| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexlimiva | GIF version | ||
| Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 18-Dec-2006.) |
| Ref | Expression |
|---|---|
| rexlimiva.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝜓) |
| Ref | Expression |
|---|---|
| rexlimiva | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimiva.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝜓) | |
| 2 | 1 | ex 115 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
| 3 | 2 | rexlimiv 2608 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2167 ∃wrex 2476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-i5r 1549 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-ral 2480 df-rex 2481 |
| This theorem is referenced by: unon 4548 reg2exmidlema 4571 ssfilem 6945 diffitest 6957 fival 7045 elfi2 7047 fi0 7050 djuss 7145 updjud 7157 enumct 7190 finnum 7263 dmaddpqlem 7463 nqpi 7464 nq0nn 7528 recexprlemm 7710 iswrd 10956 wrdf 10960 rexanuz 11172 r19.2uz 11177 maxleast 11397 fsum2dlemstep 11618 fisumcom2 11622 fprod2dlemstep 11806 fprodcom2fi 11810 0dvds 11995 even2n 12058 m1expe 12083 m1exp1 12085 modprm0 12450 gsumval2 13101 dfgrp2 13231 epttop 14434 neipsm 14498 tgioo 14898 sin0pilem2 15126 pilem3 15127 perfect 15345 bj-nn0suc 15718 bj-nn0sucALT 15732 trirec0xor 15802 |
| Copyright terms: Public domain | W3C validator |