ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zextle GIF version

Theorem zextle 9534
Description: An extensionality-like property for integer ordering. (Contributed by NM, 29-Oct-2005.)
Assertion
Ref Expression
zextle ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ∀𝑘 ∈ ℤ (𝑘𝑀𝑘𝑁)) → 𝑀 = 𝑁)
Distinct variable groups:   𝑘,𝑀   𝑘,𝑁

Proof of Theorem zextle
StepHypRef Expression
1 zre 9446 . . . . . . . . 9 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
21leidd 8657 . . . . . . . 8 (𝑀 ∈ ℤ → 𝑀𝑀)
32adantr 276 . . . . . . 7 ((𝑀 ∈ ℤ ∧ ∀𝑘 ∈ ℤ (𝑘𝑀𝑘𝑁)) → 𝑀𝑀)
4 breq1 4085 . . . . . . . . 9 (𝑘 = 𝑀 → (𝑘𝑀𝑀𝑀))
5 breq1 4085 . . . . . . . . 9 (𝑘 = 𝑀 → (𝑘𝑁𝑀𝑁))
64, 5bibi12d 235 . . . . . . . 8 (𝑘 = 𝑀 → ((𝑘𝑀𝑘𝑁) ↔ (𝑀𝑀𝑀𝑁)))
76rspcva 2905 . . . . . . 7 ((𝑀 ∈ ℤ ∧ ∀𝑘 ∈ ℤ (𝑘𝑀𝑘𝑁)) → (𝑀𝑀𝑀𝑁))
83, 7mpbid 147 . . . . . 6 ((𝑀 ∈ ℤ ∧ ∀𝑘 ∈ ℤ (𝑘𝑀𝑘𝑁)) → 𝑀𝑁)
98adantlr 477 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ∀𝑘 ∈ ℤ (𝑘𝑀𝑘𝑁)) → 𝑀𝑁)
10 zre 9446 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
1110leidd 8657 . . . . . . . 8 (𝑁 ∈ ℤ → 𝑁𝑁)
1211adantr 276 . . . . . . 7 ((𝑁 ∈ ℤ ∧ ∀𝑘 ∈ ℤ (𝑘𝑀𝑘𝑁)) → 𝑁𝑁)
13 breq1 4085 . . . . . . . . 9 (𝑘 = 𝑁 → (𝑘𝑀𝑁𝑀))
14 breq1 4085 . . . . . . . . 9 (𝑘 = 𝑁 → (𝑘𝑁𝑁𝑁))
1513, 14bibi12d 235 . . . . . . . 8 (𝑘 = 𝑁 → ((𝑘𝑀𝑘𝑁) ↔ (𝑁𝑀𝑁𝑁)))
1615rspcva 2905 . . . . . . 7 ((𝑁 ∈ ℤ ∧ ∀𝑘 ∈ ℤ (𝑘𝑀𝑘𝑁)) → (𝑁𝑀𝑁𝑁))
1712, 16mpbird 167 . . . . . 6 ((𝑁 ∈ ℤ ∧ ∀𝑘 ∈ ℤ (𝑘𝑀𝑘𝑁)) → 𝑁𝑀)
1817adantll 476 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ∀𝑘 ∈ ℤ (𝑘𝑀𝑘𝑁)) → 𝑁𝑀)
199, 18jca 306 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ∀𝑘 ∈ ℤ (𝑘𝑀𝑘𝑁)) → (𝑀𝑁𝑁𝑀))
2019ex 115 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (∀𝑘 ∈ ℤ (𝑘𝑀𝑘𝑁) → (𝑀𝑁𝑁𝑀)))
21 letri3 8223 . . . 4 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 = 𝑁 ↔ (𝑀𝑁𝑁𝑀)))
221, 10, 21syl2an 289 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 = 𝑁 ↔ (𝑀𝑁𝑁𝑀)))
2320, 22sylibrd 169 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (∀𝑘 ∈ ℤ (𝑘𝑀𝑘𝑁) → 𝑀 = 𝑁))
24233impia 1224 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ∀𝑘 ∈ ℤ (𝑘𝑀𝑘𝑁)) → 𝑀 = 𝑁)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 1002   = wceq 1395  wcel 2200  wral 2508   class class class wbr 4082  cr 7994  cle 8178  cz 9442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-pre-ltirr 8107  ax-pre-apti 8110
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-xp 4724  df-cnv 4726  df-iota 5277  df-fv 5325  df-ov 6003  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-neg 8316  df-z 9443
This theorem is referenced by:  zextlt  9535
  Copyright terms: Public domain W3C validator