![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0subm | GIF version |
Description: The zero submonoid of an arbitrary monoid. (Contributed by AV, 17-Feb-2024.) |
Ref | Expression |
---|---|
0subm.z | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
0subm | ⊢ (𝐺 ∈ Mnd → { 0 } ∈ (SubMnd‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2193 | . . . 4 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
2 | 0subm.z | . . . 4 ⊢ 0 = (0g‘𝐺) | |
3 | 1, 2 | mndidcl 13014 | . . 3 ⊢ (𝐺 ∈ Mnd → 0 ∈ (Base‘𝐺)) |
4 | 3 | snssd 3764 | . 2 ⊢ (𝐺 ∈ Mnd → { 0 } ⊆ (Base‘𝐺)) |
5 | snidg 3648 | . . 3 ⊢ ( 0 ∈ (Base‘𝐺) → 0 ∈ { 0 }) | |
6 | 3, 5 | syl 14 | . 2 ⊢ (𝐺 ∈ Mnd → 0 ∈ { 0 }) |
7 | velsn 3636 | . . . . 5 ⊢ (𝑎 ∈ { 0 } ↔ 𝑎 = 0 ) | |
8 | velsn 3636 | . . . . 5 ⊢ (𝑏 ∈ { 0 } ↔ 𝑏 = 0 ) | |
9 | 7, 8 | anbi12i 460 | . . . 4 ⊢ ((𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 }) ↔ (𝑎 = 0 ∧ 𝑏 = 0 )) |
10 | eqid 2193 | . . . . . . . 8 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
11 | 1, 10, 2 | mndlid 13019 | . . . . . . 7 ⊢ ((𝐺 ∈ Mnd ∧ 0 ∈ (Base‘𝐺)) → ( 0 (+g‘𝐺) 0 ) = 0 ) |
12 | 3, 11 | mpdan 421 | . . . . . 6 ⊢ (𝐺 ∈ Mnd → ( 0 (+g‘𝐺) 0 ) = 0 ) |
13 | 12, 3 | eqeltrd 2270 | . . . . . . 7 ⊢ (𝐺 ∈ Mnd → ( 0 (+g‘𝐺) 0 ) ∈ (Base‘𝐺)) |
14 | elsng 3634 | . . . . . . 7 ⊢ (( 0 (+g‘𝐺) 0 ) ∈ (Base‘𝐺) → (( 0 (+g‘𝐺) 0 ) ∈ { 0 } ↔ ( 0 (+g‘𝐺) 0 ) = 0 )) | |
15 | 13, 14 | syl 14 | . . . . . 6 ⊢ (𝐺 ∈ Mnd → (( 0 (+g‘𝐺) 0 ) ∈ { 0 } ↔ ( 0 (+g‘𝐺) 0 ) = 0 )) |
16 | 12, 15 | mpbird 167 | . . . . 5 ⊢ (𝐺 ∈ Mnd → ( 0 (+g‘𝐺) 0 ) ∈ { 0 }) |
17 | oveq12 5928 | . . . . . 6 ⊢ ((𝑎 = 0 ∧ 𝑏 = 0 ) → (𝑎(+g‘𝐺)𝑏) = ( 0 (+g‘𝐺) 0 )) | |
18 | 17 | eleq1d 2262 | . . . . 5 ⊢ ((𝑎 = 0 ∧ 𝑏 = 0 ) → ((𝑎(+g‘𝐺)𝑏) ∈ { 0 } ↔ ( 0 (+g‘𝐺) 0 ) ∈ { 0 })) |
19 | 16, 18 | syl5ibrcom 157 | . . . 4 ⊢ (𝐺 ∈ Mnd → ((𝑎 = 0 ∧ 𝑏 = 0 ) → (𝑎(+g‘𝐺)𝑏) ∈ { 0 })) |
20 | 9, 19 | biimtrid 152 | . . 3 ⊢ (𝐺 ∈ Mnd → ((𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 }) → (𝑎(+g‘𝐺)𝑏) ∈ { 0 })) |
21 | 20 | ralrimivv 2575 | . 2 ⊢ (𝐺 ∈ Mnd → ∀𝑎 ∈ { 0 }∀𝑏 ∈ { 0 } (𝑎(+g‘𝐺)𝑏) ∈ { 0 }) |
22 | 1, 2, 10 | issubm 13047 | . 2 ⊢ (𝐺 ∈ Mnd → ({ 0 } ∈ (SubMnd‘𝐺) ↔ ({ 0 } ⊆ (Base‘𝐺) ∧ 0 ∈ { 0 } ∧ ∀𝑎 ∈ { 0 }∀𝑏 ∈ { 0 } (𝑎(+g‘𝐺)𝑏) ∈ { 0 }))) |
23 | 4, 6, 21, 22 | mpbir3and 1182 | 1 ⊢ (𝐺 ∈ Mnd → { 0 } ∈ (SubMnd‘𝐺)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2164 ∀wral 2472 ⊆ wss 3154 {csn 3619 ‘cfv 5255 (class class class)co 5919 Basecbs 12621 +gcplusg 12698 0gc0g 12870 Mndcmnd 13000 SubMndcsubmnd 13033 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-cnex 7965 ax-resscn 7966 ax-1re 7968 ax-addrcl 7971 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-iota 5216 df-fun 5257 df-fn 5258 df-fv 5263 df-riota 5874 df-ov 5922 df-inn 8985 df-2 9043 df-ndx 12624 df-slot 12625 df-base 12627 df-plusg 12711 df-0g 12872 df-mgm 12942 df-sgrp 12988 df-mnd 13001 df-submnd 13035 |
This theorem is referenced by: 0subg 13272 |
Copyright terms: Public domain | W3C validator |