ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  un0mulcl GIF version

Theorem un0mulcl 9274
Description: If 𝑆 is closed under multiplication, then so is 𝑆 ∪ {0}. (Contributed by Mario Carneiro, 17-Jul-2014.)
Hypotheses
Ref Expression
un0addcl.1 (𝜑𝑆 ⊆ ℂ)
un0addcl.2 𝑇 = (𝑆 ∪ {0})
un0mulcl.3 ((𝜑 ∧ (𝑀𝑆𝑁𝑆)) → (𝑀 · 𝑁) ∈ 𝑆)
Assertion
Ref Expression
un0mulcl ((𝜑 ∧ (𝑀𝑇𝑁𝑇)) → (𝑀 · 𝑁) ∈ 𝑇)

Proof of Theorem un0mulcl
StepHypRef Expression
1 un0addcl.2 . . . . 5 𝑇 = (𝑆 ∪ {0})
21eleq2i 2260 . . . 4 (𝑁𝑇𝑁 ∈ (𝑆 ∪ {0}))
3 elun 3300 . . . 4 (𝑁 ∈ (𝑆 ∪ {0}) ↔ (𝑁𝑆𝑁 ∈ {0}))
42, 3bitri 184 . . 3 (𝑁𝑇 ↔ (𝑁𝑆𝑁 ∈ {0}))
51eleq2i 2260 . . . . . 6 (𝑀𝑇𝑀 ∈ (𝑆 ∪ {0}))
6 elun 3300 . . . . . 6 (𝑀 ∈ (𝑆 ∪ {0}) ↔ (𝑀𝑆𝑀 ∈ {0}))
75, 6bitri 184 . . . . 5 (𝑀𝑇 ↔ (𝑀𝑆𝑀 ∈ {0}))
8 ssun1 3322 . . . . . . . . 9 𝑆 ⊆ (𝑆 ∪ {0})
98, 1sseqtrri 3214 . . . . . . . 8 𝑆𝑇
10 un0mulcl.3 . . . . . . . 8 ((𝜑 ∧ (𝑀𝑆𝑁𝑆)) → (𝑀 · 𝑁) ∈ 𝑆)
119, 10sselid 3177 . . . . . . 7 ((𝜑 ∧ (𝑀𝑆𝑁𝑆)) → (𝑀 · 𝑁) ∈ 𝑇)
1211expr 375 . . . . . 6 ((𝜑𝑀𝑆) → (𝑁𝑆 → (𝑀 · 𝑁) ∈ 𝑇))
13 un0addcl.1 . . . . . . . . . . 11 (𝜑𝑆 ⊆ ℂ)
1413sselda 3179 . . . . . . . . . 10 ((𝜑𝑁𝑆) → 𝑁 ∈ ℂ)
1514mul02d 8411 . . . . . . . . 9 ((𝜑𝑁𝑆) → (0 · 𝑁) = 0)
16 ssun2 3323 . . . . . . . . . . 11 {0} ⊆ (𝑆 ∪ {0})
1716, 1sseqtrri 3214 . . . . . . . . . 10 {0} ⊆ 𝑇
18 c0ex 8013 . . . . . . . . . . 11 0 ∈ V
1918snss 3753 . . . . . . . . . 10 (0 ∈ 𝑇 ↔ {0} ⊆ 𝑇)
2017, 19mpbir 146 . . . . . . . . 9 0 ∈ 𝑇
2115, 20eqeltrdi 2284 . . . . . . . 8 ((𝜑𝑁𝑆) → (0 · 𝑁) ∈ 𝑇)
22 elsni 3636 . . . . . . . . . 10 (𝑀 ∈ {0} → 𝑀 = 0)
2322oveq1d 5933 . . . . . . . . 9 (𝑀 ∈ {0} → (𝑀 · 𝑁) = (0 · 𝑁))
2423eleq1d 2262 . . . . . . . 8 (𝑀 ∈ {0} → ((𝑀 · 𝑁) ∈ 𝑇 ↔ (0 · 𝑁) ∈ 𝑇))
2521, 24syl5ibrcom 157 . . . . . . 7 ((𝜑𝑁𝑆) → (𝑀 ∈ {0} → (𝑀 · 𝑁) ∈ 𝑇))
2625impancom 260 . . . . . 6 ((𝜑𝑀 ∈ {0}) → (𝑁𝑆 → (𝑀 · 𝑁) ∈ 𝑇))
2712, 26jaodan 798 . . . . 5 ((𝜑 ∧ (𝑀𝑆𝑀 ∈ {0})) → (𝑁𝑆 → (𝑀 · 𝑁) ∈ 𝑇))
287, 27sylan2b 287 . . . 4 ((𝜑𝑀𝑇) → (𝑁𝑆 → (𝑀 · 𝑁) ∈ 𝑇))
29 0cnd 8012 . . . . . . . . . . 11 (𝜑 → 0 ∈ ℂ)
3029snssd 3763 . . . . . . . . . 10 (𝜑 → {0} ⊆ ℂ)
3113, 30unssd 3335 . . . . . . . . 9 (𝜑 → (𝑆 ∪ {0}) ⊆ ℂ)
321, 31eqsstrid 3225 . . . . . . . 8 (𝜑𝑇 ⊆ ℂ)
3332sselda 3179 . . . . . . 7 ((𝜑𝑀𝑇) → 𝑀 ∈ ℂ)
3433mul01d 8412 . . . . . 6 ((𝜑𝑀𝑇) → (𝑀 · 0) = 0)
3534, 20eqeltrdi 2284 . . . . 5 ((𝜑𝑀𝑇) → (𝑀 · 0) ∈ 𝑇)
36 elsni 3636 . . . . . . 7 (𝑁 ∈ {0} → 𝑁 = 0)
3736oveq2d 5934 . . . . . 6 (𝑁 ∈ {0} → (𝑀 · 𝑁) = (𝑀 · 0))
3837eleq1d 2262 . . . . 5 (𝑁 ∈ {0} → ((𝑀 · 𝑁) ∈ 𝑇 ↔ (𝑀 · 0) ∈ 𝑇))
3935, 38syl5ibrcom 157 . . . 4 ((𝜑𝑀𝑇) → (𝑁 ∈ {0} → (𝑀 · 𝑁) ∈ 𝑇))
4028, 39jaod 718 . . 3 ((𝜑𝑀𝑇) → ((𝑁𝑆𝑁 ∈ {0}) → (𝑀 · 𝑁) ∈ 𝑇))
414, 40biimtrid 152 . 2 ((𝜑𝑀𝑇) → (𝑁𝑇 → (𝑀 · 𝑁) ∈ 𝑇))
4241impr 379 1 ((𝜑 ∧ (𝑀𝑇𝑁𝑇)) → (𝑀 · 𝑁) ∈ 𝑇)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 709   = wceq 1364  wcel 2164  cun 3151  wss 3153  {csn 3618  (class class class)co 5918  cc 7870  0cc0 7872   · cmul 7877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-setind 4569  ax-resscn 7964  ax-1cn 7965  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-sub 8192
This theorem is referenced by:  nn0mulcl  9276  plymullem  14896
  Copyright terms: Public domain W3C validator