![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dvdsrpropdg | GIF version |
Description: The divisibility relation depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014.) |
Ref | Expression |
---|---|
dvdsrpropdg.1 | ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
dvdsrpropdg.2 | ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
dvdsrpropdg.3 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) |
dvdsrpropdg.k | ⊢ (𝜑 → 𝐾 ∈ SRing) |
dvdsrpropdg.l | ⊢ (𝜑 → 𝐿 ∈ SRing) |
Ref | Expression |
---|---|
dvdsrpropdg | ⊢ (𝜑 → (∥r‘𝐾) = (∥r‘𝐿)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvdsrpropdg.3 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) | |
2 | 1 | anassrs 400 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) |
3 | 2 | eqeq1d 2196 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → ((𝑥(.r‘𝐾)𝑦) = 𝑧 ↔ (𝑥(.r‘𝐿)𝑦) = 𝑧)) |
4 | 3 | an32s 568 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → ((𝑥(.r‘𝐾)𝑦) = 𝑧 ↔ (𝑥(.r‘𝐿)𝑦) = 𝑧)) |
5 | 4 | rexbidva 2484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (∃𝑥 ∈ 𝐵 (𝑥(.r‘𝐾)𝑦) = 𝑧 ↔ ∃𝑥 ∈ 𝐵 (𝑥(.r‘𝐿)𝑦) = 𝑧)) |
6 | 5 | pm5.32da 452 | . . . 4 ⊢ (𝜑 → ((𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐵 (𝑥(.r‘𝐾)𝑦) = 𝑧) ↔ (𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐵 (𝑥(.r‘𝐿)𝑦) = 𝑧))) |
7 | dvdsrpropdg.1 | . . . . . 6 ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) | |
8 | 7 | eleq2d 2257 | . . . . 5 ⊢ (𝜑 → (𝑦 ∈ 𝐵 ↔ 𝑦 ∈ (Base‘𝐾))) |
9 | 7 | rexeqdv 2690 | . . . . 5 ⊢ (𝜑 → (∃𝑥 ∈ 𝐵 (𝑥(.r‘𝐾)𝑦) = 𝑧 ↔ ∃𝑥 ∈ (Base‘𝐾)(𝑥(.r‘𝐾)𝑦) = 𝑧)) |
10 | 8, 9 | anbi12d 473 | . . . 4 ⊢ (𝜑 → ((𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐵 (𝑥(.r‘𝐾)𝑦) = 𝑧) ↔ (𝑦 ∈ (Base‘𝐾) ∧ ∃𝑥 ∈ (Base‘𝐾)(𝑥(.r‘𝐾)𝑦) = 𝑧))) |
11 | dvdsrpropdg.2 | . . . . . 6 ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) | |
12 | 11 | eleq2d 2257 | . . . . 5 ⊢ (𝜑 → (𝑦 ∈ 𝐵 ↔ 𝑦 ∈ (Base‘𝐿))) |
13 | 11 | rexeqdv 2690 | . . . . 5 ⊢ (𝜑 → (∃𝑥 ∈ 𝐵 (𝑥(.r‘𝐿)𝑦) = 𝑧 ↔ ∃𝑥 ∈ (Base‘𝐿)(𝑥(.r‘𝐿)𝑦) = 𝑧)) |
14 | 12, 13 | anbi12d 473 | . . . 4 ⊢ (𝜑 → ((𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐵 (𝑥(.r‘𝐿)𝑦) = 𝑧) ↔ (𝑦 ∈ (Base‘𝐿) ∧ ∃𝑥 ∈ (Base‘𝐿)(𝑥(.r‘𝐿)𝑦) = 𝑧))) |
15 | 6, 10, 14 | 3bitr3d 218 | . . 3 ⊢ (𝜑 → ((𝑦 ∈ (Base‘𝐾) ∧ ∃𝑥 ∈ (Base‘𝐾)(𝑥(.r‘𝐾)𝑦) = 𝑧) ↔ (𝑦 ∈ (Base‘𝐿) ∧ ∃𝑥 ∈ (Base‘𝐿)(𝑥(.r‘𝐿)𝑦) = 𝑧))) |
