![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rexlimiva | GIF version |
Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 18-Dec-2006.) |
Ref | Expression |
---|---|
rexlimiva.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝜓) |
Ref | Expression |
---|---|
rexlimiva | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexlimiva.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝜓) | |
2 | 1 | ex 115 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
3 | 2 | rexlimiv 2605 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2164 ∃wrex 2473 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 ax-i5r 1546 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-ral 2477 df-rex 2478 |
This theorem is referenced by: unon 4544 reg2exmidlema 4567 ssfilem 6933 diffitest 6945 fival 7031 elfi2 7033 fi0 7036 djuss 7131 updjud 7143 enumct 7176 finnum 7245 dmaddpqlem 7439 nqpi 7440 nq0nn 7504 recexprlemm 7686 iswrd 10919 wrdf 10923 rexanuz 11135 r19.2uz 11140 maxleast 11360 fsum2dlemstep 11580 fisumcom2 11584 fprod2dlemstep 11768 fprodcom2fi 11772 0dvds 11957 even2n 12018 m1expe 12043 m1exp1 12045 modprm0 12395 gsumval2 12983 dfgrp2 13102 epttop 14269 neipsm 14333 tgioo 14733 sin0pilem2 14958 pilem3 14959 bj-nn0suc 15526 bj-nn0sucALT 15540 trirec0xor 15605 |
Copyright terms: Public domain | W3C validator |