| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvdsext | GIF version | ||
| Description: Poset extensionality for division. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
| Ref | Expression |
|---|---|
| dvdsext | ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → (𝐴 = 𝐵 ↔ ∀𝑥 ∈ ℕ0 (𝐴 ∥ 𝑥 ↔ 𝐵 ∥ 𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 4048 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 ∥ 𝑥 ↔ 𝐵 ∥ 𝑥)) | |
| 2 | 1 | ralrimivw 2580 | . 2 ⊢ (𝐴 = 𝐵 → ∀𝑥 ∈ ℕ0 (𝐴 ∥ 𝑥 ↔ 𝐵 ∥ 𝑥)) |
| 3 | simpll 527 | . . . 4 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝐴 ∥ 𝑥 ↔ 𝐵 ∥ 𝑥)) → 𝐴 ∈ ℕ0) | |
| 4 | simplr 528 | . . . 4 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝐴 ∥ 𝑥 ↔ 𝐵 ∥ 𝑥)) → 𝐵 ∈ ℕ0) | |
| 5 | nn0z 9394 | . . . . . . 7 ⊢ (𝐵 ∈ ℕ0 → 𝐵 ∈ ℤ) | |
| 6 | iddvds 12148 | . . . . . . 7 ⊢ (𝐵 ∈ ℤ → 𝐵 ∥ 𝐵) | |
| 7 | 5, 6 | syl 14 | . . . . . 6 ⊢ (𝐵 ∈ ℕ0 → 𝐵 ∥ 𝐵) |
| 8 | 7 | ad2antlr 489 | . . . . 5 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝐴 ∥ 𝑥 ↔ 𝐵 ∥ 𝑥)) → 𝐵 ∥ 𝐵) |
| 9 | breq2 4049 | . . . . . . . 8 ⊢ (𝑥 = 𝐵 → (𝐴 ∥ 𝑥 ↔ 𝐴 ∥ 𝐵)) | |
| 10 | breq2 4049 | . . . . . . . 8 ⊢ (𝑥 = 𝐵 → (𝐵 ∥ 𝑥 ↔ 𝐵 ∥ 𝐵)) | |
| 11 | 9, 10 | bibi12d 235 | . . . . . . 7 ⊢ (𝑥 = 𝐵 → ((𝐴 ∥ 𝑥 ↔ 𝐵 ∥ 𝑥) ↔ (𝐴 ∥ 𝐵 ↔ 𝐵 ∥ 𝐵))) |
| 12 | 11 | rspcva 2875 | . . . . . 6 ⊢ ((𝐵 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝐴 ∥ 𝑥 ↔ 𝐵 ∥ 𝑥)) → (𝐴 ∥ 𝐵 ↔ 𝐵 ∥ 𝐵)) |
| 13 | 12 | adantll 476 | . . . . 5 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝐴 ∥ 𝑥 ↔ 𝐵 ∥ 𝑥)) → (𝐴 ∥ 𝐵 ↔ 𝐵 ∥ 𝐵)) |
| 14 | 8, 13 | mpbird 167 | . . . 4 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝐴 ∥ 𝑥 ↔ 𝐵 ∥ 𝑥)) → 𝐴 ∥ 𝐵) |
| 15 | nn0z 9394 | . . . . . . 7 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℤ) | |
| 16 | iddvds 12148 | . . . . . . 7 ⊢ (𝐴 ∈ ℤ → 𝐴 ∥ 𝐴) | |
| 17 | 15, 16 | syl 14 | . . . . . 6 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∥ 𝐴) |
| 18 | 17 | ad2antrr 488 | . . . . 5 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝐴 ∥ 𝑥 ↔ 𝐵 ∥ 𝑥)) → 𝐴 ∥ 𝐴) |
| 19 | breq2 4049 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → (𝐴 ∥ 𝑥 ↔ 𝐴 ∥ 𝐴)) | |
| 20 | breq2 4049 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → (𝐵 ∥ 𝑥 ↔ 𝐵 ∥ 𝐴)) | |
| 21 | 19, 20 | bibi12d 235 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → ((𝐴 ∥ 𝑥 ↔ 𝐵 ∥ 𝑥) ↔ (𝐴 ∥ 𝐴 ↔ 𝐵 ∥ 𝐴))) |
