![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > blf | GIF version |
Description: Mapping of a ball. (Contributed by NM, 7-May-2007.) (Revised by Mario Carneiro, 23-Aug-2015.) |
Ref | Expression |
---|---|
blf | ⊢ (𝐷 ∈ (∞Met‘𝑋) → (ball‘𝐷):(𝑋 × ℝ*)⟶𝒫 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 3240 | . . . . . 6 ⊢ {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟} ⊆ 𝑋 | |
2 | xmetrel 13714 | . . . . . . . 8 ⊢ Rel ∞Met | |
3 | relelfvdm 5546 | . . . . . . . 8 ⊢ ((Rel ∞Met ∧ 𝐷 ∈ (∞Met‘𝑋)) → 𝑋 ∈ dom ∞Met) | |
4 | 2, 3 | mpan 424 | . . . . . . 7 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met) |
5 | elpw2g 4155 | . . . . . . 7 ⊢ (𝑋 ∈ dom ∞Met → ({𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟} ∈ 𝒫 𝑋 ↔ {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟} ⊆ 𝑋)) | |
6 | 4, 5 | syl 14 | . . . . . 6 ⊢ (𝐷 ∈ (∞Met‘𝑋) → ({𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟} ∈ 𝒫 𝑋 ↔ {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟} ⊆ 𝑋)) |
7 | 1, 6 | mpbiri 168 | . . . . 5 ⊢ (𝐷 ∈ (∞Met‘𝑋) → {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟} ∈ 𝒫 𝑋) |
8 | 7 | a1d 22 | . . . 4 ⊢ (𝐷 ∈ (∞Met‘𝑋) → ((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ*) → {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟} ∈ 𝒫 𝑋)) |
9 | 8 | ralrimivv 2558 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → ∀𝑥 ∈ 𝑋 ∀𝑟 ∈ ℝ* {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟} ∈ 𝒫 𝑋) |
10 | eqid 2177 | . . . 4 ⊢ (𝑥 ∈ 𝑋, 𝑟 ∈ ℝ* ↦ {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}) = (𝑥 ∈ 𝑋, 𝑟 ∈ ℝ* ↦ {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}) | |
11 | 10 | fmpo 6199 | . . 3 ⊢ (∀𝑥 ∈ 𝑋 ∀𝑟 ∈ ℝ* {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟} ∈ 𝒫 𝑋 ↔ (𝑥 ∈ 𝑋, 𝑟 ∈ ℝ* ↦ {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}):(𝑋 × ℝ*)⟶𝒫 𝑋) |
12 | 9, 11 | sylib 122 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝑥 ∈ 𝑋, 𝑟 ∈ ℝ* ↦ {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}):(𝑋 × ℝ*)⟶𝒫 𝑋) |
13 | blfval 13757 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (ball‘𝐷) = (𝑥 ∈ 𝑋, 𝑟 ∈ ℝ* ↦ {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟})) | |
14 | 13 | feq1d 5351 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → ((ball‘𝐷):(𝑋 × ℝ*)⟶𝒫 𝑋 ↔ (𝑥 ∈ 𝑋, 𝑟 ∈ ℝ* ↦ {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}):(𝑋 × ℝ*)⟶𝒫 𝑋)) |
15 | 12, 14 | mpbird 167 | 1 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (ball‘𝐷):(𝑋 × ℝ*)⟶𝒫 𝑋) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2148 ∀wral 2455 {crab 2459 ⊆ wss 3129 𝒫 cpw 3575 class class class wbr 4002 × cxp 4623 dom cdm 4625 Rel wrel 4630 ⟶wf 5211 ‘cfv 5215 (class class class)co 5872 ∈ cmpo 5874 ℝ*cxr 7987 < clt 7988 ∞Metcxmet 13309 ballcbl 13311 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4120 ax-pow 4173 ax-pr 4208 ax-un 4432 ax-setind 4535 ax-cnex 7899 ax-resscn 7900 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2739 df-sbc 2963 df-csb 3058 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-uni 3810 df-iun 3888 df-br 4003 df-opab 4064 df-mpt 4065 df-id 4292 df-xp 4631 df-rel 4632 df-cnv 4633 df-co 4634 df-dm 4635 df-rn 4636 df-res 4637 df-ima 4638 df-iota 5177 df-fun 5217 df-fn 5218 df-f 5219 df-fv 5223 df-ov 5875 df-oprab 5876 df-mpo 5877 df-1st 6138 df-2nd 6139 df-map 6647 df-pnf 7990 df-mnf 7991 df-xr 7992 df-psmet 13316 df-xmet 13317 df-bl 13319 |
This theorem is referenced by: blrn 13783 blelrn 13791 blssm 13792 unirnbl 13794 blin2 13803 xmettx 13881 |
Copyright terms: Public domain | W3C validator |