-addass 8069 ax-mulass 8070 ax-distr 8071 ax-i2m1 8072 ax-0lt1 8073 ax-1rid 8074 ax-0id 8075 ax-rnegex 8076 ax-precex 8077 ax-cnre 8078 ax-pre-ltirr 8079 ax-pre-ltwlin 8080 ax-pre-lttrn 8081 ax-pre-apti 8082 ax-pre-ltadd 8083 ax-pre-mulgt0 8084 ax-pre-mulext 8085 ax-arch 8086 |
| This theorem depends on definitions: df-bi 117 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rmo 2496 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-po 4364 df-iso 4365 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 df-sub 8287 df-neg 8288 df-reap 8690 df-ap 8697 df-div 8788 df-inn 9079 df-2 9137 df-n0 9338 df-z 9415 df-uz 9691 df-q 9783 df-rp 9818 df-ioo 10056 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |