ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  squeeze0 GIF version

Theorem squeeze0 8864
Description: If a nonnegative number is less than any positive number, it is zero. (Contributed by NM, 11-Feb-2006.)
Assertion
Ref Expression
squeeze0 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℝ (0 < 𝑥𝐴 < 𝑥)) → 𝐴 = 0)
Distinct variable group:   𝑥,𝐴

Proof of Theorem squeeze0
StepHypRef Expression
1 ltnr 8037 . . . . 5 (𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴)
213ad2ant1 1018 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℝ (0 < 𝑥𝐴 < 𝑥)) → ¬ 𝐴 < 𝐴)
3 breq2 4009 . . . . . . 7 (𝑥 = 𝐴 → (0 < 𝑥 ↔ 0 < 𝐴))
4 breq2 4009 . . . . . . 7 (𝑥 = 𝐴 → (𝐴 < 𝑥𝐴 < 𝐴))
53, 4imbi12d 234 . . . . . 6 (𝑥 = 𝐴 → ((0 < 𝑥𝐴 < 𝑥) ↔ (0 < 𝐴𝐴 < 𝐴)))
65rspcva 2841 . . . . 5 ((𝐴 ∈ ℝ ∧ ∀𝑥 ∈ ℝ (0 < 𝑥𝐴 < 𝑥)) → (0 < 𝐴𝐴 < 𝐴))
763adant2 1016 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℝ (0 < 𝑥𝐴 < 𝑥)) → (0 < 𝐴𝐴 < 𝐴))
82, 7mtod 663 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℝ (0 < 𝑥𝐴 < 𝑥)) → ¬ 0 < 𝐴)
9 simp1 997 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℝ (0 < 𝑥𝐴 < 𝑥)) → 𝐴 ∈ ℝ)
10 0red 7961 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℝ (0 < 𝑥𝐴 < 𝑥)) → 0 ∈ ℝ)
119, 10lenltd 8078 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℝ (0 < 𝑥𝐴 < 𝑥)) → (𝐴 ≤ 0 ↔ ¬ 0 < 𝐴))
128, 11mpbird 167 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℝ (0 < 𝑥𝐴 < 𝑥)) → 𝐴 ≤ 0)
13 simp2 998 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℝ (0 < 𝑥𝐴 < 𝑥)) → 0 ≤ 𝐴)
149, 10letri3d 8076 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℝ (0 < 𝑥𝐴 < 𝑥)) → (𝐴 = 0 ↔ (𝐴 ≤ 0 ∧ 0 ≤ 𝐴)))
1512, 13, 14mpbir2and 944 1 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℝ (0 < 𝑥𝐴 < 𝑥)) → 𝐴 = 0)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  w3a 978   = wceq 1353  wcel 2148  wral 2455   class class class wbr 4005  cr 7813  0cc0 7814   < clt 7995  cle 7996
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7905  ax-resscn 7906  ax-1re 7908  ax-addrcl 7911  ax-rnegex 7923  ax-pre-ltirr 7926  ax-pre-apti 7929
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-xp 4634  df-cnv 4636  df-pnf 7997  df-mnf 7998  df-xr 7999  df-ltxr 8000  df-le 8001
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator