| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvdsrpropdg | GIF version | ||
| Description: The divisibility relation depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014.) |
| Ref | Expression |
|---|---|
| dvdsrpropdg.1 | ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
| dvdsrpropdg.2 | ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
| dvdsrpropdg.3 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) |
| dvdsrpropdg.k | ⊢ (𝜑 → 𝐾 ∈ SRing) |
| dvdsrpropdg.l | ⊢ (𝜑 → 𝐿 ∈ SRing) |
| Ref | Expression |
|---|---|
| dvdsrpropdg | ⊢ (𝜑 → (∥r‘𝐾) = (∥r‘𝐿)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdsrpropdg.3 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) | |
| 2 | 1 | anassrs 400 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) |
| 3 | 2 | eqeq1d 2215 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → ((𝑥(.r‘𝐾)𝑦) = 𝑧 ↔ (𝑥(.r‘𝐿)𝑦) = 𝑧)) |
| 4 | 3 | an32s 568 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → ((𝑥(.r‘𝐾)𝑦) = 𝑧 ↔ (𝑥(.r‘𝐿)𝑦) = 𝑧)) |
| 5 | 4 | rexbidva 2504 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (∃𝑥 ∈ 𝐵 (𝑥(.r‘𝐾)𝑦) = 𝑧 ↔ ∃𝑥 ∈ 𝐵 (𝑥(.r‘𝐿)𝑦) = 𝑧)) |
| 6 | 5 | pm5.32da 452 | . . . 4 ⊢ (𝜑 → ((𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐵 (𝑥(.r‘𝐾)𝑦) = 𝑧) ↔ (𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐵 (𝑥(.r‘𝐿)𝑦) = 𝑧))) |
| 7 | dvdsrpropdg.1 | . . . . . 6 ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) | |
| 8 | 7 | eleq2d 2276 | . . . . 5 ⊢ (𝜑 → (𝑦 ∈ 𝐵 ↔ 𝑦 ∈ (Base‘𝐾))) |
| 9 | 7 | rexeqdv 2710 | . . . . 5 ⊢ (𝜑 → (∃𝑥 ∈ 𝐵 (𝑥(.r‘𝐾)𝑦) = 𝑧 ↔ ∃𝑥 ∈ (Base‘𝐾)(𝑥(.r‘𝐾)𝑦) = 𝑧)) |
| 10 | 8, 9 | anbi12d 473 | . . . 4 ⊢ (𝜑 → ((𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐵 (𝑥(.r‘𝐾)𝑦) = 𝑧) ↔ (𝑦 ∈ (Base‘𝐾) ∧ ∃𝑥 ∈ (Base‘𝐾)(𝑥(.r‘𝐾)𝑦) = 𝑧))) |
| 11 | dvdsrpropdg.2 | . . . . . 6 ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) | |
| 12 | 11 | eleq2d 2276 | . . . . 5 ⊢ (𝜑 → (𝑦 ∈ 𝐵 ↔ 𝑦 ∈ (Base‘𝐿))) |
| 13 | 11 | rexeqdv 2710 | . . . . 5 ⊢ (𝜑 → (∃𝑥 ∈ 𝐵 (𝑥(.r‘𝐿)𝑦) = 𝑧 ↔ ∃𝑥 ∈ (Base‘𝐿)(𝑥(.r‘𝐿)𝑦) = 𝑧)) |
| 14 | 12, 13 | anbi12d 473 | . . . 4 ⊢ (𝜑 → ((𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐵 (𝑥(.r‘𝐿)𝑦) = 𝑧) ↔ (𝑦 ∈ (Base‘𝐿) ∧ ∃𝑥 ∈ (Base‘𝐿)(𝑥(.r‘𝐿)𝑦) = 𝑧))) |
| 15 | 6, 10, 14 | 3bitr3d 218 | . . 3 ⊢ (𝜑 → ((𝑦 ∈ (Base‘𝐾) ∧ ∃𝑥 ∈ (Base‘𝐾)(𝑥(.r‘𝐾)𝑦) = 𝑧) ↔ (𝑦 ∈ (Base‘𝐿) ∧ ∃𝑥 ∈ (Base‘𝐿)(𝑥(.r‘𝐿)𝑦) = 𝑧))) |
| 16 | 15 | opabbidv 4118 | . 2 ⊢ (𝜑 → {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ (Base‘𝐾) ∧ ∃𝑥 ∈ (Base‘𝐾)(𝑥(.r‘𝐾)𝑦) = 𝑧)} = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ (Base‘𝐿) ∧ ∃𝑥 ∈ (Base‘𝐿)(𝑥(.r‘𝐿)𝑦) = 𝑧)}) |
| 17 | eqidd 2207 | . . 3 ⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐾)) | |
| 18 | eqidd 2207 | . . 3 ⊢ (𝜑 → (∥r‘𝐾) = (∥r‘𝐾)) | |
| 19 | dvdsrpropdg.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ SRing) | |
| 20 | eqidd 2207 | . . 3 ⊢ (𝜑 → (.r‘𝐾) = (.r‘𝐾)) | |
| 21 | 17, 18, 19, 20 | dvdsrvald 13930 | . 2 ⊢ (𝜑 → (∥r‘𝐾) = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ (Base‘𝐾) ∧ ∃𝑥 ∈ (Base‘𝐾)(𝑥(.r‘𝐾)𝑦) = 𝑧)}) |
| 22 | eqidd 2207 | . . 3 ⊢ (𝜑 → (Base‘𝐿) = (Base‘𝐿)) | |
| 23 | eqidd 2207 | . . 3 ⊢ (𝜑 → (∥r‘𝐿) = (∥r‘𝐿)) | |
| 24 | dvdsrpropdg.l | . . 3 ⊢ (𝜑 → 𝐿 ∈ SRing) | |
| 25 | eqidd 2207 | . . 3 ⊢ (𝜑 → (.r‘𝐿) = (.r‘𝐿)) | |
| 26 | 22, 23, 24, 25 | dvdsrvald 13930 | . 2 ⊢ (𝜑 → (∥r‘𝐿) = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ (Base‘𝐿) ∧ ∃𝑥 ∈ (Base‘𝐿)(𝑥(.r‘𝐿)𝑦) = 𝑧)}) |
| 27 | 16, 21, 26 | 3eqtr4d 2249 | 1 ⊢ (𝜑 → (∥r‘𝐾) = (∥r‘𝐿)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2177 ∃wrex 2486 {copab 4112 ‘cfv 5280 (class class class)co 5957 Basecbs 12907 .rcmulr 12985 SRingcsrg 13800 ∥rcdsr 13923 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-addcom 8045 ax-addass 8047 ax-i2m1 8050 ax-0lt1 8051 ax-0id 8053 ax-rnegex 8054 ax-pre-ltirr 8057 ax-pre-ltadd 8061 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-iota 5241 df-fun 5282 df-fn 5283 df-fv 5288 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-pnf 8129 df-mnf 8130 df-ltxr 8132 df-inn 9057 df-2 9115 df-3 9116 df-ndx 12910 df-slot 12911 df-base 12913 df-sets 12914 df-plusg 12997 df-mulr 12998 df-0g 13165 df-mgm 13263 df-sgrp 13309 df-mnd 13324 df-mgp 13758 df-srg 13801 df-dvdsr 13926 |
| This theorem is referenced by: unitpropdg 13985 |
| Copyright terms: Public domain | W3C validator |