ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  blbas GIF version

Theorem blbas 13936
Description: The balls of a metric space form a basis for a topology. (Contributed by NM, 12-Sep-2006.) (Revised by Mario Carneiro, 15-Jan-2014.)
Assertion
Ref Expression
blbas (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ ran (ballβ€˜π·) ∈ TopBases)

Proof of Theorem blbas
Dummy variables π‘₯ π‘Ÿ 𝑏 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 blin2 13935 . . . . . 6 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑧 ∈ (π‘₯ ∩ 𝑦)) ∧ (π‘₯ ∈ ran (ballβ€˜π·) ∧ 𝑦 ∈ ran (ballβ€˜π·))) β†’ βˆƒπ‘Ÿ ∈ ℝ+ (𝑧(ballβ€˜π·)π‘Ÿ) βŠ† (π‘₯ ∩ 𝑦))
2 simpll 527 . . . . . . 7 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑧 ∈ (π‘₯ ∩ 𝑦)) ∧ (π‘₯ ∈ ran (ballβ€˜π·) ∧ 𝑦 ∈ ran (ballβ€˜π·))) β†’ 𝐷 ∈ (∞Metβ€˜π‘‹))
3 elinel1 3322 . . . . . . . . . 10 (𝑧 ∈ (π‘₯ ∩ 𝑦) β†’ 𝑧 ∈ π‘₯)
4 elunii 3815 . . . . . . . . . 10 ((𝑧 ∈ π‘₯ ∧ π‘₯ ∈ ran (ballβ€˜π·)) β†’ 𝑧 ∈ βˆͺ ran (ballβ€˜π·))
53, 4sylan 283 . . . . . . . . 9 ((𝑧 ∈ (π‘₯ ∩ 𝑦) ∧ π‘₯ ∈ ran (ballβ€˜π·)) β†’ 𝑧 ∈ βˆͺ ran (ballβ€˜π·))
65ad2ant2lr 510 . . . . . . . 8 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑧 ∈ (π‘₯ ∩ 𝑦)) ∧ (π‘₯ ∈ ran (ballβ€˜π·) ∧ 𝑦 ∈ ran (ballβ€˜π·))) β†’ 𝑧 ∈ βˆͺ ran (ballβ€˜π·))
7 unirnbl 13926 . . . . . . . . 9 (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ βˆͺ ran (ballβ€˜π·) = 𝑋)
87ad2antrr 488 . . . . . . . 8 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑧 ∈ (π‘₯ ∩ 𝑦)) ∧ (π‘₯ ∈ ran (ballβ€˜π·) ∧ 𝑦 ∈ ran (ballβ€˜π·))) β†’ βˆͺ ran (ballβ€˜π·) = 𝑋)
96, 8eleqtrd 2256 . . . . . . 7 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑧 ∈ (π‘₯ ∩ 𝑦)) ∧ (π‘₯ ∈ ran (ballβ€˜π·) ∧ 𝑦 ∈ ran (ballβ€˜π·))) β†’ 𝑧 ∈ 𝑋)
10 blssex 13933 . . . . . . 7 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑧 ∈ 𝑋) β†’ (βˆƒπ‘ ∈ ran (ballβ€˜π·)(𝑧 ∈ 𝑏 ∧ 𝑏 βŠ† (π‘₯ ∩ 𝑦)) ↔ βˆƒπ‘Ÿ ∈ ℝ+ (𝑧(ballβ€˜π·)π‘Ÿ) βŠ† (π‘₯ ∩ 𝑦)))
112, 9, 10syl2anc 411 . . . . . 6 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑧 ∈ (π‘₯ ∩ 𝑦)) ∧ (π‘₯ ∈ ran (ballβ€˜π·) ∧ 𝑦 ∈ ran (ballβ€˜π·))) β†’ (βˆƒπ‘ ∈ ran (ballβ€˜π·)(𝑧 ∈ 𝑏 ∧ 𝑏 βŠ† (π‘₯ ∩ 𝑦)) ↔ βˆƒπ‘Ÿ ∈ ℝ+ (𝑧(ballβ€˜π·)π‘Ÿ) βŠ† (π‘₯ ∩ 𝑦)))
121, 11mpbird 167 . . . . 5 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑧 ∈ (π‘₯ ∩ 𝑦)) ∧ (π‘₯ ∈ ran (ballβ€˜π·) ∧ 𝑦 ∈ ran (ballβ€˜π·))) β†’ βˆƒπ‘ ∈ ran (ballβ€˜π·)(𝑧 ∈ 𝑏 ∧ 𝑏 βŠ† (π‘₯ ∩ 𝑦)))
1312ex 115 . . . 4 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑧 ∈ (π‘₯ ∩ 𝑦)) β†’ ((π‘₯ ∈ ran (ballβ€˜π·) ∧ 𝑦 ∈ ran (ballβ€˜π·)) β†’ βˆƒπ‘ ∈ ran (ballβ€˜π·)(𝑧 ∈ 𝑏 ∧ 𝑏 βŠ† (π‘₯ ∩ 𝑦))))
