![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > blfps | GIF version |
Description: Mapping of a ball. (Contributed by NM, 7-May-2007.) (Revised by Mario Carneiro, 23-Aug-2015.) (Revised by Thierry Arnoux, 11-Mar-2018.) |
Ref | Expression |
---|---|
blfps | ⊢ (𝐷 ∈ (PsMet‘𝑋) → (ball‘𝐷):(𝑋 × ℝ*)⟶𝒫 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 3148 | . . . . . 6 ⊢ {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟} ⊆ 𝑋 | |
2 | psmetrel 12311 | . . . . . . . 8 ⊢ Rel PsMet | |
3 | relelfvdm 5407 | . . . . . . . 8 ⊢ ((Rel PsMet ∧ 𝐷 ∈ (PsMet‘𝑋)) → 𝑋 ∈ dom PsMet) | |
4 | 2, 3 | mpan 418 | . . . . . . 7 ⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝑋 ∈ dom PsMet) |
5 | elpw2g 4041 | . . . . . . 7 ⊢ (𝑋 ∈ dom PsMet → ({𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟} ∈ 𝒫 𝑋 ↔ {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟} ⊆ 𝑋)) | |
6 | 4, 5 | syl 14 | . . . . . 6 ⊢ (𝐷 ∈ (PsMet‘𝑋) → ({𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟} ∈ 𝒫 𝑋 ↔ {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟} ⊆ 𝑋)) |
7 | 1, 6 | mpbiri 167 | . . . . 5 ⊢ (𝐷 ∈ (PsMet‘𝑋) → {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟} ∈ 𝒫 𝑋) |
8 | 7 | a1d 22 | . . . 4 ⊢ (𝐷 ∈ (PsMet‘𝑋) → ((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ*) → {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟} ∈ 𝒫 𝑋)) |
9 | 8 | ralrimivv 2487 | . . 3 ⊢ (𝐷 ∈ (PsMet‘𝑋) → ∀𝑥 ∈ 𝑋 ∀𝑟 ∈ ℝ* {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟} ∈ 𝒫 𝑋) |
10 | eqid 2115 | . . . 4 ⊢ (𝑥 ∈ 𝑋, 𝑟 ∈ ℝ* ↦ {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}) = (𝑥 ∈ 𝑋, 𝑟 ∈ ℝ* ↦ {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}) | |
11 | 10 | fmpo 6053 | . . 3 ⊢ (∀𝑥 ∈ 𝑋 ∀𝑟 ∈ ℝ* {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟} ∈ 𝒫 𝑋 ↔ (𝑥 ∈ 𝑋, 𝑟 ∈ ℝ* ↦ {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}):(𝑋 × ℝ*)⟶𝒫 𝑋) |
12 | 9, 11 | sylib 121 | . 2 ⊢ (𝐷 ∈ (PsMet‘𝑋) → (𝑥 ∈ 𝑋, 𝑟 ∈ ℝ* ↦ {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}):(𝑋 × ℝ*)⟶𝒫 𝑋) |
13 | blfvalps 12374 | . . 3 ⊢ (𝐷 ∈ (PsMet‘𝑋) → (ball‘𝐷) = (𝑥 ∈ 𝑋, 𝑟 ∈ ℝ* ↦ {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟})) | |
14 | 13 | feq1d 5217 | . 2 ⊢ (𝐷 ∈ (PsMet‘𝑋) → ((ball‘𝐷):(𝑋 × ℝ*)⟶𝒫 𝑋 ↔ (𝑥 ∈ 𝑋, 𝑟 ∈ ℝ* ↦ {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}):(𝑋 × ℝ*)⟶𝒫 𝑋)) |
15 | 12, 14 | mpbird 166 | 1 ⊢ (𝐷 ∈ (PsMet‘𝑋) → (ball‘𝐷):(𝑋 × ℝ*)⟶𝒫 𝑋) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∈ wcel 1463 ∀wral 2390 {crab 2394 ⊆ wss 3037 𝒫 cpw 3476 class class class wbr 3895 × cxp 4497 dom cdm 4499 Rel wrel 4504 ⟶wf 5077 ‘cfv 5081 (class class class)co 5728 ∈ cmpo 5730 ℝ*cxr 7723 < clt 7724 PsMetcpsmet 11991 ballcbl 11994 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-13 1474 ax-14 1475 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 ax-sep 4006 ax-pow 4058 ax-pr 4091 ax-un 4315 ax-setind 4412 ax-cnex 7636 ax-resscn 7637 |
This theorem depends on definitions: df-bi 116 df-3an 947 df-tru 1317 df-fal 1320 df-nf 1420 df-sb 1719 df-eu 1978 df-mo 1979 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-ne 2283 df-ral 2395 df-rex 2396 df-rab 2399 df-v 2659 df-sbc 2879 df-csb 2972 df-dif 3039 df-un 3041 df-in 3043 df-ss 3050 df-pw 3478 df-sn 3499 df-pr 3500 df-op 3502 df-uni 3703 df-iun 3781 df-br 3896 df-opab 3950 df-mpt 3951 df-id 4175 df-xp 4505 df-rel 4506 df-cnv 4507 df-co 4508 df-dm 4509 df-rn 4510 df-res 4511 df-ima 4512 df-iota 5046 df-fun 5083 df-fn 5084 df-f 5085 df-fv 5089 df-ov 5731 df-oprab 5732 df-mpo 5733 df-1st 5992 df-2nd 5993 df-map 6498 df-pnf 7726 df-mnf 7727 df-xr 7728 df-psmet 11999 df-bl 12002 |
This theorem is referenced by: blrnps 12400 blelrnps 12408 unirnblps 12411 |
Copyright terms: Public domain | W3C validator |