Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sumpr | GIF version |
Description: A sum over a pair is the sum of the elements. (Contributed by Thierry Arnoux, 12-Dec-2016.) |
Ref | Expression |
---|---|
sumpr.1 | ⊢ (𝑘 = 𝐴 → 𝐶 = 𝐷) |
sumpr.2 | ⊢ (𝑘 = 𝐵 → 𝐶 = 𝐸) |
sumpr.3 | ⊢ (𝜑 → (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ)) |
sumpr.4 | ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊)) |
sumpr.5 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
Ref | Expression |
---|---|
sumpr | ⊢ (𝜑 → Σ𝑘 ∈ {𝐴, 𝐵}𝐶 = (𝐷 + 𝐸)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sumpr.5 | . . . 4 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
2 | disjsn2 3646 | . . . 4 ⊢ (𝐴 ≠ 𝐵 → ({𝐴} ∩ {𝐵}) = ∅) | |
3 | 1, 2 | syl 14 | . . 3 ⊢ (𝜑 → ({𝐴} ∩ {𝐵}) = ∅) |
4 | df-pr 3590 | . . . 4 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
5 | 4 | a1i 9 | . . 3 ⊢ (𝜑 → {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})) |
6 | sumpr.4 | . . . . 5 ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊)) | |
7 | 6 | simpld 111 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
8 | 6 | simprd 113 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
9 | prfidisj 6904 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} ∈ Fin) | |
10 | 7, 8, 1, 9 | syl3anc 1233 | . . 3 ⊢ (𝜑 → {𝐴, 𝐵} ∈ Fin) |
11 | sumpr.3 | . . . . 5 ⊢ (𝜑 → (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ)) | |
12 | sumpr.1 | . . . . . . . 8 ⊢ (𝑘 = 𝐴 → 𝐶 = 𝐷) | |
13 | 12 | eleq1d 2239 | . . . . . . 7 ⊢ (𝑘 = 𝐴 → (𝐶 ∈ ℂ ↔ 𝐷 ∈ ℂ)) |
14 | sumpr.2 | . . . . . . . 8 ⊢ (𝑘 = 𝐵 → 𝐶 = 𝐸) | |
15 | 14 | eleq1d 2239 | . . . . . . 7 ⊢ (𝑘 = 𝐵 → (𝐶 ∈ ℂ ↔ 𝐸 ∈ ℂ)) |
16 | 13, 15 | ralprg 3634 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∀𝑘 ∈ {𝐴, 𝐵}𝐶 ∈ ℂ ↔ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ))) |
17 | 6, 16 | syl 14 | . . . . 5 ⊢ (𝜑 → (∀𝑘 ∈ {𝐴, 𝐵}𝐶 ∈ ℂ ↔ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ))) |
18 | 11, 17 | mpbird 166 | . . . 4 ⊢ (𝜑 → ∀𝑘 ∈ {𝐴, 𝐵}𝐶 ∈ ℂ) |
19 | 18 | r19.21bi 2558 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ {𝐴, 𝐵}) → 𝐶 ∈ ℂ) |
20 | 3, 5, 10, 19 | fsumsplit 11370 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ {𝐴, 𝐵}𝐶 = (Σ𝑘 ∈ {𝐴}𝐶 + Σ𝑘 ∈ {𝐵}𝐶)) |
21 | 11 | simpld 111 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ ℂ) |
22 | 12 | sumsn 11374 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐷 ∈ ℂ) → Σ𝑘 ∈ {𝐴}𝐶 = 𝐷) |
23 | 7, 21, 22 | syl2anc 409 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ {𝐴}𝐶 = 𝐷) |
24 | 11 | simprd 113 | . . . 4 ⊢ (𝜑 → 𝐸 ∈ ℂ) |
25 | 14 | sumsn 11374 | . . . 4 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐸 ∈ ℂ) → Σ𝑘 ∈ {𝐵}𝐶 = 𝐸) |
26 | 8, 24, 25 | syl2anc 409 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ {𝐵}𝐶 = 𝐸) |
27 | 23, 26 | oveq12d 5871 | . 2 ⊢ (𝜑 → (Σ𝑘 ∈ {𝐴}𝐶 + Σ𝑘 ∈ {𝐵}𝐶) = (𝐷 + 𝐸)) |
28 | 20, 27 | eqtrd 2203 | 1 ⊢ (𝜑 → Σ𝑘 ∈ {𝐴, 𝐵}𝐶 = (𝐷 + 𝐸)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1348 ∈ wcel 2141 ≠ wne 2340 ∀wral 2448 ∪ cun 3119 ∩ cin 3120 ∅c0 3414 {csn 3583 {cpr 3584 (class class class)co 5853 Fincfn 6718 ℂcc 7772 + caddc 7777 Σcsu 11316 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 ax-arch 7893 ax-caucvg 7894 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-ilim 4354 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-isom 5207 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-irdg 6349 df-frec 6370 df-1o 6395 df-oadd 6399 df-er 6513 df-en 6719 df-dom 6720 df-fin 6721 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-inn 8879 df-2 8937 df-3 8938 df-4 8939 df-n0 9136 df-z 9213 df-uz 9488 df-q 9579 df-rp 9611 df-fz 9966 df-fzo 10099 df-seqfrec 10402 df-exp 10476 df-ihash 10710 df-cj 10806 df-re 10807 df-im 10808 df-rsqrt 10962 df-abs 10963 df-clim 11242 df-sumdc 11317 |
This theorem is referenced by: sumtp 11377 |
Copyright terms: Public domain | W3C validator |