ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sumpr GIF version

Theorem sumpr 10770
Description: A sum over a pair is the sum of the elements. (Contributed by Thierry Arnoux, 12-Dec-2016.)
Hypotheses
Ref Expression
sumpr.1 (𝑘 = 𝐴𝐶 = 𝐷)
sumpr.2 (𝑘 = 𝐵𝐶 = 𝐸)
sumpr.3 (𝜑 → (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ))
sumpr.4 (𝜑 → (𝐴𝑉𝐵𝑊))
sumpr.5 (𝜑𝐴𝐵)
Assertion
Ref Expression
sumpr (𝜑 → Σ𝑘 ∈ {𝐴, 𝐵}𝐶 = (𝐷 + 𝐸))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝐷,𝑘   𝑘,𝐸   𝜑,𝑘   𝑘,𝑉   𝑘,𝑊
Allowed substitution hint:   𝐶(𝑘)

Proof of Theorem sumpr
StepHypRef Expression
1 sumpr.5 . . . 4 (𝜑𝐴𝐵)
2 disjsn2 3500 . . . 4 (𝐴𝐵 → ({𝐴} ∩ {𝐵}) = ∅)
31, 2syl 14 . . 3 (𝜑 → ({𝐴} ∩ {𝐵}) = ∅)
4 df-pr 3448 . . . 4 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
54a1i 9 . . 3 (𝜑 → {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}))
6 sumpr.4 . . . . 5 (𝜑 → (𝐴𝑉𝐵𝑊))
76simpld 110 . . . 4 (𝜑𝐴𝑉)
86simprd 112 . . . 4 (𝜑𝐵𝑊)
9 prfidisj 6617 . . . 4 ((𝐴𝑉𝐵𝑊𝐴𝐵) → {𝐴, 𝐵} ∈ Fin)
107, 8, 1, 9syl3anc 1174 . . 3 (𝜑 → {𝐴, 𝐵} ∈ Fin)
11 sumpr.3 . . . . 5 (𝜑 → (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ))
12 sumpr.1 . . . . . . . 8 (𝑘 = 𝐴𝐶 = 𝐷)
1312eleq1d 2156 . . . . . . 7 (𝑘 = 𝐴 → (𝐶 ∈ ℂ ↔ 𝐷 ∈ ℂ))
14 sumpr.2 . . . . . . . 8 (𝑘 = 𝐵𝐶 = 𝐸)
1514eleq1d 2156 . . . . . . 7 (𝑘 = 𝐵 → (𝐶 ∈ ℂ ↔ 𝐸 ∈ ℂ))
1613, 15ralprg 3488 . . . . . 6 ((𝐴𝑉𝐵𝑊) → (∀𝑘 ∈ {𝐴, 𝐵}𝐶 ∈ ℂ ↔ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ)))
176, 16syl 14 . . . . 5 (𝜑 → (∀𝑘 ∈ {𝐴, 𝐵}𝐶 ∈ ℂ ↔ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ)))
1811, 17mpbird 165 . . . 4 (𝜑 → ∀𝑘 ∈ {𝐴, 𝐵}𝐶 ∈ ℂ)
1918r19.21bi 2461 . . 3 ((𝜑𝑘 ∈ {𝐴, 𝐵}) → 𝐶 ∈ ℂ)
203, 5, 10, 19fsumsplit 10764 . 2 (𝜑 → Σ𝑘 ∈ {𝐴, 𝐵}𝐶 = (Σ𝑘 ∈ {𝐴}𝐶 + Σ𝑘 ∈ {𝐵}𝐶))
2111simpld 110 . . . 4 (𝜑𝐷 ∈ ℂ)
2212sumsn 10768 . . . 4 ((𝐴𝑉𝐷 ∈ ℂ) → Σ𝑘 ∈ {𝐴}𝐶 = 𝐷)
237, 21, 22syl2anc 403 . . 3 (𝜑 → Σ𝑘 ∈ {𝐴}𝐶 = 𝐷)
2411simprd 112 . . . 4 (𝜑𝐸 ∈ ℂ)
2514sumsn 10768 . . . 4 ((𝐵𝑊𝐸 ∈ ℂ) → Σ𝑘 ∈ {𝐵}𝐶 = 𝐸)
268, 24, 25syl2anc 403 . . 3 (𝜑 → Σ𝑘 ∈ {𝐵}𝐶 = 𝐸)
2723, 26oveq12d 5652 . 2 (𝜑 → (Σ𝑘 ∈ {𝐴}𝐶 + Σ𝑘 ∈ {𝐵}𝐶) = (𝐷 + 𝐸))
2820, 27eqtrd 2120 1 (𝜑 → Σ𝑘 ∈ {𝐴, 𝐵}𝐶 = (𝐷 + 𝐸))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1289  wcel 1438  wne 2255  wral 2359  cun 2995  cin 2996  c0 3284  {csn 3441  {cpr 3442  (class class class)co 5634  Fincfn 6437  cc 7327   + caddc 7332  Σcsu 10706
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3946  ax-sep 3949  ax-nul 3957  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343  ax-iinf 4393  ax-cnex 7415  ax-resscn 7416  ax-1cn 7417  ax-1re 7418  ax-icn 7419  ax-addcl 7420  ax-addrcl 7421  ax-mulcl 7422  ax-mulrcl 7423  ax-addcom 7424  ax-mulcom 7425  ax-addass 7426  ax-mulass 7427  ax-distr 7428  ax-i2m1 7429  ax-0lt1 7430  ax-1rid 7431  ax-0id 7432  ax-rnegex 7433  ax-precex 7434  ax-cnre 7435  ax-pre-ltirr 7436  ax-pre-ltwlin 7437  ax-pre-lttrn 7438  ax-pre-apti 7439  ax-pre-ltadd 7440  ax-pre-mulgt0 7441  ax-pre-mulext 7442  ax-arch 7443  ax-caucvg 7444
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rmo 2367  df-rab 2368  df-v 2621  df-sbc 2839  df-csb 2932  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-nul 3285  df-if 3390  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-int 3684  df-iun 3727  df-br 3838  df-opab 3892  df-mpt 3893  df-tr 3929  df-id 4111  df-po 4114  df-iso 4115  df-iord 4184  df-on 4186  df-ilim 4187  df-suc 4189  df-iom 4396  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-res 4440  df-ima 4441  df-iota 4967  df-fun 5004  df-fn 5005  df-f 5006  df-f1 5007  df-fo 5008  df-f1o 5009  df-fv 5010  df-isom 5011  df-riota 5590  df-ov 5637  df-oprab 5638  df-mpt2 5639  df-1st 5893  df-2nd 5894  df-recs 6052  df-irdg 6117  df-frec 6138  df-1o 6163  df-oadd 6167  df-er 6272  df-en 6438  df-dom 6439  df-fin 6440  df-pnf 7503  df-mnf 7504  df-xr 7505  df-ltxr 7506  df-le 7507  df-sub 7634  df-neg 7635  df-reap 8028  df-ap 8035  df-div 8114  df-inn 8395  df-2 8452  df-3 8453  df-4 8454  df-n0 8644  df-z 8721  df-uz 8989  df-q 9074  df-rp 9104  df-fz 9394  df-fzo 9519  df-iseq 9818  df-seq3 9819  df-exp 9920  df-ihash 10149  df-cj 10241  df-re 10242  df-im 10243  df-rsqrt 10396  df-abs 10397  df-clim 10631  df-isum 10707
This theorem is referenced by:  sumtp  10771
  Copyright terms: Public domain W3C validator