| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexlimiva | GIF version | ||
| Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 18-Dec-2006.) |
| Ref | Expression |
|---|---|
| rexlimiva.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝜓) |
| Ref | Expression |
|---|---|
| rexlimiva | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimiva.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝜓) | |
| 2 | 1 | ex 115 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
| 3 | 2 | rexlimiv 2642 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2200 ∃wrex 2509 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 ax-i5r 1581 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-ral 2513 df-rex 2514 |
| This theorem is referenced by: unon 4603 reg2exmidlema 4626 ssfilem 7037 diffitest 7049 fival 7137 elfi2 7139 fi0 7142 djuss 7237 updjud 7249 enumct 7282 finnum 7355 dmaddpqlem 7564 nqpi 7565 nq0nn 7629 recexprlemm 7811 iswrd 11073 wrdf 11077 rexanuz 11499 r19.2uz 11504 maxleast 11724 fsum2dlemstep 11945 fisumcom2 11949 fprod2dlemstep 12133 fprodcom2fi 12137 0dvds 12322 even2n 12385 m1expe 12410 m1exp1 12412 modprm0 12777 gsumval2 13430 dfgrp2 13560 epttop 14764 neipsm 14828 tgioo 15228 sin0pilem2 15456 pilem3 15457 perfect 15675 bj-nn0suc 16327 bj-nn0sucALT 16341 trirec0xor 16413 |
| Copyright terms: Public domain | W3C validator |