1413ralrimdva 2557 . . 3 (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ ((π‘₯ ∈ ran (ballβ€˜π·) ∧ 𝑦 ∈ ran (ballβ€˜π·)) β†’ βˆ€π‘§ ∈ (π‘₯ ∩ 𝑦)βˆƒπ‘ ∈ ran (ballβ€˜π·)(𝑧 ∈ 𝑏 ∧ 𝑏 βŠ† (π‘₯ ∩ 𝑦))))
1514ralrimivv 2558 . 2 (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ βˆ€π‘₯ ∈ ran (ballβ€˜π·)βˆ€π‘¦ ∈ ran (ballβ€˜π·)βˆ€π‘§ ∈ (π‘₯ ∩ 𝑦)βˆƒπ‘ ∈ ran (ballβ€˜π·)(𝑧 ∈ 𝑏 ∧ 𝑏 βŠ† (π‘₯ ∩ 𝑦)))
16 blex 13890 . . 3 (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ (ballβ€˜π·) ∈ V)
17 rnexg 4893 . . 3 ((ballβ€˜π·) ∈ V β†’ ran (ballβ€˜π·) ∈ V)
18 isbasis2g 13548 . . 3 (ran (ballβ€˜π·) ∈ V β†’ (ran (ballβ€˜π·) ∈ TopBases ↔ βˆ€π‘₯ ∈ ran (ballβ€˜π·)βˆ€π‘¦ ∈ ran (ballβ€˜π·)βˆ€π‘§ ∈ (π‘₯ ∩ 𝑦)βˆƒπ‘ ∈ ran (ballβ€˜π·)(𝑧 ∈ 𝑏 ∧ 𝑏 βŠ† (π‘₯ ∩ 𝑦))))
1916, 17, 183syl 17 . 2 (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ (ran (ballβ€˜π·) ∈ TopBases ↔ βˆ€π‘₯ ∈ ran (ballβ€˜π·)βˆ€π‘¦ ∈ ran (ballβ€˜π·)βˆ€π‘§ ∈ (π‘₯ ∩ 𝑦)βˆƒπ‘ ∈ ran (ballβ€˜π·)(𝑧 ∈ 𝑏 ∧ 𝑏 βŠ† (π‘₯ ∩ 𝑦))))
2015, 19mpbird 167 1 (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ ran (ballβ€˜π·) ∈ TopBases)
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   ∧ wa 104   ↔ wb 105   = wceq 1353   ∈ wcel 2148  βˆ€wral 2455  βˆƒwrex 2456  Vcvv 2738   ∩ cin 3129   βŠ† wss 3130  βˆͺ cuni 3810  ran crn 4628  β€˜cfv 5217  (class class class)co 5875  β„+crp 9653  βˆžMetcxmet 13443  ballcbl 13445  TopBasesctb 13545
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-mulrcl 7910  ax-addcom 7911  ax-mulcom 7912  ax-addass 7913  ax-mulass 7914  ax-distr 7915  ax-i2m1 7916  ax-0lt1 7917  ax-1rid 7918  ax-0id 7919  ax-rnegex 7920  ax-precex 7921  ax-cnre 7922  ax-pre-ltirr 7923  ax-pre-ltwlin 7924  ax-pre-lttrn 7925  ax-pre-apti 7926  ax-pre-ltadd 7927  ax-pre-mulgt0 7928  ax-pre-mulext 7929  ax-arch 7930  ax-caucvg 7931
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-if 3536  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-id 4294  df-po 4297  df-iso 4298  df-iord 4367  df-on 4369  df-ilim 4370  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-isom 5226  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-recs 6306  df-frec 6392  df-map 6650  df-sup 6983  df-inf 6984  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-sub 8130  df-neg 8131  df-reap 8532  df-ap 8539  df-div 8630  df-inn 8920  df-2 8978  df-3 8979  df-4 8980  df-n0 9177  df-z 9254  df-uz 9529  df-q 9620  df-rp 9654  df-xneg 9772  df-xadd 9773  df-seqfrec 10446  df-exp 10520  df-cj 10851  df-re 10852  df-im 10853  df-rsqrt 11007  df-abs 11008  df-psmet 13450  df-xmet 13451  df-bl 13453  df-bases 13546
This theorem is referenced by:  mopnval  13945  mopntopon  13946  elmopn  13949  blssopn  13988  metss  13997
  Copyright terms: Public domain W3C validator