ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvinim0ffz GIF version

Theorem fvinim0ffz 10176
Description: The function values for the borders of a finite interval of integers, which is the domain of the function, are not in the image of the interior of the interval iff the intersection of the images of the interior and the borders is empty. (Contributed by Alexander van der Vekens, 31-Oct-2017.) (Revised by AV, 5-Feb-2021.)
Assertion
Ref Expression
fvinim0ffz ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ ↔ ((𝐹‘0) ∉ (𝐹 “ (1..^𝐾)) ∧ (𝐹𝐾) ∉ (𝐹 “ (1..^𝐾)))))

Proof of Theorem fvinim0ffz
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 ffn 5337 . . . . . 6 (𝐹:(0...𝐾)⟶𝑉𝐹 Fn (0...𝐾))
21adantr 274 . . . . 5 ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → 𝐹 Fn (0...𝐾))
3 0nn0 9129 . . . . . . 7 0 ∈ ℕ0
43a1i 9 . . . . . 6 ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → 0 ∈ ℕ0)
5 simpr 109 . . . . . 6 ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → 𝐾 ∈ ℕ0)
6 nn0ge0 9139 . . . . . . 7 (𝐾 ∈ ℕ0 → 0 ≤ 𝐾)
76adantl 275 . . . . . 6 ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → 0 ≤ 𝐾)
8 elfz2nn0 10047 . . . . . 6 (0 ∈ (0...𝐾) ↔ (0 ∈ ℕ0𝐾 ∈ ℕ0 ∧ 0 ≤ 𝐾))
94, 5, 7, 8syl3anbrc 1171 . . . . 5 ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → 0 ∈ (0...𝐾))
10 id 19 . . . . . . 7 (𝐾 ∈ ℕ0𝐾 ∈ ℕ0)
11 nn0re 9123 . . . . . . . 8 (𝐾 ∈ ℕ0𝐾 ∈ ℝ)
1211leidd 8412 . . . . . . 7 (𝐾 ∈ ℕ0𝐾𝐾)
13 elfz2nn0 10047 . . . . . . 7 (𝐾 ∈ (0...𝐾) ↔ (𝐾 ∈ ℕ0𝐾 ∈ ℕ0𝐾𝐾))
1410, 10, 12, 13syl3anbrc 1171 . . . . . 6 (𝐾 ∈ ℕ0𝐾 ∈ (0...𝐾))
1514adantl 275 . . . . 5 ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → 𝐾 ∈ (0...𝐾))
16 fnimapr 5546 . . . . 5 ((𝐹 Fn (0...𝐾) ∧ 0 ∈ (0...𝐾) ∧ 𝐾 ∈ (0...𝐾)) → (𝐹 “ {0, 𝐾}) = {(𝐹‘0), (𝐹𝐾)})
172, 9, 15, 16syl3anc 1228 . . . 4 ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (𝐹 “ {0, 𝐾}) = {(𝐹‘0), (𝐹𝐾)})
1817ineq1d 3322 . . 3 ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → ((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ({(𝐹‘0), (𝐹𝐾)} ∩ (𝐹 “ (1..^𝐾))))
1918eqeq1d 2174 . 2 ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ ↔ ({(𝐹‘0), (𝐹𝐾)} ∩ (𝐹 “ (1..^𝐾))) = ∅))
