ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  squeeze0 GIF version

Theorem squeeze0 8686
Description: If a nonnegative number is less than any positive number, it is zero. (Contributed by NM, 11-Feb-2006.)
Assertion
Ref Expression
squeeze0 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℝ (0 < 𝑥𝐴 < 𝑥)) → 𝐴 = 0)
Distinct variable group:   𝑥,𝐴

Proof of Theorem squeeze0
StepHypRef Expression
1 ltnr 7865 . . . . 5 (𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴)
213ad2ant1 1003 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℝ (0 < 𝑥𝐴 < 𝑥)) → ¬ 𝐴 < 𝐴)
3 breq2 3941 . . . . . . 7 (𝑥 = 𝐴 → (0 < 𝑥 ↔ 0 < 𝐴))
4 breq2 3941 . . . . . . 7 (𝑥 = 𝐴 → (𝐴 < 𝑥𝐴 < 𝐴))
53, 4imbi12d 233 . . . . . 6 (𝑥 = 𝐴 → ((0 < 𝑥𝐴 < 𝑥) ↔ (0 < 𝐴𝐴 < 𝐴)))
65rspcva 2791 . . . . 5 ((𝐴 ∈ ℝ ∧ ∀𝑥 ∈ ℝ (0 < 𝑥𝐴 < 𝑥)) → (0 < 𝐴𝐴 < 𝐴))
763adant2 1001 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℝ (0 < 𝑥𝐴 < 𝑥)) → (0 < 𝐴𝐴 < 𝐴))
82, 7mtod 653 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℝ (0 < 𝑥𝐴 < 𝑥)) → ¬ 0 < 𝐴)
9 simp1 982 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℝ (0 < 𝑥𝐴 < 𝑥)) → 𝐴 ∈ ℝ)
10 0red 7791 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℝ (0 < 𝑥𝐴 < 𝑥)) → 0 ∈ ℝ)
119, 10lenltd 7904 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℝ (0 < 𝑥𝐴 < 𝑥)) → (𝐴 ≤ 0 ↔ ¬ 0 < 𝐴))
128, 11mpbird 166 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℝ (0 < 𝑥𝐴 < 𝑥)) → 𝐴 ≤ 0)
13 simp2 983 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℝ (0 < 𝑥𝐴 < 𝑥)) → 0 ≤ 𝐴)
149, 10letri3d 7903 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℝ (0 < 𝑥𝐴 < 𝑥)) → (𝐴 = 0 ↔ (𝐴 ≤ 0 ∧ 0 ≤ 𝐴)))
1512, 13, 14mpbir2and 929 1 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℝ (0 < 𝑥𝐴 < 𝑥)) → 𝐴 = 0)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  w3a 963   = wceq 1332  wcel 1481  wral 2417   class class class wbr 3937  cr 7643  0cc0 7644   < clt 7824  cle 7825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1re 7738  ax-addrcl 7741  ax-rnegex 7753  ax-pre-ltirr 7756  ax-pre-apti 7759
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2691  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-xp 4553  df-cnv 4555  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator