ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltbtwnnqq GIF version

Theorem ltbtwnnqq 7335
Description: There exists a number between any two positive fractions. Proposition 9-2.6(i) of [Gleason] p. 120. (Contributed by Jim Kingdon, 24-Sep-2019.)
Assertion
Ref Expression
ltbtwnnqq (𝐴 <Q 𝐵 ↔ ∃𝑥Q (𝐴 <Q 𝑥𝑥 <Q 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem ltbtwnnqq
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelnq 7285 . . . . 5 <Q ⊆ (Q × Q)
21brel 4638 . . . 4 (𝐴 <Q 𝐵 → (𝐴Q𝐵Q))
32simpld 111 . . 3 (𝐴 <Q 𝐵𝐴Q)
4 ltexnqi 7329 . . 3 (𝐴 <Q 𝐵 → ∃𝑦Q (𝐴 +Q 𝑦) = 𝐵)
5 nsmallnq 7333 . . . . . 6 (𝑦Q → ∃𝑧 𝑧 <Q 𝑦)
61brel 4638 . . . . . . . . . . . . . . 15 (𝑧 <Q 𝑦 → (𝑧Q𝑦Q))
76simpld 111 . . . . . . . . . . . . . 14 (𝑧 <Q 𝑦𝑧Q)
8 ltaddnq 7327 . . . . . . . . . . . . . 14 ((𝐴Q𝑧Q) → 𝐴 <Q (𝐴 +Q 𝑧))
97, 8sylan2 284 . . . . . . . . . . . . 13 ((𝐴Q𝑧 <Q 𝑦) → 𝐴 <Q (𝐴 +Q 𝑧))
109ancoms 266 . . . . . . . . . . . 12 ((𝑧 <Q 𝑦𝐴Q) → 𝐴 <Q (𝐴 +Q 𝑧))
1110adantr 274 . . . . . . . . . . 11 (((𝑧 <Q 𝑦𝐴Q) ∧ (𝐴 +Q 𝑦) = 𝐵) → 𝐴 <Q (𝐴 +Q 𝑧))
12 ltanqi 7322 . . . . . . . . . . . . 13 ((𝑧 <Q 𝑦𝐴Q) → (𝐴 +Q 𝑧) <Q (𝐴 +Q 𝑦))
1312adantr 274 . . . . . . . . . . . 12 (((𝑧 <Q 𝑦𝐴Q) ∧ (𝐴 +Q 𝑦) = 𝐵) → (𝐴 +Q 𝑧) <Q (𝐴 +Q 𝑦))
14 breq2 3969 . . . . . . . . . . . . 13 ((𝐴 +Q 𝑦) = 𝐵 → ((𝐴 +Q 𝑧) <Q (𝐴 +Q 𝑦) ↔ (𝐴 +Q 𝑧) <Q 𝐵))
1514adantl 275 . . . . . . . . . . . 12 (((𝑧 <Q 𝑦𝐴Q) ∧ (𝐴 +Q 𝑦) = 𝐵) → ((𝐴 +Q 𝑧) <Q (𝐴 +Q 𝑦) ↔ (𝐴 +Q 𝑧) <Q 𝐵))
1613, 15mpbid 146 . . . . . . . . . . 11 (((𝑧 <Q 𝑦𝐴Q) ∧ (𝐴 +Q 𝑦) = 𝐵) → (𝐴 +Q 𝑧) <Q 𝐵)
17 addclnq 7295 . . . . . . . . . . . . . . 15 ((𝐴Q𝑧Q) → (𝐴 +Q 𝑧) ∈ Q)
187, 17sylan2 284 . . . . . . . . . . . . . 14 ((𝐴Q𝑧 <Q 𝑦) → (𝐴 +Q 𝑧) ∈ Q)
1918ancoms 266 . . . . . . . . . . . . 13 ((𝑧 <Q 𝑦𝐴Q) → (𝐴 +Q 𝑧) ∈ Q)
2019adantr 274 . . . . . . . . . . . 12 (((𝑧 <Q 𝑦𝐴Q) ∧ (𝐴 +Q 𝑦) = 𝐵) → (𝐴 +Q 𝑧) ∈ Q)
21 breq2 3969 . . . . . . . . . . . . . 14 (𝑥 = (𝐴 +Q 𝑧) → (𝐴 <Q 𝑥𝐴 <Q (𝐴 +Q 𝑧)))
22 breq1 3968 . . . . . . . . . . . . . 14 (𝑥 = (𝐴 +Q 𝑧) → (𝑥 <Q 𝐵 ↔ (𝐴 +Q 𝑧) <Q 𝐵))
2321, 22anbi12d 465 . . . . . . . . . . . . 13 (𝑥 = (𝐴 +Q 𝑧) → ((𝐴 <Q 𝑥𝑥 <Q 𝐵) ↔ (𝐴 <Q (𝐴 +Q 𝑧) ∧ (𝐴 +Q 𝑧) <Q 𝐵)))
2423adantl 275 . . . . . . . . . . . 12 ((((𝑧 <Q 𝑦𝐴Q) ∧ (𝐴 +Q 𝑦) = 𝐵) ∧ 𝑥 = (𝐴 +Q 𝑧)) → ((𝐴 <Q 𝑥𝑥 <Q 𝐵) ↔ (𝐴 <Q (𝐴 +Q 𝑧) ∧ (𝐴 +Q 𝑧) <Q 𝐵)))
2520, 24rspcedv 2820 . . . . . . . . . . 11 (((𝑧 <Q 𝑦𝐴Q) ∧ (𝐴 +Q 𝑦) = 𝐵) → ((𝐴 <Q (𝐴 +Q 𝑧) ∧ (𝐴 +Q 𝑧) <Q 𝐵) → ∃𝑥Q (𝐴 <Q 𝑥𝑥 <Q 𝐵)))
2611, 16, 25mp2and 430 . . . . . . . . . 10 (((𝑧 <Q 𝑦𝐴Q) ∧ (𝐴 +Q 𝑦) = 𝐵) → ∃𝑥Q (𝐴 <Q 𝑥𝑥 <Q 𝐵))
27263impa 1177 . . . . . . . . 9 ((𝑧 <Q 𝑦𝐴Q ∧ (𝐴 +Q 𝑦) = 𝐵) → ∃𝑥Q (𝐴 <Q 𝑥𝑥 <Q 𝐵))
28273coml 1192 . . . . . . . 8 ((𝐴Q ∧ (𝐴 +Q 𝑦) = 𝐵𝑧 <Q 𝑦) → ∃𝑥Q (𝐴 <Q 𝑥𝑥 <Q 𝐵))
29283expia 1187 . . . . . . 7 ((𝐴Q ∧ (𝐴 +Q 𝑦) = 𝐵) → (𝑧 <Q 𝑦 → ∃𝑥Q (𝐴 <Q 𝑥𝑥 <Q 𝐵)))
3029exlimdv 1799 . . . . . 6 ((𝐴Q ∧ (𝐴 +Q 𝑦) = 𝐵) → (∃𝑧 𝑧 <Q 𝑦 → ∃𝑥Q (𝐴 <Q 𝑥𝑥 <Q 𝐵)))
315, 30syl5 32 . . . . 5 ((𝐴Q ∧ (𝐴 +Q 𝑦) = 𝐵) → (𝑦Q → ∃𝑥Q (𝐴 <Q 𝑥𝑥 <Q 𝐵)))
3231impancom 258 . . . 4 ((𝐴Q𝑦Q) → ((𝐴 +Q 𝑦) = 𝐵 → ∃𝑥Q (𝐴 <Q 𝑥𝑥 <Q 𝐵)))
3332rexlimdva 2574 . . 3 (𝐴Q → (∃𝑦Q (𝐴 +Q 𝑦) = 𝐵 → ∃𝑥Q (𝐴 <Q 𝑥𝑥 <Q 𝐵)))
343, 4, 33sylc 62 . 2 (𝐴 <Q 𝐵 → ∃𝑥Q (𝐴 <Q 𝑥𝑥 <Q 𝐵))
35 ltsonq 7318 . . . 4 <Q Or Q
3635, 1sotri 4981 . . 3 ((𝐴 <Q 𝑥𝑥 <Q 𝐵) → 𝐴 <Q 𝐵)
3736rexlimivw 2570 . 2 (∃𝑥Q (𝐴 <Q 𝑥𝑥 <Q 𝐵) → 𝐴 <Q 𝐵)
3834, 37impbii 125 1 (𝐴 <Q 𝐵 ↔ ∃𝑥Q (𝐴 <Q 𝑥𝑥 <Q 𝐵))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104   = wceq 1335  wex 1472  wcel 2128  wrex 2436   class class class wbr 3965  (class class class)co 5824  Qcnq 7200   +Q cplq 7202   <Q cltq 7205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4496  ax-iinf 4547
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-eprel 4249  df-id 4253  df-po 4256  df-iso 4257  df-iord 4326  df-on 4328  df-suc 4331  df-iom 4550  df-xp 4592  df-rel 4593  df-cnv 4594  df-co 4595  df-dm 4596  df-rn 4597  df-res 4598  df-ima 4599  df-iota 5135  df-fun 5172  df-fn 5173  df-f 5174  df-f1 5175  df-fo 5176  df-f1o 5177  df-fv 5178  df-ov 5827  df-oprab 5828  df-mpo 5829  df-1st 6088  df-2nd 6089  df-recs 6252  df-irdg 6317  df-1o 6363  df-oadd 6367  df-omul 6368  df-er 6480  df-ec 6482  df-qs 6486  df-ni 7224  df-pli 7225  df-mi 7226  df-lti 7227  df-plpq 7264  df-mpq 7265  df-enq 7267  df-nqqs 7268  df-plqqs 7269  df-mqqs 7270  df-1nqqs 7271  df-rq 7272  df-ltnqqs 7273
This theorem is referenced by:  ltbtwnnq  7336  nqprrnd  7463  appdivnq  7483  ltnqpr  7513  ltnqpri  7514  recexprlemopl  7545  recexprlemopu  7547  cauappcvgprlemopl  7566  cauappcvgprlemopu  7568  cauappcvgprlem2  7580  caucvgprlemopl  7589  caucvgprlemopu  7591  caucvgprlem2  7600  suplocexprlemru  7639  suplocexprlemloc  7641
  Copyright terms: Public domain W3C validator