| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexlimiva | GIF version | ||
| Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 18-Dec-2006.) |
| Ref | Expression |
|---|---|
| rexlimiva.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝜓) |
| Ref | Expression |
|---|---|
| rexlimiva | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimiva.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝜓) | |
| 2 | 1 | ex 115 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
| 3 | 2 | rexlimiv 2608 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2167 ∃wrex 2476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-i5r 1549 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-ral 2480 df-rex 2481 |
| This theorem is referenced by: unon 4548 reg2exmidlema 4571 ssfilem 6938 diffitest 6950 fival 7038 elfi2 7040 fi0 7043 djuss 7138 updjud 7150 enumct 7183 finnum 7252 dmaddpqlem 7447 nqpi 7448 nq0nn 7512 recexprlemm 7694 iswrd 10940 wrdf 10944 rexanuz 11156 r19.2uz 11161 maxleast 11381 fsum2dlemstep 11602 fisumcom2 11606 fprod2dlemstep 11790 fprodcom2fi 11794 0dvds 11979 even2n 12042 m1expe 12067 m1exp1 12069 modprm0 12434 gsumval2 13066 dfgrp2 13185 epttop 14352 neipsm 14416 tgioo 14816 sin0pilem2 15044 pilem3 15045 perfect 15263 bj-nn0suc 15636 bj-nn0sucALT 15650 trirec0xor 15716 |
| Copyright terms: Public domain | W3C validator |