![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sumpr | GIF version |
Description: A sum over a pair is the sum of the elements. (Contributed by Thierry Arnoux, 12-Dec-2016.) |
Ref | Expression |
---|---|
sumpr.1 | ⊢ (𝑘 = 𝐴 → 𝐶 = 𝐷) |
sumpr.2 | ⊢ (𝑘 = 𝐵 → 𝐶 = 𝐸) |
sumpr.3 | ⊢ (𝜑 → (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ)) |
sumpr.4 | ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊)) |
sumpr.5 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
Ref | Expression |
---|---|
sumpr | ⊢ (𝜑 → Σ𝑘 ∈ {𝐴, 𝐵}𝐶 = (𝐷 + 𝐸)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sumpr.5 | . . . 4 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
2 | disjsn2 3667 | . . . 4 ⊢ (𝐴 ≠ 𝐵 → ({𝐴} ∩ {𝐵}) = ∅) | |
3 | 1, 2 | syl 14 | . . 3 ⊢ (𝜑 → ({𝐴} ∩ {𝐵}) = ∅) |
4 | df-pr 3611 | . . . 4 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
5 | 4 | a1i 9 | . . 3 ⊢ (𝜑 → {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})) |
6 | sumpr.4 | . . . . 5 ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊)) | |
7 | 6 | simpld 112 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
8 | 6 | simprd 114 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
9 | prfidisj 6940 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} ∈ Fin) | |
10 | 7, 8, 1, 9 | syl3anc 1248 | . . 3 ⊢ (𝜑 → {𝐴, 𝐵} ∈ Fin) |
11 | sumpr.3 | . . . . 5 ⊢ (𝜑 → (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ)) | |
12 | sumpr.1 | . . . . . . . 8 ⊢ (𝑘 = 𝐴 → 𝐶 = 𝐷) | |
13 | 12 | eleq1d 2256 | . . . . . . 7 ⊢ (𝑘 = 𝐴 → (𝐶 ∈ ℂ ↔ 𝐷 ∈ ℂ)) |
14 | sumpr.2 | . . . . . . . 8 ⊢ (𝑘 = 𝐵 → 𝐶 = 𝐸) | |
15 | 14 | eleq1d 2256 | . . . . . . 7 ⊢ (𝑘 = 𝐵 → (𝐶 ∈ ℂ ↔ 𝐸 ∈ ℂ)) |
16 | 13, 15 | ralprg 3655 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∀𝑘 ∈ {𝐴, 𝐵}𝐶 ∈ ℂ ↔ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ))) |
17 | 6, 16 | syl 14 | . . . . 5 ⊢ (𝜑 → (∀𝑘 ∈ {𝐴, 𝐵}𝐶 ∈ ℂ ↔ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ))) |
18 | 11, 17 | mpbird 167 | . . . 4 ⊢ (𝜑 → ∀𝑘 ∈ {𝐴, 𝐵}𝐶 ∈ ℂ) |
19 | 18 | r19.21bi 2575 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ {𝐴, 𝐵}) → 𝐶 ∈ ℂ) |
20 | 3, 5, 10, 19 | fsumsplit 11429 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ {𝐴, 𝐵}𝐶 = (Σ𝑘 ∈ {𝐴}𝐶 + Σ𝑘 ∈ {𝐵}𝐶)) |
21 | 11 | simpld 112 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ ℂ) |
22 | 12 | sumsn 11433 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐷 ∈ ℂ) → Σ𝑘 ∈ {𝐴}𝐶 = 𝐷) |
23 | 7, 21, 22 | syl2anc 411 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ {𝐴}𝐶 = 𝐷) |
24 | 11 | simprd 114 | . . . 4 ⊢ (𝜑 → 𝐸 ∈ ℂ) |
25 | 14 | sumsn 11433 | . . . 4 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐸 ∈ ℂ) → Σ𝑘 ∈ {𝐵}𝐶 = 𝐸) |
26 | 8, 24, 25 | syl2anc 411 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ {𝐵}𝐶 = 𝐸) |
27 | 23, 26 | oveq12d 5906 | . 2 ⊢ (𝜑 → (Σ𝑘 ∈ {𝐴}𝐶 + Σ𝑘 ∈ {𝐵}𝐶) = (𝐷 + 𝐸)) |
28 | 20, 27 | eqtrd 2220 | 1 ⊢ (𝜑 → Σ𝑘 ∈ {𝐴, 𝐵}𝐶 = (𝐷 + 𝐸)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1363 ∈ wcel 2158 ≠ wne 2357 ∀wral 2465 ∪ cun 3139 ∩ cin 3140 ∅c0 3434 {csn 3604 {cpr 3605 (class class class)co 5888 Fincfn 6754 ℂcc 7823 + caddc 7828 Σcsu 11375 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-coll 4130 ax-sep 4133 ax-nul 4141 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-setind 4548 ax-iinf 4599 ax-cnex 7916 ax-resscn 7917 ax-1cn 7918 ax-1re 7919 ax-icn 7920 ax-addcl 7921 ax-addrcl 7922 ax-mulcl 7923 ax-mulrcl 7924 ax-addcom 7925 ax-mulcom 7926 ax-addass 7927 ax-mulass 7928 ax-distr 7929 ax-i2m1 7930 ax-0lt1 7931 ax-1rid 7932 ax-0id 7933 ax-rnegex 7934 ax-precex 7935 ax-cnre 7936 ax-pre-ltirr 7937 ax-pre-ltwlin 7938 ax-pre-lttrn 7939 ax-pre-apti 7940 ax-pre-ltadd 7941 ax-pre-mulgt0 7942 ax-pre-mulext 7943 ax-arch 7944 ax-caucvg 7945 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 980 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-nel 2453 df-ral 2470 df-rex 2471 df-reu 2472 df-rmo 2473 df-rab 2474 df-v 2751 df-sbc 2975 df-csb 3070 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-nul 3435 df-if 3547 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-int 3857 df-iun 3900 df-br 4016 df-opab 4077 df-mpt 4078 df-tr 4114 df-id 4305 df-po 4308 df-iso 4309 df-iord 4378 df-on 4380 df-ilim 4381 df-suc 4383 df-iom 4602 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-iota 5190 df-fun 5230 df-fn 5231 df-f 5232 df-f1 5233 df-fo 5234 df-f1o 5235 df-fv 5236 df-isom 5237 df-riota 5844 df-ov 5891 df-oprab 5892 df-mpo 5893 df-1st 6155 df-2nd 6156 df-recs 6320 df-irdg 6385 df-frec 6406 df-1o 6431 df-oadd 6435 df-er 6549 df-en 6755 df-dom 6756 df-fin 6757 df-pnf 8008 df-mnf 8009 df-xr 8010 df-ltxr 8011 df-le 8012 df-sub 8144 df-neg 8145 df-reap 8546 df-ap 8553 df-div 8644 df-inn 8934 df-2 8992 df-3 8993 df-4 8994 df-n0 9191 df-z 9268 df-uz 9543 df-q 9634 df-rp 9668 df-fz 10023 df-fzo 10157 df-seqfrec 10460 df-exp 10534 df-ihash 10770 df-cj 10865 df-re 10866 df-im 10867 df-rsqrt 11021 df-abs 11022 df-clim 11301 df-sumdc 11376 |
This theorem is referenced by: sumtp 11436 |
Copyright terms: Public domain | W3C validator |