20 disj 3457 . . 3 (({(𝐹‘0), (𝐹𝐾)} ∩ (𝐹 “ (1..^𝐾))) = ∅ ↔ ∀𝑣 ∈ {(𝐹‘0), (𝐹𝐾)} ¬ 𝑣 ∈ (𝐹 “ (1..^𝐾)))
21 simpl 108 . . . . 5 ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → 𝐹:(0...𝐾)⟶𝑉)
2221, 9ffvelrnd 5621 . . . 4 ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (𝐹‘0) ∈ 𝑉)
2321, 15ffvelrnd 5621 . . . 4 ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (𝐹𝐾) ∈ 𝑉)
24 eleq1 2229 . . . . . . 7 (𝑣 = (𝐹‘0) → (𝑣 ∈ (𝐹 “ (1..^𝐾)) ↔ (𝐹‘0) ∈ (𝐹 “ (1..^𝐾))))
2524notbid 657 . . . . . 6 (𝑣 = (𝐹‘0) → (¬ 𝑣 ∈ (𝐹 “ (1..^𝐾)) ↔ ¬ (𝐹‘0) ∈ (𝐹 “ (1..^𝐾))))
26 df-nel 2432 . . . . . 6 ((𝐹‘0) ∉ (𝐹 “ (1..^𝐾)) ↔ ¬ (𝐹‘0) ∈ (𝐹 “ (1..^𝐾)))
2725, 26bitr4di 197 . . . . 5 (𝑣 = (𝐹‘0) → (¬ 𝑣 ∈ (𝐹 “ (1..^𝐾)) ↔ (𝐹‘0) ∉ (𝐹 “ (1..^𝐾))))
28 eleq1 2229 . . . . . . 7 (𝑣 = (𝐹𝐾) → (𝑣 ∈ (𝐹 “ (1..^𝐾)) ↔ (𝐹𝐾) ∈ (𝐹 “ (1..^𝐾))))
2928notbid 657 . . . . . 6 (𝑣 = (𝐹𝐾) → (¬ 𝑣 ∈ (𝐹 “ (1..^𝐾)) ↔ ¬ (𝐹𝐾) ∈ (𝐹 “ (1..^𝐾))))
30 df-nel 2432 . . . . . 6 ((𝐹𝐾) ∉ (𝐹 “ (1..^𝐾)) ↔ ¬ (𝐹𝐾) ∈ (𝐹 “ (1..^𝐾)))
3129, 30bitr4di 197 . . . . 5 (𝑣 = (𝐹𝐾) → (¬ 𝑣 ∈ (𝐹 “ (1..^𝐾)) ↔ (𝐹𝐾) ∉ (𝐹 “ (1..^𝐾))))
3227, 31ralprg 3627 . . . 4 (((𝐹‘0) ∈ 𝑉 ∧ (𝐹𝐾) ∈ 𝑉) → (∀𝑣 ∈ {(𝐹‘0), (𝐹𝐾)} ¬ 𝑣 ∈ (𝐹 “ (1..^𝐾)) ↔ ((𝐹‘0) ∉ (𝐹 “ (1..^𝐾)) ∧ (𝐹𝐾) ∉ (𝐹 “ (1..^𝐾)))))
3322, 23, 32syl2anc 409 . . 3 ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (∀𝑣 ∈ {(𝐹‘0), (𝐹𝐾)} ¬ 𝑣 ∈ (𝐹 “ (1..^𝐾)) ↔ ((𝐹‘0) ∉ (𝐹 “ (1..^𝐾)) ∧ (𝐹𝐾) ∉ (𝐹 “ (1..^𝐾)))))
3420, 33syl5bb 191 . 2 ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (({(𝐹‘0), (𝐹𝐾)} ∩ (𝐹 “ (1..^𝐾))) = ∅ ↔ ((𝐹‘0) ∉ (𝐹 “ (1..^𝐾)) ∧ (𝐹𝐾) ∉ (𝐹 “ (1..^𝐾)))))
3519, 34bitrd 187 1 ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ ↔ ((𝐹‘0) ∉ (𝐹 “ (1..^𝐾)) ∧ (𝐹𝐾) ∉ (𝐹 “ (1..^𝐾)))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104   = wceq 1343  wcel 2136  wnel 2431  wral 2444  cin 3115  c0 3409  {cpr 3577   class class class wbr 3982  cima 4607   Fn wfn 5183  wf 5184  cfv 5188  (class class class)co 5842  0cc0 7753  1c1 7754  cle 7934  0cn0 9114  ...cfz 9944  ..^cfzo 10077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-inn 8858  df-n0 9115  df-z 9192  df-uz 9467  df-fz 9945
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator