| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexlimiva | GIF version | ||
| Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 18-Dec-2006.) |
| Ref | Expression |
|---|---|
| rexlimiva.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝜓) |
| Ref | Expression |
|---|---|
| rexlimiva | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimiva.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝜓) | |
| 2 | 1 | ex 115 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
| 3 | 2 | rexlimiv 2619 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2178 ∃wrex 2487 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-17 1550 ax-ial 1558 ax-i5r 1559 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-ral 2491 df-rex 2492 |
| This theorem is referenced by: unon 4577 reg2exmidlema 4600 ssfilem 6998 diffitest 7010 fival 7098 elfi2 7100 fi0 7103 djuss 7198 updjud 7210 enumct 7243 finnum 7316 dmaddpqlem 7525 nqpi 7526 nq0nn 7590 recexprlemm 7772 iswrd 11033 wrdf 11037 rexanuz 11414 r19.2uz 11419 maxleast 11639 fsum2dlemstep 11860 fisumcom2 11864 fprod2dlemstep 12048 fprodcom2fi 12052 0dvds 12237 even2n 12300 m1expe 12325 m1exp1 12327 modprm0 12692 gsumval2 13344 dfgrp2 13474 epttop 14677 neipsm 14741 tgioo 15141 sin0pilem2 15369 pilem3 15370 perfect 15588 bj-nn0suc 16099 bj-nn0sucALT 16113 trirec0xor 16186 |
| Copyright terms: Public domain | W3C validator |