| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexlimiva | GIF version | ||
| Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 18-Dec-2006.) |
| Ref | Expression |
|---|---|
| rexlimiva.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝜓) |
| Ref | Expression |
|---|---|
| rexlimiva | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimiva.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝜓) | |
| 2 | 1 | ex 115 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
| 3 | 2 | rexlimiv 2616 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2175 ∃wrex 2484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-4 1532 ax-17 1548 ax-ial 1556 ax-i5r 1557 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-ral 2488 df-rex 2489 |
| This theorem is referenced by: unon 4558 reg2exmidlema 4581 ssfilem 6971 diffitest 6983 fival 7071 elfi2 7073 fi0 7076 djuss 7171 updjud 7183 enumct 7216 finnum 7289 dmaddpqlem 7489 nqpi 7490 nq0nn 7554 recexprlemm 7736 iswrd 10994 wrdf 10998 rexanuz 11270 r19.2uz 11275 maxleast 11495 fsum2dlemstep 11716 fisumcom2 11720 fprod2dlemstep 11904 fprodcom2fi 11908 0dvds 12093 even2n 12156 m1expe 12181 m1exp1 12183 modprm0 12548 gsumval2 13200 dfgrp2 13330 epttop 14533 neipsm 14597 tgioo 14997 sin0pilem2 15225 pilem3 15226 perfect 15444 bj-nn0suc 15862 bj-nn0sucALT 15876 trirec0xor 15946 |
| Copyright terms: Public domain | W3C validator |