16 | 15 | opabbidv 4081 | . 2 ⊢ (𝜑 → {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ (Base‘𝐾) ∧ ∃𝑥 ∈ (Base‘𝐾)(𝑥(.r‘𝐾)𝑦) = 𝑧)} = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ (Base‘𝐿) ∧ ∃𝑥 ∈ (Base‘𝐿)(𝑥(.r‘𝐿)𝑦) = 𝑧)}) |
17 | eqidd 2188 | . . 3 ⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐾)) | |
18 | eqidd 2188 | . . 3 ⊢ (𝜑 → (∥r‘𝐾) = (∥r‘𝐾)) | |
19 | dvdsrpropdg.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ SRing) | |
20 | eqidd 2188 | . . 3 ⊢ (𝜑 → (.r‘𝐾) = (.r‘𝐾)) | |
21 | 17, 18, 19, 20 | dvdsrvald 13341 | . 2 ⊢ (𝜑 → (∥r‘𝐾) = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ (Base‘𝐾) ∧ ∃𝑥 ∈ (Base‘𝐾)(𝑥(.r‘𝐾)𝑦) = 𝑧)}) |
22 | eqidd 2188 | . . 3 ⊢ (𝜑 → (Base‘𝐿) = (Base‘𝐿)) | |
23 | eqidd 2188 | . . 3 ⊢ (𝜑 → (∥r‘𝐿) = (∥r‘𝐿)) | |
24 | dvdsrpropdg.l | . . 3 ⊢ (𝜑 → 𝐿 ∈ SRing) | |
25 | eqidd 2188 | . . 3 ⊢ (𝜑 → (.r‘𝐿) = (.r‘𝐿)) | |
26 | 22, 23, 24, 25 | dvdsrvald 13341 | . 2 ⊢ (𝜑 → (∥r‘𝐿) = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ (Base‘𝐿) ∧ ∃𝑥 ∈ (Base‘𝐿)(𝑥(.r‘𝐿)𝑦) = 𝑧)}) |
27 | 16, 21, 26 | 3eqtr4d 2230 | 1 ⊢ (𝜑 → (∥r‘𝐾) = (∥r‘𝐿)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1363 ∈ wcel 2158 ∃wrex 2466 {copab 4075 ‘cfv 5228 (class class class)co 5888 Basecbs 12476 .rcmulr 12552 SRingcsrg 13215 ∥rcdsr 13334 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-sep 4133 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-setind 4548 ax-cnex 7916 ax-resscn 7917 ax-1cn 7918 ax-1re 7919 ax-icn 7920 ax-addcl 7921 ax-addrcl 7922 ax-mulcl 7923 ax-addcom 7925 ax-addass 7927 ax-i2m1 7930 ax-0lt1 7931 ax-0id 7933 ax-rnegex 7934 ax-pre-ltirr 7937 ax-pre-ltadd 7941 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-nel 2453 df-ral 2470 df-rex 2471 df-rab 2474 df-v 2751 df-sbc 2975 df-csb 3070 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-nul 3435 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-int 3857 df-br 4016 df-opab 4077 df-mpt 4078 df-id 4305 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-iota 5190 df-fun 5230 df-fn 5231 df-fv 5236 df-riota 5844 df-ov 5891 df-oprab 5892 df-mpo 5893 df-pnf 8008 df-mnf 8009 df-ltxr 8011 df-inn 8934 df-2 8992 df-3 8993 df-ndx 12479 df-slot 12480 df-base 12482 df-sets 12483 df-plusg 12564 df-mulr 12565 df-0g 12725 df-mgm 12794 df-sgrp 12827 df-mnd 12840 df-mgp 13173 df-srg 13216 df-dvdsr 13337 |
This theorem is referenced by: unitpropdg 13396 |
Copyright terms: Public domain | W3C validator |