![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dvdsrpropdg | GIF version |
Description: The divisibility relation depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014.) |
Ref | Expression |
---|---|
dvdsrpropdg.1 | ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
dvdsrpropdg.2 | ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
dvdsrpropdg.3 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) |
dvdsrpropdg.k | ⊢ (𝜑 → 𝐾 ∈ SRing) |
dvdsrpropdg.l | ⊢ (𝜑 → 𝐿 ∈ SRing) |
Ref | Expression |
---|---|
dvdsrpropdg | ⊢ (𝜑 → (∥r‘𝐾) = (∥r‘𝐿)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvdsrpropdg.3 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) | |
2 | 1 | anassrs 400 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) |
3 | 2 | eqeq1d 2202 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → ((𝑥(.r‘𝐾)𝑦) = 𝑧 ↔ (𝑥(.r‘𝐿)𝑦) = 𝑧)) |
4 | 3 | an32s 568 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → ((𝑥(.r‘𝐾)𝑦) = 𝑧 ↔ (𝑥(.r‘𝐿)𝑦) = 𝑧)) |
5 | 4 | rexbidva 2491 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (∃𝑥 ∈ 𝐵 (𝑥(.r‘𝐾)𝑦) = 𝑧 ↔ ∃𝑥 ∈ 𝐵 (𝑥(.r‘𝐿)𝑦) = 𝑧)) |
6 | 5 | pm5.32da 452 | . . . 4 ⊢ (𝜑 → ((𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐵 (𝑥(.r‘𝐾)𝑦) = 𝑧) ↔ (𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐵 (𝑥(.r‘𝐿)𝑦) = 𝑧))) |
7 | dvdsrpropdg.1 | . . . . . 6 ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) | |
8 | 7 | eleq2d 2263 | . . . . 5 ⊢ (𝜑 → (𝑦 ∈ 𝐵 ↔ 𝑦 ∈ (Base‘𝐾))) |
9 | 7 | rexeqdv 2697 | . . . . 5 ⊢ (𝜑 → (∃𝑥 ∈ 𝐵 (𝑥(.r‘𝐾)𝑦) = 𝑧 ↔ ∃𝑥 ∈ (Base‘𝐾)(𝑥(.r‘𝐾)𝑦) = 𝑧)) |
10 | 8, 9 | anbi12d 473 | . . . 4 ⊢ (𝜑 → ((𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐵 (𝑥(.r‘𝐾)𝑦) = 𝑧) ↔ (𝑦 ∈ (Base‘𝐾) ∧ ∃𝑥 ∈ (Base‘𝐾)(𝑥(.r‘𝐾)𝑦) = 𝑧))) |
11 | dvdsrpropdg.2 | . . . . . 6 ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) | |
12 | 11 | eleq2d 2263 | . . . . 5 ⊢ (𝜑 → (𝑦 ∈ 𝐵 ↔ 𝑦 ∈ (Base‘𝐿))) |
13 | 11 | rexeqdv 2697 | . . . . 5 ⊢ (𝜑 → (∃𝑥 ∈ 𝐵 (𝑥(.r‘𝐿)𝑦) = 𝑧 ↔ ∃𝑥 ∈ (Base‘𝐿)(𝑥(.r‘𝐿)𝑦) = 𝑧)) |
14 | 12, 13 | anbi12d 473 | . . . 4 ⊢ (𝜑 → ((𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐵 (𝑥(.r‘𝐿)𝑦) = 𝑧) ↔ (𝑦 ∈ (Base‘𝐿) ∧ ∃𝑥 ∈ (Base‘𝐿)(𝑥(.r‘𝐿)𝑦) = 𝑧))) |
15 | 6, 10, 14 | 3bitr3d 218 | . . 3 ⊢ (𝜑 → ((𝑦 ∈ (Base‘𝐾) ∧ ∃𝑥 ∈ (Base‘𝐾)(𝑥(.r‘𝐾)𝑦) = 𝑧) ↔ (𝑦 ∈ (Base‘𝐿) ∧ ∃𝑥 ∈ (Base‘𝐿)(𝑥(.r‘𝐿)𝑦) = 𝑧))) |
16 | 15 | opabbidv 4095 | . 2 ⊢ (𝜑 → {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ (Base‘𝐾) ∧ ∃𝑥 ∈ (Base‘𝐾)(𝑥(.r‘𝐾)𝑦) = 𝑧)} = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ (Base‘𝐿) ∧ ∃𝑥 ∈ (Base‘𝐿)(𝑥(.r‘𝐿)𝑦) = 𝑧)}) |
17 | eqidd 2194 | . . 3 ⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐾)) | |
18 | eqidd 2194 | . . 3 ⊢ (𝜑 → (∥r‘𝐾) = (∥r‘𝐾)) | |
19 | dvdsrpropdg.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ SRing) | |
20 | eqidd 2194 | . . 3 ⊢ (𝜑 → (.r‘𝐾) = (.r‘𝐾)) | |
21 | 17, 18, 19, 20 | dvdsrvald 13589 | . 2 ⊢ (𝜑 → (∥r‘𝐾) = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ (Base‘𝐾) ∧ ∃𝑥 ∈ (Base‘𝐾)(𝑥(.r‘𝐾)𝑦) = 𝑧)}) |
22 | eqidd 2194 | . . 3 ⊢ (𝜑 → (Base‘𝐿) = (Base‘𝐿)) | |
23 | eqidd 2194 | . . 3 ⊢ (𝜑 → (∥r‘𝐿) = (∥r‘𝐿)) | |
24 | dvdsrpropdg.l | . . 3 ⊢ (𝜑 → 𝐿 ∈ SRing) | |
25 | eqidd 2194 | . . 3 ⊢ (𝜑 → (.r‘𝐿) = (.r‘𝐿)) | |
26 | 22, 23, 24, 25 | dvdsrvald 13589 | . 2 ⊢ (𝜑 → (∥r‘𝐿) = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ (Base‘𝐿) ∧ ∃𝑥 ∈ (Base‘𝐿)(𝑥(.r‘𝐿)𝑦) = 𝑧)}) |
27 | 16, 21, 26 | 3eqtr4d 2236 | 1 ⊢ (𝜑 → (∥r‘𝐾) = (∥r‘𝐿)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2164 ∃wrex 2473 {copab 4089 ‘cfv 5254 (class class class)co 5918 Basecbs 12618 .rcmulr 12696 SRingcsrg 13459 ∥rcdsr 13582 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-i2m1 7977 ax-0lt1 7978 ax-0id 7980 ax-rnegex 7981 ax-pre-ltirr 7984 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-iota 5215 df-fun 5256 df-fn 5257 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-pnf 8056 df-mnf 8057 df-ltxr 8059 df-inn 8983 df-2 9041 df-3 9042 df-ndx 12621 df-slot 12622 df-base 12624 df-sets 12625 df-plusg 12708 df-mulr 12709 df-0g 12869 df-mgm 12939 df-sgrp 12985 df-mnd 12998 df-mgp 13417 df-srg 13460 df-dvdsr 13585 |
This theorem is referenced by: unitpropdg 13644 |
Copyright terms: Public domain | W3C validator |