| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > blbas | GIF version | ||
| Description: The balls of a metric space form a basis for a topology. (Contributed by NM, 12-Sep-2006.) (Revised by Mario Carneiro, 15-Jan-2014.) |
| Ref | Expression |
|---|---|
| blbas | ⊢ (𝐷 ∈ (∞Met‘𝑋) → ran (ball‘𝐷) ∈ TopBases) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | blin2 14668 | . . . . . 6 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧 ∈ (𝑥 ∩ 𝑦)) ∧ (𝑥 ∈ ran (ball‘𝐷) ∧ 𝑦 ∈ ran (ball‘𝐷))) → ∃𝑟 ∈ ℝ+ (𝑧(ball‘𝐷)𝑟) ⊆ (𝑥 ∩ 𝑦)) | |
| 2 | simpll 527 | . . . . . . 7 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧 ∈ (𝑥 ∩ 𝑦)) ∧ (𝑥 ∈ ran (ball‘𝐷) ∧ 𝑦 ∈ ran (ball‘𝐷))) → 𝐷 ∈ (∞Met‘𝑋)) | |
| 3 | elinel1 3349 | . . . . . . . . . 10 ⊢ (𝑧 ∈ (𝑥 ∩ 𝑦) → 𝑧 ∈ 𝑥) | |
| 4 | elunii 3844 | . . . . . . . . . 10 ⊢ ((𝑧 ∈ 𝑥 ∧ 𝑥 ∈ ran (ball‘𝐷)) → 𝑧 ∈ ∪ ran (ball‘𝐷)) | |
| 5 | 3, 4 | sylan 283 | . . . . . . . . 9 ⊢ ((𝑧 ∈ (𝑥 ∩ 𝑦) ∧ 𝑥 ∈ ran (ball‘𝐷)) → 𝑧 ∈ ∪ ran (ball‘𝐷)) |
| 6 | 5 | ad2ant2lr 510 | . . . . . . . 8 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧 ∈ (𝑥 ∩ 𝑦)) ∧ (𝑥 ∈ ran (ball‘𝐷) ∧ 𝑦 ∈ ran (ball‘𝐷))) → 𝑧 ∈ ∪ ran (ball‘𝐷)) |
| 7 | unirnbl 14659 | . . . . . . . . 9 ⊢ (𝐷 ∈ (∞Met‘𝑋) → ∪ ran (ball‘𝐷) = 𝑋) | |
| 8 | 7 | ad2antrr 488 | . . . . . . . 8 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧 ∈ (𝑥 ∩ 𝑦)) ∧ (𝑥 ∈ ran (ball‘𝐷) ∧ 𝑦 ∈ ran (ball‘𝐷))) → ∪ ran (ball‘𝐷) = 𝑋) |
| 9 | 6, 8 | eleqtrd 2275 | . . . . . . 7 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧 ∈ (𝑥 ∩ 𝑦)) ∧ (𝑥 ∈ ran (ball‘𝐷) ∧ 𝑦 ∈ ran (ball‘𝐷))) → 𝑧 ∈ 𝑋) |
| 10 | blssex 14666 | . . . . . . 7 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧 ∈ 𝑋) → (∃𝑏 ∈ ran (ball‘𝐷)(𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ (𝑥 ∩ 𝑦)) ↔ ∃𝑟 ∈ ℝ+ (𝑧(ball‘𝐷)𝑟) ⊆ (𝑥 ∩ 𝑦))) | |
| 11 | 2, 9, 10 | syl2anc 411 | . . . . . 6 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧 ∈ (𝑥 ∩ 𝑦)) ∧ (𝑥 ∈ ran (ball‘𝐷) ∧ 𝑦 ∈ ran (ball‘𝐷))) → (∃𝑏 ∈ ran (ball‘𝐷)(𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ (𝑥 ∩ 𝑦)) ↔ ∃𝑟 ∈ ℝ+ (𝑧(ball‘𝐷)𝑟) ⊆ (𝑥 ∩ 𝑦))) |
| 12 | 1, 11 | mpbird 167 | . . . . 5 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧 ∈ (𝑥 ∩ 𝑦)) ∧ (𝑥 ∈ ran (ball‘𝐷) ∧ 𝑦 ∈ ran (ball‘𝐷))) → ∃𝑏 ∈ ran (ball‘𝐷)(𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ (𝑥 ∩ 𝑦))) |
