ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0subm GIF version

Theorem 0subm 12702
Description: The zero submonoid of an arbitrary monoid. (Contributed by AV, 17-Feb-2024.)
Hypothesis
Ref Expression
0subm.z 0 = (0g𝐺)
Assertion
Ref Expression
0subm (𝐺 ∈ Mnd → { 0 } ∈ (SubMnd‘𝐺))

Proof of Theorem 0subm
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2170 . . . 4 (Base‘𝐺) = (Base‘𝐺)
2 0subm.z . . . 4 0 = (0g𝐺)
31, 2mndidcl 12666 . . 3 (𝐺 ∈ Mnd → 0 ∈ (Base‘𝐺))
43snssd 3725 . 2 (𝐺 ∈ Mnd → { 0 } ⊆ (Base‘𝐺))
5 snidg 3612 . . 3 ( 0 ∈ (Base‘𝐺) → 0 ∈ { 0 })
63, 5syl 14 . 2 (𝐺 ∈ Mnd → 0 ∈ { 0 })
7 velsn 3600 . . . . 5 (𝑎 ∈ { 0 } ↔ 𝑎 = 0 )
8 velsn 3600 . . . . 5 (𝑏 ∈ { 0 } ↔ 𝑏 = 0 )
97, 8anbi12i 457 . . . 4 ((𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 }) ↔ (𝑎 = 0𝑏 = 0 ))
10 eqid 2170 . . . . . . . 8 (+g𝐺) = (+g𝐺)
111, 10, 2mndlid 12671 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 0 ∈ (Base‘𝐺)) → ( 0 (+g𝐺) 0 ) = 0 )
123, 11mpdan 419 . . . . . 6 (𝐺 ∈ Mnd → ( 0 (+g𝐺) 0 ) = 0 )
1312, 3eqeltrd 2247 . . . . . . 7 (𝐺 ∈ Mnd → ( 0 (+g𝐺) 0 ) ∈ (Base‘𝐺))
14 elsng 3598 . . . . . . 7 (( 0 (+g𝐺) 0 ) ∈ (Base‘𝐺) → (( 0 (+g𝐺) 0 ) ∈ { 0 } ↔ ( 0 (+g𝐺) 0 ) = 0 ))
1513, 14syl 14 . . . . . 6 (𝐺 ∈ Mnd → (( 0 (+g𝐺) 0 ) ∈ { 0 } ↔ ( 0 (+g𝐺) 0 ) = 0 ))
1612, 15mpbird 166 . . . . 5 (𝐺 ∈ Mnd → ( 0 (+g𝐺) 0 ) ∈ { 0 })
17 oveq12 5862 . . . . . 6 ((𝑎 = 0𝑏 = 0 ) → (𝑎(+g𝐺)𝑏) = ( 0 (+g𝐺) 0 ))
1817eleq1d 2239 . . . . 5 ((𝑎 = 0𝑏 = 0 ) → ((𝑎(+g𝐺)𝑏) ∈ { 0 } ↔ ( 0 (+g𝐺) 0 ) ∈ { 0 }))
1916, 18syl5ibrcom 156 . . . 4 (𝐺 ∈ Mnd → ((𝑎 = 0𝑏 = 0 ) → (𝑎(+g𝐺)𝑏) ∈ { 0 }))
209, 19syl5bi 151 . . 3 (𝐺 ∈ Mnd → ((𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 }) → (𝑎(+g𝐺)𝑏) ∈ { 0 }))
2120ralrimivv 2551 . 2 (𝐺 ∈ Mnd → ∀𝑎 ∈ { 0 }∀𝑏 ∈ { 0 } (𝑎(+g𝐺)𝑏) ∈ { 0 })
221, 2, 10issubm 12695 . 2 (𝐺 ∈ Mnd → ({ 0 } ∈ (SubMnd‘𝐺) ↔ ({ 0 } ⊆ (Base‘𝐺) ∧ 0 ∈ { 0 } ∧ ∀𝑎 ∈ { 0 }∀𝑏 ∈ { 0 } (𝑎(+g𝐺)𝑏) ∈ { 0 })))
234, 6, 21, 22mpbir3and 1175 1 (𝐺 ∈ Mnd → { 0 } ∈ (SubMnd‘𝐺))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1348  wcel 2141  wral 2448  wss 3121  {csn 3583  cfv 5198  (class class class)co 5853  Basecbs 12416  +gcplusg 12480  0gc0g 12596  Mndcmnd 12652  SubMndcsubmnd 12682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-cnex 7865  ax-resscn 7866  ax-1re 7868  ax-addrcl 7871
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-iota 5160  df-fun 5200  df-fn 5201  df-fv 5206  df-riota 5809  df-ov 5856  df-inn 8879  df-2 8937  df-ndx 12419  df-slot 12420  df-base 12422  df-plusg 12493  df-0g 12598  df-mgm 12610  df-sgrp 12643  df-mnd 12653  df-submnd 12684
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator