ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ioo0 GIF version

Theorem ioo0 10067
Description: An empty open interval of extended reals. (Contributed by NM, 6-Feb-2007.)
Assertion
Ref Expression
ioo0 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴(,)𝐵) = ∅ ↔ 𝐵𝐴))

Proof of Theorem ioo0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 iooval 9720 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴(,)𝐵) = {𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥𝑥 < 𝐵)})
21eqeq1d 2149 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴(,)𝐵) = ∅ ↔ {𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥𝑥 < 𝐵)} = ∅))
3 xrlttr 9610 . . . . . . . 8 ((𝐴 ∈ ℝ*𝑥 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴 < 𝑥𝑥 < 𝐵) → 𝐴 < 𝐵))
433com23 1188 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ ℝ*) → ((𝐴 < 𝑥𝑥 < 𝐵) → 𝐴 < 𝐵))
543expa 1182 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℝ*) → ((𝐴 < 𝑥𝑥 < 𝐵) → 𝐴 < 𝐵))
65rexlimdva 2552 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (∃𝑥 ∈ ℝ* (𝐴 < 𝑥𝑥 < 𝐵) → 𝐴 < 𝐵))
7 qbtwnxr 10065 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))
8 qre 9443 . . . . . . . . . 10 (𝑥 ∈ ℚ → 𝑥 ∈ ℝ)
98rexrd 7838 . . . . . . . . 9 (𝑥 ∈ ℚ → 𝑥 ∈ ℝ*)
109anim1i 338 . . . . . . . 8 ((𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 𝐵)) → (𝑥 ∈ ℝ* ∧ (𝐴 < 𝑥𝑥 < 𝐵)))
1110reximi2 2531 . . . . . . 7 (∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵) → ∃𝑥 ∈ ℝ* (𝐴 < 𝑥𝑥 < 𝐵))
127, 11syl 14 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ∃𝑥 ∈ ℝ* (𝐴 < 𝑥𝑥 < 𝐵))
13123expia 1184 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℝ* (𝐴 < 𝑥𝑥 < 𝐵)))
146, 13impbid 128 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (∃𝑥 ∈ ℝ* (𝐴 < 𝑥𝑥 < 𝐵) ↔ 𝐴 < 𝐵))
1514notbid 657 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (¬ ∃𝑥 ∈ ℝ* (𝐴 < 𝑥𝑥 < 𝐵) ↔ ¬ 𝐴 < 𝐵))
16 rabeq0 3396 . . . . 5 ({𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥𝑥 < 𝐵)} = ∅ ↔ ∀𝑥 ∈ ℝ* ¬ (𝐴 < 𝑥𝑥 < 𝐵))
17 ralnex 2427 . . . . 5 (∀𝑥 ∈ ℝ* ¬ (𝐴 < 𝑥𝑥 < 𝐵) ↔ ¬ ∃𝑥 ∈ ℝ* (𝐴 < 𝑥𝑥 < 𝐵))
1816, 17bitri 183 . . . 4 ({𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥𝑥 < 𝐵)} = ∅ ↔ ¬ ∃𝑥 ∈ ℝ* (𝐴 < 𝑥𝑥 < 𝐵))
1918a1i 9 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ({𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥𝑥 < 𝐵)} = ∅ ↔ ¬ ∃𝑥 ∈ ℝ* (𝐴 < 𝑥𝑥 < 𝐵)))
20 xrlenlt 7852 . . . 4 ((𝐵 ∈ ℝ*𝐴 ∈ ℝ*) → (𝐵𝐴 ↔ ¬ 𝐴 < 𝐵))
2120ancoms 266 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐵𝐴 ↔ ¬ 𝐴 < 𝐵))
2215, 19, 213bitr4d 219 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ({𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥𝑥 < 𝐵)} = ∅ ↔ 𝐵𝐴))
232, 22bitrd 187 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴(,)𝐵) = ∅ ↔ 𝐵𝐴))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  w3a 963   = wceq 1332  wcel 1481  wral 2417  wrex 2418  {crab 2421  c0 3367   class class class wbr 3936  (class class class)co 5781  *cxr 7822   < clt 7823  cle 7824  cq 9437  (,)cioo 9700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4053  ax-pow 4105  ax-pr 4138  ax-un 4362  ax-setind 4459  ax-cnex 7734  ax-resscn 7735  ax-1cn 7736  ax-1re 7737  ax-icn 7738  ax-addcl 7739  ax-addrcl 7740  ax-mulcl 7741  ax-mulrcl 7742  ax-addcom 7743  ax-mulcom 7744  ax-addass 7745  ax-mulass 7746  ax-distr 7747  ax-i2m1 7748  ax-0lt1 7749  ax-1rid 7750  ax-0id 7751  ax-rnegex 7752  ax-precex 7753  ax-cnre 7754  ax-pre-ltirr 7755  ax-pre-ltwlin 7756  ax-pre-lttrn 7757  ax-pre-apti 7758  ax-pre-ltadd 7759  ax-pre-mulgt0 7760  ax-pre-mulext 7761  ax-arch 7762
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2913  df-csb 3007  df-dif 3077  df-un 3079  df-in 3081  df-ss 3088  df-nul 3368  df-pw 3516  df-sn 3537  df-pr 3538  df-op 3540  df-uni 3744  df-int 3779  df-iun 3822  df-br 3937  df-opab 3997  df-mpt 3998  df-id 4222  df-po 4225  df-iso 4226  df-xp 4552  df-rel 4553  df-cnv 4554  df-co 4555  df-dm 4556  df-rn 4557  df-res 4558  df-ima 4559  df-iota 5095  df-fun 5132  df-fn 5133  df-f 5134  df-fv 5138  df-riota 5737  df-ov 5784  df-oprab 5785  df-mpo 5786  df-1st 6045  df-2nd 6046  df-pnf 7825  df-mnf 7826  df-xr 7827  df-ltxr 7828  df-le 7829  df-sub 7958  df-neg 7959  df-reap 8360  df-ap 8367  df-div 8456  df-inn 8744  df-2 8802  df-n0 9001  df-z 9078  df-uz 9350  df-q 9438  df-rp 9470  df-ioo 9704
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator