ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0subm GIF version

Theorem 0subm 13059
Description: The zero submonoid of an arbitrary monoid. (Contributed by AV, 17-Feb-2024.)
Hypothesis
Ref Expression
0subm.z 0 = (0g𝐺)
Assertion
Ref Expression
0subm (𝐺 ∈ Mnd → { 0 } ∈ (SubMnd‘𝐺))

Proof of Theorem 0subm
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2193 . . . 4 (Base‘𝐺) = (Base‘𝐺)
2 0subm.z . . . 4 0 = (0g𝐺)
31, 2mndidcl 13014 . . 3 (𝐺 ∈ Mnd → 0 ∈ (Base‘𝐺))
43snssd 3764 . 2 (𝐺 ∈ Mnd → { 0 } ⊆ (Base‘𝐺))
5 snidg 3648 . . 3 ( 0 ∈ (Base‘𝐺) → 0 ∈ { 0 })
63, 5syl 14 . 2 (𝐺 ∈ Mnd → 0 ∈ { 0 })
7 velsn 3636 . . . . 5 (𝑎 ∈ { 0 } ↔ 𝑎 = 0 )
8 velsn 3636 . . . . 5 (𝑏 ∈ { 0 } ↔ 𝑏 = 0 )
97, 8anbi12i 460 . . . 4 ((𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 }) ↔ (𝑎 = 0𝑏 = 0 ))
10 eqid 2193 . . . . . . . 8 (+g𝐺) = (+g𝐺)
111, 10, 2mndlid 13019 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 0 ∈ (Base‘𝐺)) → ( 0 (+g𝐺) 0 ) = 0 )
123, 11mpdan 421 . . . . . 6 (𝐺 ∈ Mnd → ( 0 (+g𝐺) 0 ) = 0 )
1312, 3eqeltrd 2270 . . . . . . 7 (𝐺 ∈ Mnd → ( 0 (+g𝐺) 0 ) ∈ (Base‘𝐺))
14 elsng 3634 . . . . . . 7 (( 0 (+g𝐺) 0 ) ∈ (Base‘𝐺) → (( 0 (+g𝐺) 0 ) ∈ { 0 } ↔ ( 0 (+g𝐺) 0 ) = 0 ))
1513, 14syl 14 . . . . . 6 (𝐺 ∈ Mnd → (( 0 (+g𝐺) 0 ) ∈ { 0 } ↔ ( 0 (+g𝐺) 0 ) = 0 ))
1612, 15mpbird 167 . . . . 5 (𝐺 ∈ Mnd → ( 0 (+g𝐺) 0 ) ∈ { 0 })
17 oveq12 5928 . . . . . 6 ((𝑎 = 0𝑏 = 0 ) → (𝑎(+g𝐺)𝑏) = ( 0 (+g𝐺) 0 ))
1817eleq1d 2262 . . . . 5 ((𝑎 = 0𝑏 = 0 ) → ((𝑎(+g𝐺)𝑏) ∈ { 0 } ↔ ( 0 (+g𝐺) 0 ) ∈ { 0 }))
1916, 18syl5ibrcom 157 . . . 4 (𝐺 ∈ Mnd → ((𝑎 = 0𝑏 = 0 ) → (𝑎(+g𝐺)𝑏) ∈ { 0 }))
209, 19biimtrid 152 . . 3 (𝐺 ∈ Mnd → ((𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 }) → (𝑎(+g𝐺)𝑏) ∈ { 0 }))
2120ralrimivv 2575 . 2 (𝐺 ∈ Mnd → ∀𝑎 ∈ { 0 }∀𝑏 ∈ { 0 } (𝑎(+g𝐺)𝑏) ∈ { 0 })
221, 2, 10issubm 13047 . 2 (𝐺 ∈ Mnd → ({ 0 } ∈ (SubMnd‘𝐺) ↔ ({ 0 } ⊆ (Base‘𝐺) ∧ 0 ∈ { 0 } ∧ ∀𝑎 ∈ { 0 }∀𝑏 ∈ { 0 } (𝑎(+g𝐺)𝑏) ∈ { 0 })))
234, 6, 21, 22mpbir3and 1182 1 (𝐺 ∈ Mnd → { 0 } ∈ (SubMnd‘𝐺))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  wral 2472  wss 3154  {csn 3619  cfv 5255  (class class class)co 5919  Basecbs 12621  +gcplusg 12698  0gc0g 12870  Mndcmnd 13000  SubMndcsubmnd 13033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-cnex 7965  ax-resscn 7966  ax-1re 7968  ax-addrcl 7971
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-iota 5216  df-fun 5257  df-fn 5258  df-fv 5263  df-riota 5874  df-ov 5922  df-inn 8985  df-2 9043  df-ndx 12624  df-slot 12625  df-base 12627  df-plusg 12711  df-0g 12872  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-submnd 13035
This theorem is referenced by:  0subg  13272
  Copyright terms: Public domain W3C validator