ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltbtwnnqq GIF version

Theorem ltbtwnnqq 6877
Description: There exists a number between any two positive fractions. Proposition 9-2.6(i) of [Gleason] p. 120. (Contributed by Jim Kingdon, 24-Sep-2019.)
Assertion
Ref Expression
ltbtwnnqq (𝐴 <Q 𝐵 ↔ ∃𝑥Q (𝐴 <Q 𝑥𝑥 <Q 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem ltbtwnnqq
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelnq 6827 . . . . 5 <Q ⊆ (Q × Q)
21brel 4448 . . . 4 (𝐴 <Q 𝐵 → (𝐴Q𝐵Q))
32simpld 110 . . 3 (𝐴 <Q 𝐵𝐴Q)
4 ltexnqi 6871 . . 3 (𝐴 <Q 𝐵 → ∃𝑦Q (𝐴 +Q 𝑦) = 𝐵)
5 nsmallnq 6875 . . . . . 6 (𝑦Q → ∃𝑧 𝑧 <Q 𝑦)
61brel 4448 . . . . . . . . . . . . . . 15 (𝑧 <Q 𝑦 → (𝑧Q𝑦Q))
76simpld 110 . . . . . . . . . . . . . 14 (𝑧 <Q 𝑦𝑧Q)
8 ltaddnq 6869 . . . . . . . . . . . . . 14 ((𝐴Q𝑧Q) → 𝐴 <Q (𝐴 +Q 𝑧))
97, 8sylan2 280 . . . . . . . . . . . . 13 ((𝐴Q𝑧 <Q 𝑦) → 𝐴 <Q (𝐴 +Q 𝑧))
109ancoms 264 . . . . . . . . . . . 12 ((𝑧 <Q 𝑦𝐴Q) → 𝐴 <Q (𝐴 +Q 𝑧))
1110adantr 270 . . . . . . . . . . 11 (((𝑧 <Q 𝑦𝐴Q) ∧ (𝐴 +Q 𝑦) = 𝐵) → 𝐴 <Q (𝐴 +Q 𝑧))
12 ltanqi 6864 . . . . . . . . . . . . 13 ((𝑧 <Q 𝑦𝐴Q) → (𝐴 +Q 𝑧) <Q (𝐴 +Q 𝑦))
1312adantr 270 . . . . . . . . . . . 12 (((𝑧 <Q 𝑦𝐴Q) ∧ (𝐴 +Q 𝑦) = 𝐵) → (𝐴 +Q 𝑧) <Q (𝐴 +Q 𝑦))
14 breq2 3815 . . . . . . . . . . . . 13 ((𝐴 +Q 𝑦) = 𝐵 → ((𝐴 +Q 𝑧) <Q (𝐴 +Q 𝑦) ↔ (𝐴 +Q 𝑧) <Q 𝐵))
1514adantl 271 . . . . . . . . . . . 12 (((𝑧 <Q 𝑦𝐴Q) ∧ (𝐴 +Q 𝑦) = 𝐵) → ((𝐴 +Q 𝑧) <Q (𝐴 +Q 𝑦) ↔ (𝐴 +Q 𝑧) <Q 𝐵))
1613, 15mpbid 145 . . . . . . . . . . 11 (((𝑧 <Q 𝑦𝐴Q) ∧ (𝐴 +Q 𝑦) = 𝐵) → (𝐴 +Q 𝑧) <Q 𝐵)
17 addclnq 6837 . . . . . . . . . . . . . . 15 ((𝐴Q𝑧Q) → (𝐴 +Q 𝑧) ∈ Q)
187, 17sylan2 280 . . . . . . . . . . . . . 14 ((𝐴Q𝑧 <Q 𝑦) → (𝐴 +Q 𝑧) ∈ Q)
1918ancoms 264 . . . . . . . . . . . . 13 ((𝑧 <Q 𝑦𝐴Q) → (𝐴 +Q 𝑧) ∈ Q)
2019adantr 270 . . . . . . . . . . . 12 (((𝑧 <Q 𝑦𝐴Q) ∧ (𝐴 +Q 𝑦) = 𝐵) → (𝐴 +Q 𝑧) ∈ Q)
21 breq2 3815 . . . . . . . . . . . . . 14 (𝑥 = (𝐴 +Q 𝑧) → (𝐴 <Q 𝑥𝐴 <Q (𝐴 +Q 𝑧)))
22 breq1 3814 . . . . . . . . . . . . . 14 (𝑥 = (𝐴 +Q 𝑧) → (𝑥 <Q 𝐵 ↔ (𝐴 +Q 𝑧) <Q 𝐵))
2321, 22anbi12d 457 . . . . . . . . . . . . 13 (𝑥 = (𝐴 +Q 𝑧) → ((𝐴 <Q 𝑥𝑥 <Q 𝐵) ↔ (𝐴 <Q (𝐴 +Q 𝑧) ∧ (𝐴 +Q 𝑧) <Q 𝐵)))
2423adantl 271 . . . . . . . . . . . 12 ((((𝑧 <Q 𝑦𝐴Q) ∧ (𝐴 +Q 𝑦) = 𝐵) ∧ 𝑥 = (𝐴 +Q 𝑧)) → ((𝐴 <Q 𝑥𝑥 <Q 𝐵) ↔ (𝐴 <Q (𝐴 +Q 𝑧) ∧ (𝐴 +Q 𝑧) <Q 𝐵)))
2520, 24rspcedv 2716 . . . . . . . . . . 11 (((𝑧 <Q 𝑦𝐴Q) ∧ (𝐴 +Q 𝑦) = 𝐵) → ((𝐴 <Q (𝐴 +Q 𝑧) ∧ (𝐴 +Q 𝑧) <Q 𝐵) → ∃𝑥Q (𝐴 <Q 𝑥𝑥 <Q 𝐵)))
2611, 16, 25mp2and 424 . . . . . . . . . 10 (((𝑧 <Q 𝑦𝐴Q) ∧ (𝐴 +Q 𝑦) = 𝐵) → ∃𝑥Q (𝐴 <Q 𝑥𝑥 <Q 𝐵))
27263impa 1134 . . . . . . . . 9 ((𝑧 <Q 𝑦𝐴Q ∧ (𝐴 +Q 𝑦) = 𝐵) → ∃𝑥Q (𝐴 <Q 𝑥𝑥 <Q 𝐵))
28273coml 1146 . . . . . . . 8 ((𝐴Q ∧ (𝐴 +Q 𝑦) = 𝐵𝑧 <Q 𝑦) → ∃𝑥Q (𝐴 <Q 𝑥𝑥 <Q 𝐵))
29283expia 1141 . . . . . . 7 ((𝐴Q ∧ (𝐴 +Q 𝑦) = 𝐵) → (𝑧 <Q 𝑦 → ∃𝑥Q (𝐴 <Q 𝑥𝑥 <Q 𝐵)))
3029exlimdv 1742 . . . . . 6 ((𝐴Q ∧ (𝐴 +Q 𝑦) = 𝐵) → (∃𝑧 𝑧 <Q 𝑦 → ∃𝑥Q (𝐴 <Q 𝑥𝑥 <Q 𝐵)))
315, 30syl5 32 . . . . 5 ((𝐴Q ∧ (𝐴 +Q 𝑦) = 𝐵) → (𝑦Q → ∃𝑥Q (𝐴 <Q 𝑥𝑥 <Q 𝐵)))
3231impancom 256 . . . 4 ((𝐴Q𝑦Q) → ((𝐴 +Q 𝑦) = 𝐵 → ∃𝑥Q (𝐴 <Q 𝑥𝑥 <Q 𝐵)))
3332rexlimdva 2483 . . 3 (𝐴Q → (∃𝑦Q (𝐴 +Q 𝑦) = 𝐵 → ∃𝑥Q (𝐴 <Q 𝑥𝑥 <Q 𝐵)))
343, 4, 33sylc 61 . 2 (𝐴 <Q 𝐵 → ∃𝑥Q (𝐴 <Q 𝑥𝑥 <Q 𝐵))
35 ltsonq 6860 . . . 4 <Q Or Q
3635, 1sotri 4782 . . 3 ((𝐴 <Q 𝑥𝑥 <Q 𝐵) → 𝐴 <Q 𝐵)
3736rexlimivw 2479 . 2 (∃𝑥Q (𝐴 <Q 𝑥𝑥 <Q 𝐵) → 𝐴 <Q 𝐵)
3834, 37impbii 124 1 (𝐴 <Q 𝐵 ↔ ∃𝑥Q (𝐴 <Q 𝑥𝑥 <Q 𝐵))
Colors of variables: wff set class
Syntax hints:  wa 102  wb 103   = wceq 1285  wex 1422  wcel 1434  wrex 2354   class class class wbr 3811  (class class class)co 5591  Qcnq 6742   +Q cplq 6744   <Q cltq 6747
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3919  ax-sep 3922  ax-nul 3930  ax-pow 3974  ax-pr 4000  ax-un 4224  ax-setind 4316  ax-iinf 4366
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2614  df-sbc 2827  df-csb 2920  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-nul 3270  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-int 3663  df-iun 3706  df-br 3812  df-opab 3866  df-mpt 3867  df-tr 3902  df-eprel 4080  df-id 4084  df-po 4087  df-iso 4088  df-iord 4157  df-on 4159  df-suc 4162  df-iom 4369  df-xp 4407  df-rel 4408  df-cnv 4409  df-co 4410  df-dm 4411  df-rn 4412  df-res 4413  df-ima 4414  df-iota 4934  df-fun 4971  df-fn 4972  df-f 4973  df-f1 4974  df-fo 4975  df-f1o 4976  df-fv 4977  df-ov 5594  df-oprab 5595  df-mpt2 5596  df-1st 5846  df-2nd 5847  df-recs 6002  df-irdg 6067  df-1o 6113  df-oadd 6117  df-omul 6118  df-er 6222  df-ec 6224  df-qs 6228  df-ni 6766  df-pli 6767  df-mi 6768  df-lti 6769  df-plpq 6806  df-mpq 6807  df-enq 6809  df-nqqs 6810  df-plqqs 6811  df-mqqs 6812  df-1nqqs 6813  df-rq 6814  df-ltnqqs 6815
This theorem is referenced by:  ltbtwnnq  6878  nqprrnd  7005  appdivnq  7025  ltnqpr  7055  ltnqpri  7056  recexprlemopl  7087  recexprlemopu  7089  cauappcvgprlemopl  7108  cauappcvgprlemopu  7110  cauappcvgprlem2  7122  caucvgprlemopl  7131  caucvgprlemopu  7133  caucvgprlem2  7142
  Copyright terms: Public domain W3C validator