ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltbtwnnqq GIF version

Theorem ltbtwnnqq 7530
Description: There exists a number between any two positive fractions. Proposition 9-2.6(i) of [Gleason] p. 120. (Contributed by Jim Kingdon, 24-Sep-2019.)
Assertion
Ref Expression
ltbtwnnqq (𝐴 <Q 𝐵 ↔ ∃𝑥Q (𝐴 <Q 𝑥𝑥 <Q 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem ltbtwnnqq
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelnq 7480 . . . . 5 <Q ⊆ (Q × Q)
21brel 4728 . . . 4 (𝐴 <Q 𝐵 → (𝐴Q𝐵Q))
32simpld 112 . . 3 (𝐴 <Q 𝐵𝐴Q)
4 ltexnqi 7524 . . 3 (𝐴 <Q 𝐵 → ∃𝑦Q (𝐴 +Q 𝑦) = 𝐵)
5 nsmallnq 7528 . . . . . 6 (𝑦Q → ∃𝑧 𝑧 <Q 𝑦)
61brel 4728 . . . . . . . . . . . . . . 15 (𝑧 <Q 𝑦 → (𝑧Q𝑦Q))
76simpld 112 . . . . . . . . . . . . . 14 (𝑧 <Q 𝑦𝑧Q)
8 ltaddnq 7522 . . . . . . . . . . . . . 14 ((𝐴Q𝑧Q) → 𝐴 <Q (𝐴 +Q 𝑧))
97, 8sylan2 286 . . . . . . . . . . . . 13 ((𝐴Q𝑧 <Q 𝑦) → 𝐴 <Q (𝐴 +Q 𝑧))
109ancoms 268 . . . . . . . . . . . 12 ((𝑧 <Q 𝑦𝐴Q) → 𝐴 <Q (𝐴 +Q 𝑧))
1110adantr 276 . . . . . . . . . . 11 (((𝑧 <Q 𝑦𝐴Q) ∧ (𝐴 +Q 𝑦) = 𝐵) → 𝐴 <Q (𝐴 +Q 𝑧))
12 ltanqi 7517 . . . . . . . . . . . . 13 ((𝑧 <Q 𝑦𝐴Q) → (𝐴 +Q 𝑧) <Q (𝐴 +Q 𝑦))
1312adantr 276 . . . . . . . . . . . 12 (((𝑧 <Q 𝑦𝐴Q) ∧ (𝐴 +Q 𝑦) = 𝐵) → (𝐴 +Q 𝑧) <Q (𝐴 +Q 𝑦))
14 breq2 4049 . . . . . . . . . . . . 13 ((𝐴 +Q 𝑦) = 𝐵 → ((𝐴 +Q 𝑧) <Q (𝐴 +Q 𝑦) ↔ (𝐴 +Q 𝑧) <Q 𝐵))
1514adantl 277 . . . . . . . . . . . 12 (((𝑧 <Q 𝑦𝐴Q) ∧ (𝐴 +Q 𝑦) = 𝐵) → ((𝐴 +Q 𝑧) <Q (𝐴 +Q 𝑦) ↔ (𝐴 +Q 𝑧) <Q 𝐵))
1613, 15mpbid 147 . . . . . . . . . . 11 (((𝑧 <Q 𝑦𝐴Q) ∧ (𝐴 +Q 𝑦) = 𝐵) → (𝐴 +Q 𝑧) <Q 𝐵)
17 addclnq 7490 . . . . . . . . . . . . . . 15 ((𝐴Q𝑧Q) → (𝐴 +Q 𝑧) ∈ Q)
187, 17sylan2 286 . . . . . . . . . . . . . 14 ((𝐴Q𝑧 <Q 𝑦) → (𝐴 +Q 𝑧) ∈ Q)
1918ancoms 268 . . . . . . . . . . . . 13 ((𝑧 <Q 𝑦𝐴Q) → (𝐴 +Q 𝑧) ∈ Q)
2019adantr 276 . . . . . . . . . . . 12 (((𝑧 <Q 𝑦𝐴Q) ∧ (𝐴 +Q 𝑦) = 𝐵) → (𝐴 +Q 𝑧) ∈ Q)
21 breq2 4049 . . . . . . . . . . . . . 14 (𝑥 = (𝐴 +Q 𝑧) → (𝐴 <Q 𝑥𝐴 <Q (𝐴 +Q 𝑧)))
22 breq1 4048 . . . . . . . . . . . . . 14 (𝑥 = (𝐴 +Q 𝑧) → (𝑥 <Q 𝐵 ↔ (𝐴 +Q 𝑧) <Q 𝐵))
2321, 22anbi12d 473 . . . . . . . . . . . . 13 (𝑥 = (𝐴 +Q 𝑧) → ((𝐴 <Q 𝑥𝑥 <Q 𝐵) ↔ (𝐴 <Q (𝐴 +Q 𝑧) ∧ (𝐴 +Q 𝑧) <Q 𝐵)))
