| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvdsrpropdg | GIF version | ||
| Description: The divisibility relation depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014.) |
| Ref | Expression |
|---|---|
| dvdsrpropdg.1 | ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
| dvdsrpropdg.2 | ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
| dvdsrpropdg.3 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) |
| dvdsrpropdg.k | ⊢ (𝜑 → 𝐾 ∈ SRing) |
| dvdsrpropdg.l | ⊢ (𝜑 → 𝐿 ∈ SRing) |
| Ref | Expression |
|---|---|
| dvdsrpropdg | ⊢ (𝜑 → (∥r‘𝐾) = (∥r‘𝐿)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdsrpropdg.3 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) | |
| 2 | 1 | anassrs 400 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) |
| 3 | 2 | eqeq1d 2205 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → ((𝑥(.r‘𝐾)𝑦) = 𝑧 ↔ (𝑥(.r‘𝐿)𝑦) = 𝑧)) |
| 4 | 3 | an32s 568 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → ((𝑥(.r‘𝐾)𝑦) = 𝑧 ↔ (𝑥(.r‘𝐿)𝑦) = 𝑧)) |
| 5 | 4 | rexbidva 2494 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (∃𝑥 ∈ 𝐵 (𝑥(.r‘𝐾)𝑦) = 𝑧 ↔ ∃𝑥 ∈ 𝐵 (𝑥(.r‘𝐿)𝑦) = 𝑧)) |
| 6 | 5 | pm5.32da 452 | . . . 4 ⊢ (𝜑 → ((𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐵 (𝑥(.r‘𝐾)𝑦) = 𝑧) ↔ (𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐵 (𝑥(.r‘𝐿)𝑦) = 𝑧))) |
| 7 | dvdsrpropdg.1 | . . . . . 6 ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) | |
| 8 | 7 | eleq2d 2266 | . . . . 5 ⊢ (𝜑 → (𝑦 ∈ 𝐵 ↔ 𝑦 ∈ (Base‘𝐾))) |
| 9 | 7 | rexeqdv 2700 | . . . . 5 ⊢ (𝜑 → (∃𝑥 ∈ 𝐵 (𝑥(.r‘𝐾)𝑦) = 𝑧 ↔ ∃𝑥 ∈ (Base‘𝐾)(𝑥(.r‘𝐾)𝑦) = 𝑧)) |
| 10 | 8, 9 | anbi12d 473 | . . . 4 ⊢ (𝜑 → ((𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐵 (𝑥(.r‘𝐾)𝑦) = 𝑧) ↔ (𝑦 ∈ (Base‘𝐾) ∧ ∃𝑥 ∈ (Base‘𝐾)(𝑥(.r‘𝐾)𝑦) = 𝑧))) |
| 11 | dvdsrpropdg.2 | . . . . . 6 ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) | |
| 12 | 11 | eleq2d 2266 | . . . . 5 ⊢ (𝜑 → (𝑦 ∈ 𝐵 ↔ 𝑦 ∈ (Base‘𝐿))) |
| 13 | 11 | rexeqdv 2700 | . . . . 5 ⊢ (𝜑 → (∃𝑥 ∈ 𝐵 (𝑥(.r‘𝐿)𝑦) = 𝑧 ↔ ∃𝑥 ∈ (Base‘𝐿)(𝑥(.r‘𝐿)𝑦) = 𝑧)) |
| 14 | 12, 13 | anbi12d 473 | . . . 4 ⊢ (𝜑 → ((𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐵 (𝑥(.r‘𝐿)𝑦) = 𝑧) ↔ (𝑦 ∈ (Base‘𝐿) ∧ ∃𝑥 ∈ (Base‘𝐿)(𝑥(.r‘𝐿)𝑦) = 𝑧))) |
| 15 | 6, 10, 14 | 3bitr3d 218 | . . 3 ⊢ (𝜑 → ((𝑦 ∈ (Base‘𝐾) ∧ ∃𝑥 ∈ (Base‘𝐾)(𝑥(.r‘𝐾)𝑦) = 𝑧) ↔ (𝑦 ∈ (Base‘𝐿) ∧ ∃𝑥 ∈ (Base‘𝐿)(𝑥(.r‘𝐿)𝑦) = 𝑧))) |
| 16 | 15 | opabbidv 4100 | . 2 ⊢ (𝜑 → {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ (Base‘𝐾) ∧ ∃𝑥 ∈ (Base‘𝐾)(𝑥(.r‘𝐾)𝑦) = 𝑧)} = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ (Base‘𝐿) ∧ ∃𝑥 ∈ (Base‘𝐿)(𝑥(.r‘𝐿)𝑦) = 𝑧)}) |
| 17 | eqidd 2197 | . . 3 ⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐾)) | |
| 18 | eqidd 2197 | . . 3 ⊢ (𝜑 → (∥r‘𝐾) = (∥r‘𝐾)) | |
| 19 | dvdsrpropdg.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ SRing) | |
| 20 | eqidd 2197 | . . 3 ⊢ (𝜑 → (.r‘𝐾) = (.r‘𝐾)) | |
| 21 | 17, 18, 19, 20 | dvdsrvald 13725 | . 2 ⊢ (𝜑 → (∥r‘𝐾) = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ (Base‘𝐾) ∧ ∃𝑥 ∈ (Base‘𝐾)(𝑥(.r‘𝐾)𝑦) = 𝑧)}) |
| 22 | eqidd 2197 | . . 3 ⊢ (𝜑 → (Base‘𝐿) = (Base‘𝐿)) | |
| 23 | eqidd 2197 | . . 3 ⊢ (𝜑 → (∥r‘𝐿) = (∥r‘𝐿)) | |
| 24 | dvdsrpropdg.l | . . 3 ⊢ (𝜑 → 𝐿 ∈ SRing) | |
| 25 | eqidd 2197 | . . 3 ⊢ (𝜑 → (.r‘𝐿) = (.r‘𝐿)) | |
| 26 | 22, 23, 24, 25 | dvdsrvald 13725 | . 2 ⊢ (𝜑 → (∥r‘𝐿) = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ (Base‘𝐿) ∧ ∃𝑥 ∈ (Base‘𝐿)(𝑥(.r‘𝐿)𝑦) = 𝑧)}) |
| 27 | 16, 21, 26 | 3eqtr4d 2239 | 1 ⊢ (𝜑 → (∥r‘𝐾) = (∥r‘𝐿)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 ∃wrex 2476 {copab 4094 ‘cfv 5259 (class class class)co 5925 Basecbs 12703 .rcmulr 12781 SRingcsrg 13595 ∥rcdsr 13718 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-pre-ltirr 8008 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-iota 5220 df-fun 5261 df-fn 5262 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8080 df-mnf 8081 df-ltxr 8083 df-inn 9008 df-2 9066 df-3 9067 df-ndx 12706 df-slot 12707 df-base 12709 df-sets 12710 df-plusg 12793 df-mulr 12794 df-0g 12960 df-mgm 13058 df-sgrp 13104 df-mnd 13119 df-mgp 13553 df-srg 13596 df-dvdsr 13721 |
| This theorem is referenced by: unitpropdg 13780 |
| Copyright terms: Public domain | W3C validator |