| 22 | 21 | rspcva 2875 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝐴 ∥ 𝑥 ↔ 𝐵 ∥ 𝑥)) → (𝐴 ∥ 𝐴 ↔ 𝐵 ∥ 𝐴)) |
| 23 | 22 | adantlr 477 | . . . . 5 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝐴 ∥ 𝑥 ↔ 𝐵 ∥ 𝑥)) → (𝐴 ∥ 𝐴 ↔ 𝐵 ∥ 𝐴)) |
| 24 | 18, 23 | mpbid 147 | . . . 4 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝐴 ∥ 𝑥 ↔ 𝐵 ∥ 𝑥)) → 𝐵 ∥ 𝐴) |
| 25 | dvdseq 12192 | . . . 4 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ (𝐴 ∥ 𝐵 ∧ 𝐵 ∥ 𝐴)) → 𝐴 = 𝐵) | |
| 26 | 3, 4, 14, 24, 25 | syl22anc 1251 | . . 3 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝐴 ∥ 𝑥 ↔ 𝐵 ∥ 𝑥)) → 𝐴 = 𝐵) |
| 27 | 26 | ex 115 | . 2 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → (∀𝑥 ∈ ℕ0 (𝐴 ∥ 𝑥 ↔ 𝐵 ∥ 𝑥) → 𝐴 = 𝐵)) |
| 28 | 2, 27 | impbid2 143 | 1 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → (𝐴 = 𝐵 ↔ ∀𝑥 ∈ ℕ0 (𝐴 ∥ 𝑥 ↔ 𝐵 ∥ 𝑥))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2176 ∀wral 2484 class class class wbr 4045 ℕ0cn0 9297 ℤcz 9374 ∥ cdvds 12131 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4160 ax-sep 4163 ax-nul 4171 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-iinf 4637 ax-cnex 8018 ax-resscn 8019 ax-1cn 8020 ax-1re 8021 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-mulrcl 8026 ax-addcom 8027 ax-mulcom 8028 ax-addass 8029 ax-mulass 8030 ax-distr 8031 ax-i2m1 8032 ax-0lt1 8033 ax-1rid 8034 ax-0id 8035 ax-rnegex 8036 ax-precex 8037 ax-cnre 8038 ax-pre-ltirr 8039 ax-pre-ltwlin 8040 ax-pre-lttrn 8041 ax-pre-apti 8042 ax-pre-ltadd 8043 ax-pre-mulgt0 8044 ax-pre-mulext 8045 ax-arch 8046 ax-caucvg 8047 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4046 df-opab 4107 df-mpt 4108 df-tr 4144 df-id 4341 df-po 4344 df-iso 4345 df-iord 4414 df-on 4416 df-ilim 4417 df-suc 4419 df-iom 4640 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-fv 5280 df-riota 5901 df-ov 5949 df-oprab 5950 df-mpo 5951 df-1st 6228 df-2nd 6229 df-recs 6393 df-frec 6479 df-pnf 8111 df-mnf 8112 df-xr 8113 df-ltxr 8114 df-le 8115 df-sub 8247 df-neg 8248 df-reap 8650 df-ap 8657 df-div 8748 df-inn 9039 df-2 9097 df-3 9098 df-4 9099 df-n0 9298 df-z 9375 df-uz 9651 df-q 9743 df-rp 9778 df-seqfrec 10595 df-exp 10686 df-cj 11186 df-re 11187 df-im 11188 df-rsqrt 11342 df-abs 11343 df-dvds 12132 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |