| Step | Hyp | Ref
| Expression |
| 1 | | ffn 5410 |
. . . . . 6
⊢ (𝐹:(0...𝐾)⟶𝑉 → 𝐹 Fn (0...𝐾)) |
| 2 | 1 | adantr 276 |
. . . . 5
⊢ ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → 𝐹 Fn (0...𝐾)) |
| 3 | | 0nn0 9281 |
. . . . . . 7
⊢ 0 ∈
ℕ0 |
| 4 | 3 | a1i 9 |
. . . . . 6
⊢ ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → 0 ∈
ℕ0) |
| 5 | | simpr 110 |
. . . . . 6
⊢ ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → 𝐾 ∈
ℕ0) |
| 6 | | nn0ge0 9291 |
. . . . . . 7
⊢ (𝐾 ∈ ℕ0
→ 0 ≤ 𝐾) |
| 7 | 6 | adantl 277 |
. . . . . 6
⊢ ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → 0 ≤
𝐾) |
| 8 | | elfz2nn0 10204 |
. . . . . 6
⊢ (0 ∈
(0...𝐾) ↔ (0 ∈
ℕ0 ∧ 𝐾
∈ ℕ0 ∧ 0 ≤ 𝐾)) |
| 9 | 4, 5, 7, 8 | syl3anbrc 1183 |
. . . . 5
⊢ ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → 0 ∈
(0...𝐾)) |
| 10 | | id 19 |
. . . . . . 7
⊢ (𝐾 ∈ ℕ0
→ 𝐾 ∈
ℕ0) |
| 11 | | nn0re 9275 |
. . . . . . . 8
⊢ (𝐾 ∈ ℕ0
→ 𝐾 ∈
ℝ) |
| 12 | 11 | leidd 8558 |
. . . . . . 7
⊢ (𝐾 ∈ ℕ0
→ 𝐾 ≤ 𝐾) |
| 13 | | elfz2nn0 10204 |
. . . . . . 7
⊢ (𝐾 ∈ (0...𝐾) ↔ (𝐾 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0
∧ 𝐾 ≤ 𝐾)) |
| 14 | 10, 10, 12, 13 | syl3anbrc 1183 |
. . . . . 6
⊢ (𝐾 ∈ ℕ0
→ 𝐾 ∈ (0...𝐾)) |
| 15 | 14 | adantl 277 |
. . . . 5
⊢ ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → 𝐾 ∈ (0...𝐾)) |
| 16 | | fnimapr 5624 |
. . . . 5
⊢ ((𝐹 Fn (0...𝐾) ∧ 0 ∈ (0...𝐾) ∧ 𝐾 ∈ (0...𝐾)) → (𝐹 “ {0, 𝐾}) = {(𝐹‘0), (𝐹‘𝐾)}) |
| 17 | 2, 9, 15, 16 | syl3anc 1249 |
. . . 4
⊢ ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (𝐹 “ {0, 𝐾}) = {(𝐹‘0), (𝐹‘𝐾)}) |
| 18 | 17 | ineq1d 3364 |
. . 3
⊢ ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → ((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ({(𝐹‘0), (𝐹‘𝐾)} ∩ (𝐹 “ (1..^𝐾)))) |
| 19 | 18 | eqeq1d 2205 |
. 2
⊢ ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ ↔ ({(𝐹‘0), (𝐹‘𝐾)} ∩ (𝐹 “ (1..^𝐾))) = ∅)) |
| 20 | | disj 3500 |
. . 3
⊢ (({(𝐹‘0), (𝐹‘𝐾)} ∩ (𝐹 “ (1..^𝐾))) = ∅ ↔ ∀𝑣 ∈ {(𝐹‘0), (𝐹‘𝐾)} ¬ 𝑣 ∈ (𝐹 “ (1..^𝐾))) |
| 21 | | simpl 109 |
. . . . 5
⊢ ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → 𝐹:(0...𝐾)⟶𝑉) |
| 22 | 21, 9 | ffvelcdmd 5701 |
. . . 4
⊢ ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (𝐹‘0) ∈ 𝑉) |
| 23 | 21, 15 | ffvelcdmd 5701 |
. . . 4
⊢ ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (𝐹‘𝐾) ∈ 𝑉) |
| 24 | | eleq1 2259 |
. . . . . . 7
⊢ (𝑣 = (𝐹‘0) → (𝑣 ∈ (𝐹 “ (1..^𝐾)) ↔ (𝐹‘0) ∈ (𝐹 “ (1..^𝐾)))) |
| 25 | 24 | notbid 668 |
. . . . . 6
⊢ (𝑣 = (𝐹‘0) → (¬ 𝑣 ∈ (𝐹 “ (1..^𝐾)) ↔ ¬ (𝐹‘0) ∈ (𝐹 “ (1..^𝐾)))) |
| 26 | | df-nel 2463 |
. . . . . 6
⊢ ((𝐹‘0) ∉ (𝐹 “ (1..^𝐾)) ↔ ¬ (𝐹‘0) ∈ (𝐹 “ (1..^𝐾))) |
| 27 | 25, 26 | bitr4di 198 |
. . . . 5
⊢ (𝑣 = (𝐹‘0) → (¬ 𝑣 ∈ (𝐹 “ (1..^𝐾)) ↔ (𝐹‘0) ∉ (𝐹 “ (1..^𝐾)))) |
| 28 | | eleq1 2259 |
. . . . . . 7
⊢ (𝑣 = (𝐹‘𝐾) → (𝑣 ∈ (𝐹 “ (1..^𝐾)) ↔ (𝐹‘𝐾) ∈ (𝐹 “ (1..^𝐾)))) |
| 29 | 28 | notbid 668 |
. . . . . 6
⊢ (𝑣 = (𝐹‘𝐾) → (¬ 𝑣 ∈ (𝐹 “ (1..^𝐾)) ↔ ¬ (𝐹‘𝐾) ∈ (𝐹 “ (1..^𝐾)))) |
| 30 | | df-nel 2463 |
. . . . . 6
⊢ ((𝐹‘𝐾) ∉ (𝐹 “ (1..^𝐾)) ↔ ¬ (𝐹‘𝐾) ∈ (𝐹 “ (1..^𝐾))) |
| 31 | 29, 30 | bitr4di 198 |
. . . . 5
⊢ (𝑣 = (𝐹‘𝐾) → (¬ 𝑣 ∈ (𝐹 “ (1..^𝐾)) ↔ (𝐹‘𝐾) ∉ (𝐹 “ (1..^𝐾)))) |
| 32 | 27, 31 | ralprg 3674 |
. . . 4
⊢ (((𝐹‘0) ∈ 𝑉 ∧ (𝐹‘𝐾) ∈ 𝑉) → (∀𝑣 ∈ {(𝐹‘0), (𝐹‘𝐾)} ¬ 𝑣 ∈ (𝐹 “ (1..^𝐾)) ↔ ((𝐹‘0) ∉ (𝐹 “ (1..^𝐾)) ∧ (𝐹‘𝐾) ∉ (𝐹 “ (1..^𝐾))))) |
| 33 | 22, 23, 32 | syl2anc 411 |
. . 3
⊢ ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) →
(∀𝑣 ∈ {(𝐹‘0), (𝐹‘𝐾)} ¬ 𝑣 ∈ (𝐹 “ (1..^𝐾)) ↔ ((𝐹‘0) ∉ (𝐹 “ (1..^𝐾)) ∧ (𝐹‘𝐾) ∉ (𝐹 “ (1..^𝐾))))) |
| 34 | 20, 33 | bitrid 192 |
. 2
⊢ ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) →
(({(𝐹‘0), (𝐹‘𝐾)} ∩ (𝐹 “ (1..^𝐾))) = ∅ ↔ ((𝐹‘0) ∉ (𝐹 “ (1..^𝐾)) ∧ (𝐹‘𝐾) ∉ (𝐹 “ (1..^𝐾))))) |
| 35 | 19, 34 | bitrd 188 |
1
⊢ ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ ↔ ((𝐹‘0) ∉ (𝐹 “ (1..^𝐾)) ∧ (𝐹‘𝐾) ∉ (𝐹 “ (1..^𝐾))))) |