ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ioo0 GIF version

Theorem ioo0 10292
Description: An empty open interval of extended reals. (Contributed by NM, 6-Feb-2007.)
Assertion
Ref Expression
ioo0 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴(,)𝐵) = ∅ ↔ 𝐵𝐴))

Proof of Theorem ioo0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 iooval 9940 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴(,)𝐵) = {𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥𝑥 < 𝐵)})
21eqeq1d 2198 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴(,)𝐵) = ∅ ↔ {𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥𝑥 < 𝐵)} = ∅))
3 xrlttr 9827 . . . . . . . 8 ((𝐴 ∈ ℝ*𝑥 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴 < 𝑥𝑥 < 𝐵) → 𝐴 < 𝐵))
433com23 1211 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ ℝ*) → ((𝐴 < 𝑥𝑥 < 𝐵) → 𝐴 < 𝐵))
543expa 1205 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℝ*) → ((𝐴 < 𝑥𝑥 < 𝐵) → 𝐴 < 𝐵))
65rexlimdva 2607 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (∃𝑥 ∈ ℝ* (𝐴 < 𝑥𝑥 < 𝐵) → 𝐴 < 𝐵))
7 qbtwnxr 10290 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))
8 qre 9657 . . . . . . . . . 10 (𝑥 ∈ ℚ → 𝑥 ∈ ℝ)
98rexrd 8038 . . . . . . . . 9 (𝑥 ∈ ℚ → 𝑥 ∈ ℝ*)
109anim1i 340 . . . . . . . 8 ((𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 𝐵)) → (𝑥 ∈ ℝ* ∧ (𝐴 < 𝑥𝑥 < 𝐵)))
1110reximi2 2586 . . . . . . 7 (∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵) → ∃𝑥 ∈ ℝ* (𝐴 < 𝑥𝑥 < 𝐵))
127, 11syl 14 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ∃𝑥 ∈ ℝ* (𝐴 < 𝑥𝑥 < 𝐵))
13123expia 1207 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℝ* (𝐴 < 𝑥𝑥 < 𝐵)))
146, 13impbid 129 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (∃𝑥 ∈ ℝ* (𝐴 < 𝑥𝑥 < 𝐵) ↔ 𝐴 < 𝐵))
1514notbid 668 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (¬ ∃𝑥 ∈ ℝ* (𝐴 < 𝑥𝑥 < 𝐵) ↔ ¬ 𝐴 < 𝐵))
16 rabeq0 3467 . . . . 5 ({𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥𝑥 < 𝐵)} = ∅ ↔ ∀𝑥 ∈ ℝ* ¬ (𝐴 < 𝑥𝑥 < 𝐵))
17 ralnex 2478 . . . . 5 (∀𝑥 ∈ ℝ* ¬ (𝐴 < 𝑥𝑥 < 𝐵) ↔ ¬ ∃𝑥 ∈ ℝ* (𝐴 < 𝑥𝑥 < 𝐵))
1816, 17bitri 184 . . . 4 ({𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥𝑥 < 𝐵)} = ∅ ↔ ¬ ∃𝑥 ∈ ℝ* (𝐴 < 𝑥𝑥 < 𝐵))
1918a1i 9 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ({𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥𝑥 < 𝐵)} = ∅ ↔ ¬ ∃𝑥 ∈ ℝ* (𝐴 < 𝑥𝑥 < 𝐵)))
20 xrlenlt 8053 . . . 4 ((𝐵 ∈ ℝ*𝐴 ∈ ℝ*) → (𝐵𝐴 ↔ ¬ 𝐴 < 𝐵))
2120ancoms 268 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐵𝐴 ↔ ¬ 𝐴 < 𝐵))
2215, 19, 213bitr4d 220 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ({𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥𝑥 < 𝐵)} = ∅ ↔ 𝐵𝐴))
232, 22bitrd 188 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴(,)𝐵) = ∅ ↔ 𝐵𝐴))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2160  wral 2468  wrex 2469  {crab 2472  c0 3437   class class class wbr 4018  (class class class)co 5897  *cxr 8022   < clt 8023  cle 8024  cq 9651  (,)cioo 9920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-mulrcl 7941  ax-addcom 7942  ax-mulcom 7943  ax-addass 7944  ax-mulass 7945  ax-distr 7946  ax-i2m1 7947  ax-0lt1 7948  ax-1rid 7949  ax-0id 7950  ax-rnegex 7951  ax-precex 7952  ax-cnre 7953  ax-pre-ltirr 7954  ax-pre-ltwlin 7955  ax-pre-lttrn 7956  ax-pre-apti 7957  ax-pre-ltadd 7958  ax-pre-mulgt0 7959  ax-pre-mulext 7960  ax-arch 7961
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-po 4314  df-iso 4315  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-fv 5243  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-1st 6166  df-2nd 6167  df-pnf 8025  df-mnf 8026  df-xr 8027  df-ltxr 8028  df-le 8029  df-sub 8161  df-neg 8162  df-reap 8563  df-ap 8570  df-div 8661  df-inn 8951  df-2 9009  df-n0 9208  df-z 9285  df-uz 9560  df-q 9652  df-rp 9686  df-ioo 9924
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator