ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0subm GIF version

Theorem 0subm 13258
Description: The zero submonoid of an arbitrary monoid. (Contributed by AV, 17-Feb-2024.)
Hypothesis
Ref Expression
0subm.z 0 = (0g𝐺)
Assertion
Ref Expression
0subm (𝐺 ∈ Mnd → { 0 } ∈ (SubMnd‘𝐺))

Proof of Theorem 0subm
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2204 . . . 4 (Base‘𝐺) = (Base‘𝐺)
2 0subm.z . . . 4 0 = (0g𝐺)
31, 2mndidcl 13204 . . 3 (𝐺 ∈ Mnd → 0 ∈ (Base‘𝐺))
43snssd 3777 . 2 (𝐺 ∈ Mnd → { 0 } ⊆ (Base‘𝐺))
5 snidg 3661 . . 3 ( 0 ∈ (Base‘𝐺) → 0 ∈ { 0 })
63, 5syl 14 . 2 (𝐺 ∈ Mnd → 0 ∈ { 0 })
7 velsn 3649 . . . . 5 (𝑎 ∈ { 0 } ↔ 𝑎 = 0 )
8 velsn 3649 . . . . 5 (𝑏 ∈ { 0 } ↔ 𝑏 = 0 )
97, 8anbi12i 460 . . . 4 ((𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 }) ↔ (𝑎 = 0𝑏 = 0 ))
10 eqid 2204 . . . . . . . 8 (+g𝐺) = (+g𝐺)
111, 10, 2mndlid 13209 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 0 ∈ (Base‘𝐺)) → ( 0 (+g𝐺) 0 ) = 0 )
123, 11mpdan 421 . . . . . 6 (𝐺 ∈ Mnd → ( 0 (+g𝐺) 0 ) = 0 )
1312, 3eqeltrd 2281 . . . . . . 7 (𝐺 ∈ Mnd → ( 0 (+g𝐺) 0 ) ∈ (Base‘𝐺))
14 elsng 3647 . . . . . . 7 (( 0 (+g𝐺) 0 ) ∈ (Base‘𝐺) → (( 0 (+g𝐺) 0 ) ∈ { 0 } ↔ ( 0 (+g𝐺) 0 ) = 0 ))
1513, 14syl 14 . . . . . 6 (𝐺 ∈ Mnd → (( 0 (+g𝐺) 0 ) ∈ { 0 } ↔ ( 0 (+g𝐺) 0 ) = 0 ))
1612, 15mpbird 167 . . . . 5 (𝐺 ∈ Mnd → ( 0 (+g𝐺) 0 ) ∈ { 0 })
17 oveq12 5952 . . . . . 6 ((𝑎 = 0𝑏 = 0 ) → (𝑎(+g𝐺)𝑏) = ( 0 (+g𝐺) 0 ))
1817eleq1d 2273 . . . . 5 ((𝑎 = 0𝑏 = 0 ) → ((𝑎(+g𝐺)𝑏) ∈ { 0 } ↔ ( 0 (+g𝐺) 0 ) ∈ { 0 }))
1916, 18syl5ibrcom 157 . . . 4 (𝐺 ∈ Mnd → ((𝑎 = 0𝑏 = 0 ) → (𝑎(+g𝐺)𝑏) ∈ { 0 }))
209, 19biimtrid 152 . . 3 (𝐺 ∈ Mnd → ((𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 }) → (𝑎(+g𝐺)𝑏) ∈ { 0 }))
2120ralrimivv 2586 . 2 (𝐺 ∈ Mnd → ∀𝑎 ∈ { 0 }∀𝑏 ∈ { 0 } (𝑎(+g𝐺)𝑏) ∈ { 0 })
221, 2, 10issubm 13246 . 2 (𝐺 ∈ Mnd → ({ 0 } ∈ (SubMnd‘𝐺) ↔ ({ 0 } ⊆ (Base‘𝐺) ∧ 0 ∈ { 0 } ∧ ∀𝑎 ∈ { 0 }∀𝑏 ∈ { 0 } (𝑎(+g𝐺)𝑏) ∈ { 0 })))
234, 6, 21, 22mpbir3and 1182 1 (𝐺 ∈ Mnd → { 0 } ∈ (SubMnd‘𝐺))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1372  wcel 2175  wral 2483  wss 3165  {csn 3632  cfv 5270  (class class class)co 5943  Basecbs 12774  +gcplusg 12851  0gc0g 13030  Mndcmnd 13190  SubMndcsubmnd 13232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-cnex 8015  ax-resscn 8016  ax-1re 8018  ax-addrcl 8021
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-iota 5231  df-fun 5272  df-fn 5273  df-fv 5278  df-riota 5898  df-ov 5946  df-inn 9036  df-2 9094  df-ndx 12777  df-slot 12778  df-base 12780  df-plusg 12864  df-0g 13032  df-mgm 13130  df-sgrp 13176  df-mnd 13191  df-submnd 13234
This theorem is referenced by:  0subg  13477
  Copyright terms: Public domain W3C validator