| 13 | 12 | ex 115 | . . . 4 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧 ∈ (𝑥 ∩ 𝑦)) → ((𝑥 ∈ ran (ball‘𝐷) ∧ 𝑦 ∈ ran (ball‘𝐷)) → ∃𝑏 ∈ ran (ball‘𝐷)(𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ (𝑥 ∩ 𝑦)))) |
| 14 | 13 | ralrimdva 2577 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → ((𝑥 ∈ ran (ball‘𝐷) ∧ 𝑦 ∈ ran (ball‘𝐷)) → ∀𝑧 ∈ (𝑥 ∩ 𝑦)∃𝑏 ∈ ran (ball‘𝐷)(𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ (𝑥 ∩ 𝑦)))) |
| 15 | 14 | ralrimivv 2578 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → ∀𝑥 ∈ ran (ball‘𝐷)∀𝑦 ∈ ran (ball‘𝐷)∀𝑧 ∈ (𝑥 ∩ 𝑦)∃𝑏 ∈ ran (ball‘𝐷)(𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ (𝑥 ∩ 𝑦))) |
| 16 | blex 14623 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (ball‘𝐷) ∈ V) | |
| 17 | rnexg 4931 | . . 3 ⊢ ((ball‘𝐷) ∈ V → ran (ball‘𝐷) ∈ V) | |
| 18 | isbasis2g 14281 | . . 3 ⊢ (ran (ball‘𝐷) ∈ V → (ran (ball‘𝐷) ∈ TopBases ↔ ∀𝑥 ∈ ran (ball‘𝐷)∀𝑦 ∈ ran (ball‘𝐷)∀𝑧 ∈ (𝑥 ∩ 𝑦)∃𝑏 ∈ ran (ball‘𝐷)(𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ (𝑥 ∩ 𝑦)))) | |
| 19 | 16, 17, 18 | 3syl 17 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (ran (ball‘𝐷) ∈ TopBases ↔ ∀𝑥 ∈ ran (ball‘𝐷)∀𝑦 ∈ ran (ball‘𝐷)∀𝑧 ∈ (𝑥 ∩ 𝑦)∃𝑏 ∈ ran (ball‘𝐷)(𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ (𝑥 ∩ 𝑦)))) |
| 20 | 15, 19 | mpbird 167 | 1 ⊢ (𝐷 ∈ (∞Met‘𝑋) → ran (ball‘𝐷) ∈ TopBases) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 ∀wral 2475 ∃wrex 2476 Vcvv 2763 ∩ cin 3156 ⊆ wss 3157 ∪ cuni 3839 ran crn 4664 ‘cfv 5258 (class class class)co 5922 ℝ+crp 9728 ∞Metcxmet 14092 ballcbl 14094 TopBasesctb 14278 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 ax-arch 7998 ax-caucvg 7999 |
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-isom 5267 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-map 6709 df-sup 7050 df-inf 7051 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-n0 9250 df-z 9327 df-uz 9602 df-q 9694 df-rp 9729 df-xneg 9847 df-xadd 9848 df-seqfrec 10540 df-exp 10631 df-cj 11007 df-re 11008 df-im 11009 df-rsqrt 11163 df-abs 11164 df-psmet 14099 df-xmet 14100 df-bl 14102 df-bases 14279 |
| This theorem is referenced by: mopnval 14678 mopntopon 14679 elmopn 14682 blssopn 14721 metss 14730 |
| Copyright terms: Public domain | W3C validator |