ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  un0mulcl GIF version

Theorem un0mulcl 9328
Description: If 𝑆 is closed under multiplication, then so is 𝑆 ∪ {0}. (Contributed by Mario Carneiro, 17-Jul-2014.)
Hypotheses
Ref Expression
un0addcl.1 (𝜑𝑆 ⊆ ℂ)
un0addcl.2 𝑇 = (𝑆 ∪ {0})
un0mulcl.3 ((𝜑 ∧ (𝑀𝑆𝑁𝑆)) → (𝑀 · 𝑁) ∈ 𝑆)
Assertion
Ref Expression
un0mulcl ((𝜑 ∧ (𝑀𝑇𝑁𝑇)) → (𝑀 · 𝑁) ∈ 𝑇)

Proof of Theorem un0mulcl
StepHypRef Expression
1 un0addcl.2 . . . . 5 𝑇 = (𝑆 ∪ {0})
21eleq2i 2271 . . . 4 (𝑁𝑇𝑁 ∈ (𝑆 ∪ {0}))
3 elun 3313 . . . 4 (𝑁 ∈ (𝑆 ∪ {0}) ↔ (𝑁𝑆𝑁 ∈ {0}))
42, 3bitri 184 . . 3 (𝑁𝑇 ↔ (𝑁𝑆𝑁 ∈ {0}))
51eleq2i 2271 . . . . . 6 (𝑀𝑇𝑀 ∈ (𝑆 ∪ {0}))
6 elun 3313 . . . . . 6 (𝑀 ∈ (𝑆 ∪ {0}) ↔ (𝑀𝑆𝑀 ∈ {0}))
75, 6bitri 184 . . . . 5 (𝑀𝑇 ↔ (𝑀𝑆𝑀 ∈ {0}))
8 ssun1 3335 . . . . . . . . 9 𝑆 ⊆ (𝑆 ∪ {0})
98, 1sseqtrri 3227 . . . . . . . 8 𝑆𝑇
10 un0mulcl.3 . . . . . . . 8 ((𝜑 ∧ (𝑀𝑆𝑁𝑆)) → (𝑀 · 𝑁) ∈ 𝑆)
119, 10sselid 3190 . . . . . . 7 ((𝜑 ∧ (𝑀𝑆𝑁𝑆)) → (𝑀 · 𝑁) ∈ 𝑇)
1211expr 375 . . . . . 6 ((𝜑𝑀𝑆) → (𝑁𝑆 → (𝑀 · 𝑁) ∈ 𝑇))
13 un0addcl.1 . . . . . . . . . . 11 (𝜑𝑆 ⊆ ℂ)
1413sselda 3192 . . . . . . . . . 10 ((𝜑𝑁𝑆) → 𝑁 ∈ ℂ)
1514mul02d 8463 . . . . . . . . 9 ((𝜑𝑁𝑆) → (0 · 𝑁) = 0)
16 ssun2 3336 . . . . . . . . . . 11 {0} ⊆ (𝑆 ∪ {0})
1716, 1sseqtrri 3227 . . . . . . . . . 10 {0} ⊆ 𝑇
18 c0ex 8065 . . . . . . . . . . 11 0 ∈ V
1918snss 3767 . . . . . . . . . 10 (0 ∈ 𝑇 ↔ {0} ⊆ 𝑇)
2017, 19mpbir 146 . . . . . . . . 9 0 ∈ 𝑇
2115, 20eqeltrdi 2295 . . . . . . . 8 ((𝜑𝑁𝑆) → (0 · 𝑁) ∈ 𝑇)
22 elsni 3650 . . . . . . . . . 10 (𝑀 ∈ {0} → 𝑀 = 0)
2322oveq1d 5958 . . . . . . . . 9 (𝑀 ∈ {0} → (𝑀 · 𝑁) = (0 · 𝑁))
2423eleq1d 2273 . . . . . . . 8 (𝑀 ∈ {0} → ((𝑀 · 𝑁) ∈ 𝑇 ↔ (0 · 𝑁) ∈ 𝑇))
2521, 24syl5ibrcom 157 . . . . . . 7 ((𝜑𝑁𝑆) → (𝑀 ∈ {0} → (𝑀 · 𝑁) ∈ 𝑇))
2625impancom 260 . . . . . 6 ((𝜑𝑀 ∈ {0}) → (𝑁𝑆 → (𝑀 · 𝑁) ∈ 𝑇))
2712, 26jaodan 798 . . . . 5 ((𝜑 ∧ (𝑀𝑆𝑀 ∈ {0})) → (𝑁𝑆 → (𝑀 · 𝑁) ∈ 𝑇))
287, 27sylan2b 287 . . . 4 ((𝜑𝑀𝑇) → (𝑁𝑆 → (𝑀 · 𝑁) ∈ 𝑇))
29 0cnd 8064 . . . . . . . . . . 11 (𝜑 → 0 ∈ ℂ)
3029snssd 3777 . . . . . . . . . 10 (𝜑 → {0} ⊆ ℂ)
3113, 30unssd 3348 . . . . . . . . 9 (𝜑 → (𝑆 ∪ {0}) ⊆ ℂ)
321, 31eqsstrid 3238 . . . . . . . 8 (𝜑𝑇 ⊆ ℂ)
3332sselda 3192 . . . . . . 7 ((𝜑𝑀𝑇) → 𝑀 ∈ ℂ)
3433mul01d 8464 . . . . . 6 ((𝜑𝑀𝑇) → (𝑀 · 0) = 0)
3534, 20eqeltrdi 2295 . . . . 5 ((𝜑𝑀𝑇) → (𝑀 · 0) ∈ 𝑇)
36 elsni 3650 . . . . . . 7 (𝑁 ∈ {0} → 𝑁 = 0)
3736oveq2d 5959 . . . . . 6 (𝑁 ∈ {0} → (𝑀 · 𝑁) = (𝑀 · 0))
3837eleq1d 2273 . . . . 5 (𝑁 ∈ {0} → ((𝑀 · 𝑁) ∈ 𝑇 ↔ (𝑀 · 0) ∈ 𝑇))
3935, 38syl5ibrcom 157 . . . 4 ((𝜑𝑀𝑇) → (𝑁 ∈ {0} → (𝑀 · 𝑁) ∈ 𝑇))
4028, 39jaod 718 . . 3 ((𝜑𝑀𝑇) → ((𝑁𝑆𝑁 ∈ {0}) → (𝑀 · 𝑁) ∈ 𝑇))
414, 40biimtrid 152 . 2 ((𝜑𝑀𝑇) → (𝑁𝑇 → (𝑀 · 𝑁) ∈ 𝑇))
4241impr 379 1 ((𝜑 ∧ (𝑀𝑇𝑁𝑇)) → (𝑀 · 𝑁) ∈ 𝑇)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 709   = wceq 1372  wcel 2175  cun 3163  wss 3165  {csn 3632  (class class class)co 5943  cc 7922  0cc0 7924   · cmul 7929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-setind 4584  ax-resscn 8016  ax-1cn 8017  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-mulcom 8025  ax-addass 8026  ax-distr 8028  ax-i2m1 8029  ax-0id 8032  ax-rnegex 8033  ax-cnre 8035
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-iota 5231  df-fun 5272  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-sub 8244
This theorem is referenced by:  nn0mulcl  9330  plymullem  15164
  Copyright terms: Public domain W3C validator