2423adantl 277 . . . . . . . . . . . 12 ((((𝑧 <Q 𝑦𝐴Q) ∧ (𝐴 +Q 𝑦) = 𝐵) ∧ 𝑥 = (𝐴 +Q 𝑧)) → ((𝐴 <Q 𝑥𝑥 <Q 𝐵) ↔ (𝐴 <Q (𝐴 +Q 𝑧) ∧ (𝐴 +Q 𝑧) <Q 𝐵)))
2520, 24rspcedv 2881 . . . . . . . . . . 11 (((𝑧 <Q 𝑦𝐴Q) ∧ (𝐴 +Q 𝑦) = 𝐵) → ((𝐴 <Q (𝐴 +Q 𝑧) ∧ (𝐴 +Q 𝑧) <Q 𝐵) → ∃𝑥Q (𝐴 <Q 𝑥𝑥 <Q 𝐵)))
2611, 16, 25mp2and 433 . . . . . . . . . 10 (((𝑧 <Q 𝑦𝐴Q) ∧ (𝐴 +Q 𝑦) = 𝐵) → ∃𝑥Q (𝐴 <Q 𝑥𝑥 <Q 𝐵))
27263impa 1197 . . . . . . . . 9 ((𝑧 <Q 𝑦𝐴Q ∧ (𝐴 +Q 𝑦) = 𝐵) → ∃𝑥Q (𝐴 <Q 𝑥𝑥 <Q 𝐵))
28273coml 1213 . . . . . . . 8 ((𝐴Q ∧ (𝐴 +Q 𝑦) = 𝐵𝑧 <Q 𝑦) → ∃𝑥Q (𝐴 <Q 𝑥𝑥 <Q 𝐵))
29283expia 1208 . . . . . . 7 ((𝐴Q ∧ (𝐴 +Q 𝑦) = 𝐵) → (𝑧 <Q 𝑦 → ∃𝑥Q (𝐴 <Q 𝑥𝑥 <Q 𝐵)))
3029exlimdv 1842 . . . . . 6 ((𝐴Q ∧ (𝐴 +Q 𝑦) = 𝐵) → (∃𝑧 𝑧 <Q 𝑦 → ∃𝑥Q (𝐴 <Q 𝑥𝑥 <Q 𝐵)))
315, 30syl5 32 . . . . 5 ((𝐴Q ∧ (𝐴 +Q 𝑦) = 𝐵) → (𝑦Q → ∃𝑥Q (𝐴 <Q 𝑥𝑥 <Q 𝐵)))
3231impancom 260 . . . 4 ((𝐴Q𝑦Q) → ((𝐴 +Q 𝑦) = 𝐵 → ∃𝑥Q (𝐴 <Q 𝑥𝑥 <Q 𝐵)))
3332rexlimdva 2623 . . 3 (𝐴Q → (∃𝑦Q (𝐴 +Q 𝑦) = 𝐵 → ∃𝑥Q (𝐴 <Q 𝑥𝑥 <Q 𝐵)))
343, 4, 33sylc 62 . 2 (𝐴 <Q 𝐵 → ∃𝑥Q (𝐴 <Q 𝑥𝑥 <Q 𝐵))
35 ltsonq 7513 . . . 4 <Q Or Q
3635, 1sotri 5079 . . 3 ((𝐴 <Q 𝑥𝑥 <Q 𝐵) → 𝐴 <Q 𝐵)
3736rexlimivw 2619 . 2 (∃𝑥Q (𝐴 <Q 𝑥𝑥 <Q 𝐵) → 𝐴 <Q 𝐵)
3834, 37impbii 126 1 (𝐴 <Q 𝐵 ↔ ∃𝑥Q (𝐴 <Q 𝑥𝑥 <Q 𝐵))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1373  wex 1515  wcel 2176  wrex 2485   class class class wbr 4045  (class class class)co 5946  Qcnq 7395   +Q cplq 7397   <Q cltq 7400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-eprel 4337  df-id 4341  df-po 4344  df-iso 4345  df-iord 4414  df-on 4416  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-recs 6393  df-irdg 6458  df-1o 6504  df-oadd 6508  df-omul 6509  df-er 6622  df-ec 6624  df-qs 6628  df-ni 7419  df-pli 7420  df-mi 7421  df-lti 7422  df-plpq 7459  df-mpq 7460  df-enq 7462  df-nqqs 7463  df-plqqs 7464  df-mqqs 7465  df-1nqqs 7466  df-rq 7467  df-ltnqqs 7468
This theorem is referenced by:  ltbtwnnq  7531  nqprrnd  7658  appdivnq  7678  ltnqpr  7708  ltnqpri  7709  recexprlemopl  7740  recexprlemopu  7742  cauappcvgprlemopl  7761  cauappcvgprlemopu  7763  cauappcvgprlem2  7775  caucvgprlemopl  7784  caucvgprlemopu  7786  caucvgprlem2  7795  suplocexprlemru  7834  suplocexprlemloc  7836
  Copyright terms: Public domain W3C validator