![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > blf | GIF version |
Description: Mapping of a ball. (Contributed by NM, 7-May-2007.) (Revised by Mario Carneiro, 23-Aug-2015.) |
Ref | Expression |
---|---|
blf | ⊢ (𝐷 ∈ (∞Met‘𝑋) → (ball‘𝐷):(𝑋 × ℝ*)⟶𝒫 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 3265 | . . . . . 6 ⊢ {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟} ⊆ 𝑋 | |
2 | xmetrel 14522 | . . . . . . . 8 ⊢ Rel ∞Met | |
3 | relelfvdm 5587 | . . . . . . . 8 ⊢ ((Rel ∞Met ∧ 𝐷 ∈ (∞Met‘𝑋)) → 𝑋 ∈ dom ∞Met) | |
4 | 2, 3 | mpan 424 | . . . . . . 7 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met) |
5 | elpw2g 4186 | . . . . . . 7 ⊢ (𝑋 ∈ dom ∞Met → ({𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟} ∈ 𝒫 𝑋 ↔ {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟} ⊆ 𝑋)) | |
6 | 4, 5 | syl 14 | . . . . . 6 ⊢ (𝐷 ∈ (∞Met‘𝑋) → ({𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟} ∈ 𝒫 𝑋 ↔ {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟} ⊆ 𝑋)) |
7 | 1, 6 | mpbiri 168 | . . . . 5 ⊢ (𝐷 ∈ (∞Met‘𝑋) → {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟} ∈ 𝒫 𝑋) |
8 | 7 | a1d 22 | . . . 4 ⊢ (𝐷 ∈ (∞Met‘𝑋) → ((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ*) → {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟} ∈ 𝒫 𝑋)) |
9 | 8 | ralrimivv 2575 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → ∀𝑥 ∈ 𝑋 ∀𝑟 ∈ ℝ* {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟} ∈ 𝒫 𝑋) |
10 | eqid 2193 | . . . 4 ⊢ (𝑥 ∈ 𝑋, 𝑟 ∈ ℝ* ↦ {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}) = (𝑥 ∈ 𝑋, 𝑟 ∈ ℝ* ↦ {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}) | |
11 | 10 | fmpo 6256 | . . 3 ⊢ (∀𝑥 ∈ 𝑋 ∀𝑟 ∈ ℝ* {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟} ∈ 𝒫 𝑋 ↔ (𝑥 ∈ 𝑋, 𝑟 ∈ ℝ* ↦ {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}):(𝑋 × ℝ*)⟶𝒫 𝑋) |
12 | 9, 11 | sylib 122 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝑥 ∈ 𝑋, 𝑟 ∈ ℝ* ↦ {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}):(𝑋 × ℝ*)⟶𝒫 𝑋) |
13 | blfval 14565 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (ball‘𝐷) = (𝑥 ∈ 𝑋, 𝑟 ∈ ℝ* ↦ {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟})) | |
14 | 13 | feq1d 5391 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → ((ball‘𝐷):(𝑋 × ℝ*)⟶𝒫 𝑋 ↔ (𝑥 ∈ 𝑋, 𝑟 ∈ ℝ* ↦ {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}):(𝑋 × ℝ*)⟶𝒫 𝑋)) |
15 | 12, 14 | mpbird 167 | 1 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (ball‘𝐷):(𝑋 × ℝ*)⟶𝒫 𝑋) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2164 ∀wral 2472 {crab 2476 ⊆ wss 3154 𝒫 cpw 3602 class class class wbr 4030 × cxp 4658 dom cdm 4660 Rel wrel 4665 ⟶wf 5251 ‘cfv 5255 (class class class)co 5919 ∈ cmpo 5921 ℝ*cxr 8055 < clt 8056 ∞Metcxmet 14035 ballcbl 14037 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-fv 5263 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-map 6706 df-pnf 8058 df-mnf 8059 df-xr 8060 df-psmet 14042 df-xmet 14043 df-bl 14045 |
This theorem is referenced by: blrn 14591 blelrn 14599 blssm 14600 unirnbl 14602 blin2 14611 xmettx 14689 |
Copyright terms: Public domain | W3C validator |