Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rexlimiva | GIF version |
Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 18-Dec-2006.) |
Ref | Expression |
---|---|
rexlimiva.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝜓) |
Ref | Expression |
---|---|
rexlimiva | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexlimiva.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝜓) | |
2 | 1 | ex 114 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
3 | 2 | rexlimiv 2577 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2136 ∃wrex 2445 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-ial 1522 ax-i5r 1523 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-ral 2449 df-rex 2450 |
This theorem is referenced by: unon 4488 reg2exmidlema 4511 ssfilem 6841 diffitest 6853 fival 6935 elfi2 6937 fi0 6940 djuss 7035 updjud 7047 enumct 7080 finnum 7139 dmaddpqlem 7318 nqpi 7319 nq0nn 7383 recexprlemm 7565 rexanuz 10930 r19.2uz 10935 maxleast 11155 fsum2dlemstep 11375 fisumcom2 11379 fprod2dlemstep 11563 fprodcom2fi 11567 0dvds 11751 even2n 11811 m1expe 11836 m1exp1 11838 modprm0 12186 epttop 12740 neipsm 12804 tgioo 13196 sin0pilem2 13353 pilem3 13354 bj-nn0suc 13856 bj-nn0sucALT 13870 trirec0xor 13934 |
Copyright terms: Public domain | W3C validator |