ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  un0addcl GIF version

Theorem un0addcl 9299
Description: If 𝑆 is closed under addition, then so is 𝑆 ∪ {0}. (Contributed by Mario Carneiro, 17-Jul-2014.)
Hypotheses
Ref Expression
un0addcl.1 (𝜑𝑆 ⊆ ℂ)
un0addcl.2 𝑇 = (𝑆 ∪ {0})
un0addcl.3 ((𝜑 ∧ (𝑀𝑆𝑁𝑆)) → (𝑀 + 𝑁) ∈ 𝑆)
Assertion
Ref Expression
un0addcl ((𝜑 ∧ (𝑀𝑇𝑁𝑇)) → (𝑀 + 𝑁) ∈ 𝑇)

Proof of Theorem un0addcl
StepHypRef Expression
1 un0addcl.2 . . . . 5 𝑇 = (𝑆 ∪ {0})
21eleq2i 2263 . . . 4 (𝑁𝑇𝑁 ∈ (𝑆 ∪ {0}))
3 elun 3305 . . . 4 (𝑁 ∈ (𝑆 ∪ {0}) ↔ (𝑁𝑆𝑁 ∈ {0}))
42, 3bitri 184 . . 3 (𝑁𝑇 ↔ (𝑁𝑆𝑁 ∈ {0}))
51eleq2i 2263 . . . . . 6 (𝑀𝑇𝑀 ∈ (𝑆 ∪ {0}))
6 elun 3305 . . . . . 6 (𝑀 ∈ (𝑆 ∪ {0}) ↔ (𝑀𝑆𝑀 ∈ {0}))
75, 6bitri 184 . . . . 5 (𝑀𝑇 ↔ (𝑀𝑆𝑀 ∈ {0}))
8 ssun1 3327 . . . . . . . . 9 𝑆 ⊆ (𝑆 ∪ {0})
98, 1sseqtrri 3219 . . . . . . . 8 𝑆𝑇
10 un0addcl.3 . . . . . . . 8 ((𝜑 ∧ (𝑀𝑆𝑁𝑆)) → (𝑀 + 𝑁) ∈ 𝑆)
119, 10sselid 3182 . . . . . . 7 ((𝜑 ∧ (𝑀𝑆𝑁𝑆)) → (𝑀 + 𝑁) ∈ 𝑇)
1211expr 375 . . . . . 6 ((𝜑𝑀𝑆) → (𝑁𝑆 → (𝑀 + 𝑁) ∈ 𝑇))
13 un0addcl.1 . . . . . . . . . . 11 (𝜑𝑆 ⊆ ℂ)
1413sselda 3184 . . . . . . . . . 10 ((𝜑𝑁𝑆) → 𝑁 ∈ ℂ)
1514addlidd 8193 . . . . . . . . 9 ((𝜑𝑁𝑆) → (0 + 𝑁) = 𝑁)
169a1i 9 . . . . . . . . . 10 (𝜑𝑆𝑇)
1716sselda 3184 . . . . . . . . 9 ((𝜑𝑁𝑆) → 𝑁𝑇)
1815, 17eqeltrd 2273 . . . . . . . 8 ((𝜑𝑁𝑆) → (0 + 𝑁) ∈ 𝑇)
19 elsni 3641 . . . . . . . . . 10 (𝑀 ∈ {0} → 𝑀 = 0)
2019oveq1d 5940 . . . . . . . . 9 (𝑀 ∈ {0} → (𝑀 + 𝑁) = (0 + 𝑁))
2120eleq1d 2265 . . . . . . . 8 (𝑀 ∈ {0} → ((𝑀 + 𝑁) ∈ 𝑇 ↔ (0 + 𝑁) ∈ 𝑇))
2218, 21syl5ibrcom 157 . . . . . . 7 ((𝜑𝑁𝑆) → (𝑀 ∈ {0} → (𝑀 + 𝑁) ∈ 𝑇))
2322impancom 260 . . . . . 6 ((𝜑𝑀 ∈ {0}) → (𝑁𝑆 → (𝑀 + 𝑁) ∈ 𝑇))
2412, 23jaodan 798 . . . . 5 ((𝜑 ∧ (𝑀𝑆𝑀 ∈ {0})) → (𝑁𝑆 → (𝑀 + 𝑁) ∈ 𝑇))
257, 24sylan2b 287 . . . 4 ((𝜑𝑀𝑇) → (𝑁𝑆 → (𝑀 + 𝑁) ∈ 𝑇))
26 0cnd 8036 . . . . . . . . . . 11 (𝜑 → 0 ∈ ℂ)
2726snssd 3768 . . . . . . . . . 10 (𝜑 → {0} ⊆ ℂ)
2813, 27unssd 3340 . . . . . . . . 9 (𝜑 → (𝑆 ∪ {0}) ⊆ ℂ)
291, 28eqsstrid 3230 . . . . . . . 8 (𝜑𝑇 ⊆ ℂ)
3029sselda 3184 . . . . . . 7 ((𝜑𝑀𝑇) → 𝑀 ∈ ℂ)
3130addridd 8192 . . . . . 6 ((𝜑𝑀𝑇) → (𝑀 + 0) = 𝑀)
32 simpr 110 . . . . . 6 ((𝜑𝑀𝑇) → 𝑀𝑇)
3331, 32eqeltrd 2273 . . . . 5 ((𝜑𝑀𝑇) → (𝑀 + 0) ∈ 𝑇)
34 elsni 3641 . . . . . . 7 (𝑁 ∈ {0} → 𝑁 = 0)
3534oveq2d 5941 . . . . . 6 (𝑁 ∈ {0} → (𝑀 + 𝑁) = (𝑀 + 0))
3635eleq1d 2265 . . . . 5 (𝑁 ∈ {0} → ((𝑀 + 𝑁) ∈ 𝑇 ↔ (𝑀 + 0) ∈ 𝑇))
3733, 36syl5ibrcom 157 . . . 4 ((𝜑𝑀𝑇) → (𝑁 ∈ {0} → (𝑀 + 𝑁) ∈ 𝑇))
3825, 37jaod 718 . . 3 ((𝜑𝑀𝑇) → ((𝑁𝑆𝑁 ∈ {0}) → (𝑀 + 𝑁) ∈ 𝑇))
394, 38biimtrid 152 . 2 ((𝜑𝑀𝑇) → (𝑁𝑇 → (𝑀 + 𝑁) ∈ 𝑇))
4039impr 379 1 ((𝜑 ∧ (𝑀𝑇𝑁𝑇)) → (𝑀 + 𝑁) ∈ 𝑇)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 709   = wceq 1364  wcel 2167  cun 3155  wss 3157  {csn 3623  (class class class)co 5925  cc 7894  0cc0 7896   + caddc 7899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-1cn 7989  ax-icn 7991  ax-addcl 7992  ax-mulcl 7994  ax-addcom 7996  ax-i2m1 8001  ax-0id 8004
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-iota 5220  df-fv 5267  df-ov 5928
This theorem is referenced by:  nn0addcl  9301  plyaddlem  15069  plymullem  15070
  Copyright terms: Public domain W3C validator