| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0subm | GIF version | ||
| Description: The zero submonoid of an arbitrary monoid. (Contributed by AV, 17-Feb-2024.) |
| Ref | Expression |
|---|---|
| 0subm.z | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| 0subm | ⊢ (𝐺 ∈ Mnd → { 0 } ∈ (SubMnd‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2204 | . . . 4 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 2 | 0subm.z | . . . 4 ⊢ 0 = (0g‘𝐺) | |
| 3 | 1, 2 | mndidcl 13233 | . . 3 ⊢ (𝐺 ∈ Mnd → 0 ∈ (Base‘𝐺)) |
| 4 | 3 | snssd 3777 | . 2 ⊢ (𝐺 ∈ Mnd → { 0 } ⊆ (Base‘𝐺)) |
| 5 | snidg 3661 | . . 3 ⊢ ( 0 ∈ (Base‘𝐺) → 0 ∈ { 0 }) | |
| 6 | 3, 5 | syl 14 | . 2 ⊢ (𝐺 ∈ Mnd → 0 ∈ { 0 }) |
| 7 | velsn 3649 | . . . . 5 ⊢ (𝑎 ∈ { 0 } ↔ 𝑎 = 0 ) | |
| 8 | velsn 3649 | . . . . 5 ⊢ (𝑏 ∈ { 0 } ↔ 𝑏 = 0 ) | |
| 9 | 7, 8 | anbi12i 460 | . . . 4 ⊢ ((𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 }) ↔ (𝑎 = 0 ∧ 𝑏 = 0 )) |
| 10 | eqid 2204 | . . . . . . . 8 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 11 | 1, 10, 2 | mndlid 13238 | . . . . . . 7 ⊢ ((𝐺 ∈ Mnd ∧ 0 ∈ (Base‘𝐺)) → ( 0 (+g‘𝐺) 0 ) = 0 ) |
| 12 | 3, 11 | mpdan 421 | . . . . . 6 ⊢ (𝐺 ∈ Mnd → ( 0 (+g‘𝐺) 0 ) = 0 ) |
| 13 | 12, 3 | eqeltrd 2281 | . . . . . . 7 ⊢ (𝐺 ∈ Mnd → ( 0 (+g‘𝐺) 0 ) ∈ (Base‘𝐺)) |
| 14 | elsng 3647 | . . . . . . 7 ⊢ (( 0 (+g‘𝐺) 0 ) ∈ (Base‘𝐺) → (( 0 (+g‘𝐺) 0 ) ∈ { 0 } ↔ ( 0 (+g‘𝐺) 0 ) = 0 )) | |
| 15 | 13, 14 | syl 14 | . . . . . 6 ⊢ (𝐺 ∈ Mnd → (( 0 (+g‘𝐺) 0 ) ∈ { 0 } ↔ ( 0 (+g‘𝐺) 0 ) = 0 )) |
| 16 | 12, 15 | mpbird 167 | . . . . 5 ⊢ (𝐺 ∈ Mnd → ( 0 (+g‘𝐺) 0 ) ∈ { 0 }) |
| 17 | oveq12 5952 | . . . . . 6 ⊢ ((𝑎 = 0 ∧ 𝑏 = 0 ) → (𝑎(+g‘𝐺)𝑏) = ( 0 (+g‘𝐺) 0 )) | |
| 18 | 17 | eleq1d 2273 | . . . . 5 ⊢ ((𝑎 = 0 ∧ 𝑏 = 0 ) → ((𝑎(+g‘𝐺)𝑏) ∈ { 0 } ↔ ( 0 (+g‘𝐺) 0 ) ∈ { 0 })) |
| 19 | 16, 18 | syl5ibrcom 157 | . . . 4 ⊢ (𝐺 ∈ Mnd → ((𝑎 = 0 ∧ 𝑏 = 0 ) → (𝑎(+g‘𝐺)𝑏) ∈ { 0 })) |
| 20 | 9, 19 | biimtrid 152 | . . 3 ⊢ (𝐺 ∈ Mnd → ((𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 }) → (𝑎(+g‘𝐺)𝑏) ∈ { 0 })) |
| 21 | 20 | ralrimivv 2586 | . 2 ⊢ (𝐺 ∈ Mnd → ∀𝑎 ∈ { 0 }∀𝑏 ∈ { 0 } (𝑎(+g‘𝐺)𝑏) ∈ { 0 }) |
| 22 | 1, 2, 10 | issubm 13275 | . 2 ⊢ (𝐺 ∈ Mnd → ({ 0 } ∈ (SubMnd‘𝐺) ↔ ({ 0 } ⊆ (Base‘𝐺) ∧ 0 ∈ { 0 } ∧ ∀𝑎 ∈ { 0 }∀𝑏 ∈ { 0 } (𝑎(+g‘𝐺)𝑏) ∈ { 0 }))) |
| 23 | 4, 6, 21, 22 | mpbir3and 1182 | 1 ⊢ (𝐺 ∈ Mnd → { 0 } ∈ (SubMnd‘𝐺)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1372 ∈ wcel 2175 ∀wral 2483 ⊆ wss 3165 {csn 3632 ‘cfv 5270 (class class class)co 5943 Basecbs 12803 +gcplusg 12880 0gc0g 13059 Mndcmnd 13219 SubMndcsubmnd 13261 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-cnex 8015 ax-resscn 8016 ax-1re 8018 ax-addrcl 8021 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-iota 5231 df-fun 5272 df-fn 5273 df-fv 5278 df-riota 5898 df-ov 5946 df-inn 9036 df-2 9094 df-ndx 12806 df-slot 12807 df-base 12809 df-plusg 12893 df-0g 13061 df-mgm 13159 df-sgrp 13205 df-mnd 13220 df-submnd 13263 |
| This theorem is referenced by: 0subg 13506 |
| Copyright terms: Public domain | W3C validator |