ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltbtwnnqq GIF version

Theorem ltbtwnnqq 7356
Description: There exists a number between any two positive fractions. Proposition 9-2.6(i) of [Gleason] p. 120. (Contributed by Jim Kingdon, 24-Sep-2019.)
Assertion
Ref Expression
ltbtwnnqq (𝐴 <Q 𝐵 ↔ ∃𝑥Q (𝐴 <Q 𝑥𝑥 <Q 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem ltbtwnnqq
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelnq 7306 . . . . 5 <Q ⊆ (Q × Q)
21brel 4656 . . . 4 (𝐴 <Q 𝐵 → (𝐴Q𝐵Q))
32simpld 111 . . 3 (𝐴 <Q 𝐵𝐴Q)
4 ltexnqi 7350 . . 3 (𝐴 <Q 𝐵 → ∃𝑦Q (𝐴 +Q 𝑦) = 𝐵)
5 nsmallnq 7354 . . . . . 6 (𝑦Q → ∃𝑧 𝑧 <Q 𝑦)
61brel 4656 . . . . . . . . . . . . . . 15 (𝑧 <Q 𝑦 → (𝑧Q𝑦Q))
76simpld 111 . . . . . . . . . . . . . 14 (𝑧 <Q 𝑦𝑧Q)
8 ltaddnq 7348 . . . . . . . . . . . . . 14 ((𝐴Q𝑧Q) → 𝐴 <Q (𝐴 +Q 𝑧))
97, 8sylan2 284 . . . . . . . . . . . . 13 ((𝐴Q𝑧 <Q 𝑦) → 𝐴 <Q (𝐴 +Q 𝑧))
109ancoms 266 . . . . . . . . . . . 12 ((𝑧 <Q 𝑦𝐴Q) → 𝐴 <Q (𝐴 +Q 𝑧))
1110adantr 274 . . . . . . . . . . 11 (((𝑧 <Q 𝑦𝐴Q) ∧ (𝐴 +Q 𝑦) = 𝐵) → 𝐴 <Q (𝐴 +Q 𝑧))
12 ltanqi 7343 . . . . . . . . . . . . 13 ((𝑧 <Q 𝑦𝐴Q) → (𝐴 +Q 𝑧) <Q (𝐴 +Q 𝑦))
1312adantr 274 . . . . . . . . . . . 12 (((𝑧 <Q 𝑦𝐴Q) ∧ (𝐴 +Q 𝑦) = 𝐵) → (𝐴 +Q 𝑧) <Q (𝐴 +Q 𝑦))
14 breq2 3986 . . . . . . . . . . . . 13 ((𝐴 +Q 𝑦) = 𝐵 → ((𝐴 +Q 𝑧) <Q (𝐴 +Q 𝑦) ↔ (𝐴 +Q 𝑧) <Q 𝐵))
1514adantl 275 . . . . . . . . . . . 12 (((𝑧 <Q 𝑦𝐴Q) ∧ (𝐴 +Q 𝑦) = 𝐵) → ((𝐴 +Q 𝑧) <Q (𝐴 +Q 𝑦) ↔ (𝐴 +Q 𝑧) <Q 𝐵))
1613, 15mpbid 146 . . . . . . . . . . 11 (((𝑧 <Q 𝑦𝐴Q) ∧ (𝐴 +Q 𝑦) = 𝐵) → (𝐴 +Q 𝑧) <Q 𝐵)
17 addclnq 7316 . . . . . . . . . . . . . . 15 ((𝐴Q𝑧Q) → (𝐴 +Q 𝑧) ∈ Q)
187, 17sylan2 284 . . . . . . . . . . . . . 14 ((𝐴Q𝑧 <Q 𝑦) → (𝐴 +Q 𝑧) ∈ Q)
1918ancoms 266 . . . . . . . . . . . . 13 ((𝑧 <Q 𝑦𝐴Q) → (𝐴 +Q 𝑧) ∈ Q)
2019adantr 274 . . . . . . . . . . . 12 (((𝑧 <Q 𝑦𝐴Q) ∧ (𝐴 +Q 𝑦) = 𝐵) → (𝐴 +Q 𝑧) ∈ Q)
21 breq2 3986 . . . . . . . . . . . . . 14 (𝑥 = (𝐴 +Q 𝑧) → (𝐴 <Q 𝑥𝐴 <Q (𝐴 +Q 𝑧)))
22 breq1 3985 . . . . . . . . . . . . . 14 (𝑥 = (𝐴 +Q 𝑧) → (𝑥 <Q 𝐵 ↔ (𝐴 +Q 𝑧) <Q 𝐵))
2321, 22anbi12d 465 . . . . . . . . . . . . 13 (𝑥 = (𝐴 +Q 𝑧) → ((𝐴 <Q 𝑥𝑥 <Q 𝐵) ↔ (𝐴 <Q (𝐴 +Q 𝑧) ∧ (𝐴 +Q 𝑧) <Q 𝐵)))
2423adantl 275 . . . . . . . . . . . 12 ((((𝑧 <Q 𝑦𝐴Q) ∧ (𝐴 +Q 𝑦) = 𝐵) ∧ 𝑥 = (𝐴 +Q 𝑧)) → ((𝐴 <Q 𝑥𝑥 <Q 𝐵) ↔ (𝐴 <Q (𝐴 +Q 𝑧) ∧ (𝐴 +Q 𝑧) <Q 𝐵)))
2520, 24rspcedv 2834 . . . . . . . . . . 11 (((𝑧 <Q 𝑦𝐴Q) ∧ (𝐴 +Q 𝑦) = 𝐵) → ((𝐴 <Q (𝐴 +Q 𝑧) ∧ (𝐴 +Q 𝑧) <Q 𝐵) → ∃𝑥Q (𝐴 <Q 𝑥𝑥 <Q 𝐵)))
2611, 16, 25mp2and 430 . . . . . . . . . 10 (((𝑧 <Q 𝑦𝐴Q) ∧ (𝐴 +Q 𝑦) = 𝐵) → ∃𝑥Q (𝐴 <Q 𝑥𝑥 <Q 𝐵))
27263impa 1184 . . . . . . . . 9 ((𝑧 <Q 𝑦𝐴Q ∧ (𝐴 +Q 𝑦) = 𝐵) → ∃𝑥Q (𝐴 <Q 𝑥𝑥 <Q 𝐵))
28273coml 1200 . . . . . . . 8 ((𝐴Q ∧ (𝐴 +Q 𝑦) = 𝐵𝑧 <Q 𝑦) → ∃𝑥Q (𝐴 <Q 𝑥𝑥 <Q 𝐵))
29283expia 1195 . . . . . . 7 ((𝐴Q ∧ (𝐴 +Q 𝑦) = 𝐵) → (𝑧 <Q 𝑦 → ∃𝑥Q (𝐴 <Q 𝑥𝑥 <Q 𝐵)))
3029exlimdv 1807 . . . . . 6 ((𝐴Q ∧ (𝐴 +Q 𝑦) = 𝐵) → (∃𝑧 𝑧 <Q 𝑦 → ∃𝑥Q (𝐴 <Q 𝑥𝑥 <Q 𝐵)))
315, 30syl5 32 . . . . 5 ((𝐴Q ∧ (𝐴 +Q 𝑦) = 𝐵) → (𝑦Q → ∃𝑥Q (𝐴 <Q 𝑥𝑥 <Q 𝐵)))
3231impancom 258 . . . 4 ((𝐴Q𝑦Q) → ((𝐴 +Q 𝑦) = 𝐵 → ∃𝑥Q (𝐴 <Q 𝑥𝑥 <Q 𝐵)))
3332rexlimdva 2583 . . 3 (𝐴Q → (∃𝑦Q (𝐴 +Q 𝑦) = 𝐵 → ∃𝑥Q (𝐴 <Q 𝑥𝑥 <Q 𝐵)))
343, 4, 33sylc 62 . 2 (𝐴 <Q 𝐵 → ∃𝑥Q (𝐴 <Q 𝑥𝑥 <Q 𝐵))
35 ltsonq 7339 . . . 4 <Q Or Q
3635, 1sotri 4999 . . 3 ((𝐴 <Q 𝑥𝑥 <Q 𝐵) → 𝐴 <Q 𝐵)
3736rexlimivw 2579 . 2 (∃𝑥Q (𝐴 <Q 𝑥𝑥 <Q 𝐵) → 𝐴 <Q 𝐵)
3834, 37impbii 125 1 (𝐴 <Q 𝐵 ↔ ∃𝑥Q (𝐴 <Q 𝑥𝑥 <Q 𝐵))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104   = wceq 1343  wex 1480  wcel 2136  wrex 2445   class class class wbr 3982  (class class class)co 5842  Qcnq 7221   +Q cplq 7223   <Q cltq 7226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-eprel 4267  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-1o 6384  df-oadd 6388  df-omul 6389  df-er 6501  df-ec 6503  df-qs 6507  df-ni 7245  df-pli 7246  df-mi 7247  df-lti 7248  df-plpq 7285  df-mpq 7286  df-enq 7288  df-nqqs 7289  df-plqqs 7290  df-mqqs 7291  df-1nqqs 7292  df-rq 7293  df-ltnqqs 7294
This theorem is referenced by:  ltbtwnnq  7357  nqprrnd  7484  appdivnq  7504  ltnqpr  7534  ltnqpri  7535  recexprlemopl  7566  recexprlemopu  7568  cauappcvgprlemopl  7587  cauappcvgprlemopu  7589  cauappcvgprlem2  7601  caucvgprlemopl  7610  caucvgprlemopu  7612  caucvgprlem2  7621  suplocexprlemru  7660  suplocexprlemloc  7662
  Copyright terms: Public domain W3C validator