| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexlimiva | GIF version | ||
| Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 18-Dec-2006.) |
| Ref | Expression |
|---|---|
| rexlimiva.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝜓) |
| Ref | Expression |
|---|---|
| rexlimiva | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimiva.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝜓) | |
| 2 | 1 | ex 115 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
| 3 | 2 | rexlimiv 2617 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2176 ∃wrex 2485 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-4 1533 ax-17 1549 ax-ial 1557 ax-i5r 1558 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-ral 2489 df-rex 2490 |
| This theorem is referenced by: unon 4559 reg2exmidlema 4582 ssfilem 6972 diffitest 6984 fival 7072 elfi2 7074 fi0 7077 djuss 7172 updjud 7184 enumct 7217 finnum 7290 dmaddpqlem 7490 nqpi 7491 nq0nn 7555 recexprlemm 7737 iswrd 10996 wrdf 11000 rexanuz 11299 r19.2uz 11304 maxleast 11524 fsum2dlemstep 11745 fisumcom2 11749 fprod2dlemstep 11933 fprodcom2fi 11937 0dvds 12122 even2n 12185 m1expe 12210 m1exp1 12212 modprm0 12577 gsumval2 13229 dfgrp2 13359 epttop 14562 neipsm 14626 tgioo 15026 sin0pilem2 15254 pilem3 15255 perfect 15473 bj-nn0suc 15900 bj-nn0sucALT 15914 trirec0xor 15984 |
| Copyright terms: Public domain | W3C validator |