![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > squeeze0 | GIF version |
Description: If a nonnegative number is less than any positive number, it is zero. (Contributed by NM, 11-Feb-2006.) |
Ref | Expression |
---|---|
squeeze0 | ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℝ (0 < 𝑥 → 𝐴 < 𝑥)) → 𝐴 = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltnr 8098 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴) | |
2 | 1 | 3ad2ant1 1020 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℝ (0 < 𝑥 → 𝐴 < 𝑥)) → ¬ 𝐴 < 𝐴) |
3 | breq2 4034 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (0 < 𝑥 ↔ 0 < 𝐴)) | |
4 | breq2 4034 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝐴 < 𝑥 ↔ 𝐴 < 𝐴)) | |
5 | 3, 4 | imbi12d 234 | . . . . . 6 ⊢ (𝑥 = 𝐴 → ((0 < 𝑥 → 𝐴 < 𝑥) ↔ (0 < 𝐴 → 𝐴 < 𝐴))) |
6 | 5 | rspcva 2863 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ ∀𝑥 ∈ ℝ (0 < 𝑥 → 𝐴 < 𝑥)) → (0 < 𝐴 → 𝐴 < 𝐴)) |
7 | 6 | 3adant2 1018 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℝ (0 < 𝑥 → 𝐴 < 𝑥)) → (0 < 𝐴 → 𝐴 < 𝐴)) |
8 | 2, 7 | mtod 664 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℝ (0 < 𝑥 → 𝐴 < 𝑥)) → ¬ 0 < 𝐴) |
9 | simp1 999 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℝ (0 < 𝑥 → 𝐴 < 𝑥)) → 𝐴 ∈ ℝ) | |
10 | 0red 8022 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℝ (0 < 𝑥 → 𝐴 < 𝑥)) → 0 ∈ ℝ) | |
11 | 9, 10 | lenltd 8139 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℝ (0 < 𝑥 → 𝐴 < 𝑥)) → (𝐴 ≤ 0 ↔ ¬ 0 < 𝐴)) |
12 | 8, 11 | mpbird 167 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℝ (0 < 𝑥 → 𝐴 < 𝑥)) → 𝐴 ≤ 0) |
13 | simp2 1000 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℝ (0 < 𝑥 → 𝐴 < 𝑥)) → 0 ≤ 𝐴) | |
14 | 9, 10 | letri3d 8137 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℝ (0 < 𝑥 → 𝐴 < 𝑥)) → (𝐴 = 0 ↔ (𝐴 ≤ 0 ∧ 0 ≤ 𝐴))) |
15 | 12, 13, 14 | mpbir2and 946 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℝ (0 < 𝑥 → 𝐴 < 𝑥)) → 𝐴 = 0) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ w3a 980 = wceq 1364 ∈ wcel 2164 ∀wral 2472 class class class wbr 4030 ℝcr 7873 0cc0 7874 < clt 8056 ≤ cle 8057 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1re 7968 ax-addrcl 7971 ax-rnegex 7983 ax-pre-ltirr 7986 ax-pre-apti 7989 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-xp 4666 df-cnv 4668 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |