ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexlimiva GIF version

Theorem rexlimiva 2589
Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 18-Dec-2006.)
Hypothesis
Ref Expression
rexlimiva.1 ((𝑥𝐴𝜑) → 𝜓)
Assertion
Ref Expression
rexlimiva (∃𝑥𝐴 𝜑𝜓)
Distinct variable group:   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)

Proof of Theorem rexlimiva
StepHypRef Expression
1 rexlimiva.1 . . 3 ((𝑥𝐴𝜑) → 𝜓)
21ex 115 . 2 (𝑥𝐴 → (𝜑𝜓))
32rexlimiv 2588 1 (∃𝑥𝐴 𝜑𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2148  wrex 2456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-4 1510  ax-17 1526  ax-ial 1534  ax-i5r 1535
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-ral 2460  df-rex 2461
This theorem is referenced by:  unon  4511  reg2exmidlema  4534  ssfilem  6875  diffitest  6887  fival  6969  elfi2  6971  fi0  6974  djuss  7069  updjud  7081  enumct  7114  finnum  7182  dmaddpqlem  7376  nqpi  7377  nq0nn  7441  recexprlemm  7623  rexanuz  10997  r19.2uz  11002  maxleast  11222  fsum2dlemstep  11442  fisumcom2  11446  fprod2dlemstep  11630  fprodcom2fi  11634  0dvds  11818  even2n  11879  m1expe  11904  m1exp1  11906  modprm0  12254  dfgrp2  12902  epttop  13593  neipsm  13657  tgioo  14049  sin0pilem2  14206  pilem3  14207  bj-nn0suc  14719  bj-nn0sucALT  14733  trirec0xor  14796
  Copyright terms: Public domain W3C validator