ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0subm GIF version

Theorem 0subm 13401
Description: The zero submonoid of an arbitrary monoid. (Contributed by AV, 17-Feb-2024.)
Hypothesis
Ref Expression
0subm.z 0 = (0g𝐺)
Assertion
Ref Expression
0subm (𝐺 ∈ Mnd → { 0 } ∈ (SubMnd‘𝐺))

Proof of Theorem 0subm
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2206 . . . 4 (Base‘𝐺) = (Base‘𝐺)
2 0subm.z . . . 4 0 = (0g𝐺)
31, 2mndidcl 13347 . . 3 (𝐺 ∈ Mnd → 0 ∈ (Base‘𝐺))
43snssd 3784 . 2 (𝐺 ∈ Mnd → { 0 } ⊆ (Base‘𝐺))
5 snidg 3667 . . 3 ( 0 ∈ (Base‘𝐺) → 0 ∈ { 0 })
63, 5syl 14 . 2 (𝐺 ∈ Mnd → 0 ∈ { 0 })
7 velsn 3655 . . . . 5 (𝑎 ∈ { 0 } ↔ 𝑎 = 0 )
8 velsn 3655 . . . . 5 (𝑏 ∈ { 0 } ↔ 𝑏 = 0 )
97, 8anbi12i 460 . . . 4 ((𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 }) ↔ (𝑎 = 0𝑏 = 0 ))
10 eqid 2206 . . . . . . . 8 (+g𝐺) = (+g𝐺)
111, 10, 2mndlid 13352 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 0 ∈ (Base‘𝐺)) → ( 0 (+g𝐺) 0 ) = 0 )
123, 11mpdan 421 . . . . . 6 (𝐺 ∈ Mnd → ( 0 (+g𝐺) 0 ) = 0 )
1312, 3eqeltrd 2283 . . . . . . 7 (𝐺 ∈ Mnd → ( 0 (+g𝐺) 0 ) ∈ (Base‘𝐺))
14 elsng 3653 . . . . . . 7 (( 0 (+g𝐺) 0 ) ∈ (Base‘𝐺) → (( 0 (+g𝐺) 0 ) ∈ { 0 } ↔ ( 0 (+g𝐺) 0 ) = 0 ))
1513, 14syl 14 . . . . . 6 (𝐺 ∈ Mnd → (( 0 (+g𝐺) 0 ) ∈ { 0 } ↔ ( 0 (+g𝐺) 0 ) = 0 ))
1612, 15mpbird 167 . . . . 5 (𝐺 ∈ Mnd → ( 0 (+g𝐺) 0 ) ∈ { 0 })
17 oveq12 5971 . . . . . 6 ((𝑎 = 0𝑏 = 0 ) → (𝑎(+g𝐺)𝑏) = ( 0 (+g𝐺) 0 ))
1817eleq1d 2275 . . . . 5 ((𝑎 = 0𝑏 = 0 ) → ((𝑎(+g𝐺)𝑏) ∈ { 0 } ↔ ( 0 (+g𝐺) 0 ) ∈ { 0 }))
1916, 18syl5ibrcom 157 . . . 4 (𝐺 ∈ Mnd → ((𝑎 = 0𝑏 = 0 ) → (𝑎(+g𝐺)𝑏) ∈ { 0 }))
209, 19biimtrid 152 . . 3 (𝐺 ∈ Mnd → ((𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 }) → (𝑎(+g𝐺)𝑏) ∈ { 0 }))
2120ralrimivv 2588 . 2 (𝐺 ∈ Mnd → ∀𝑎 ∈ { 0 }∀𝑏 ∈ { 0 } (𝑎(+g𝐺)𝑏) ∈ { 0 })
221, 2, 10issubm 13389 . 2 (𝐺 ∈ Mnd → ({ 0 } ∈ (SubMnd‘𝐺) ↔ ({ 0 } ⊆ (Base‘𝐺) ∧ 0 ∈ { 0 } ∧ ∀𝑎 ∈ { 0 }∀𝑏 ∈ { 0 } (𝑎(+g𝐺)𝑏) ∈ { 0 })))
234, 6, 21, 22mpbir3and 1183 1 (𝐺 ∈ Mnd → { 0 } ∈ (SubMnd‘𝐺))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2177  wral 2485  wss 3170  {csn 3638  cfv 5285  (class class class)co 5962  Basecbs 12917  +gcplusg 12994  0gc0g 13173  Mndcmnd 13333  SubMndcsubmnd 13375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-cnex 8046  ax-resscn 8047  ax-1re 8049  ax-addrcl 8052
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-br 4055  df-opab 4117  df-mpt 4118  df-id 4353  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-iota 5246  df-fun 5287  df-fn 5288  df-fv 5293  df-riota 5917  df-ov 5965  df-inn 9067  df-2 9125  df-ndx 12920  df-slot 12921  df-base 12923  df-plusg 13007  df-0g 13175  df-mgm 13273  df-sgrp 13319  df-mnd 13334  df-submnd 13377
This theorem is referenced by:  0subg  13620
  Copyright terms: Public domain W3C validator