ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  un0mulcl GIF version

Theorem un0mulcl 9199
Description: If 𝑆 is closed under multiplication, then so is 𝑆 ∪ {0}. (Contributed by Mario Carneiro, 17-Jul-2014.)
Hypotheses
Ref Expression
un0addcl.1 (𝜑𝑆 ⊆ ℂ)
un0addcl.2 𝑇 = (𝑆 ∪ {0})
un0mulcl.3 ((𝜑 ∧ (𝑀𝑆𝑁𝑆)) → (𝑀 · 𝑁) ∈ 𝑆)
Assertion
Ref Expression
un0mulcl ((𝜑 ∧ (𝑀𝑇𝑁𝑇)) → (𝑀 · 𝑁) ∈ 𝑇)

Proof of Theorem un0mulcl
StepHypRef Expression
1 un0addcl.2 . . . . 5 𝑇 = (𝑆 ∪ {0})
21eleq2i 2244 . . . 4 (𝑁𝑇𝑁 ∈ (𝑆 ∪ {0}))
3 elun 3276 . . . 4 (𝑁 ∈ (𝑆 ∪ {0}) ↔ (𝑁𝑆𝑁 ∈ {0}))
42, 3bitri 184 . . 3 (𝑁𝑇 ↔ (𝑁𝑆𝑁 ∈ {0}))
51eleq2i 2244 . . . . . 6 (𝑀𝑇𝑀 ∈ (𝑆 ∪ {0}))
6 elun 3276 . . . . . 6 (𝑀 ∈ (𝑆 ∪ {0}) ↔ (𝑀𝑆𝑀 ∈ {0}))
75, 6bitri 184 . . . . 5 (𝑀𝑇 ↔ (𝑀𝑆𝑀 ∈ {0}))
8 ssun1 3298 . . . . . . . . 9 𝑆 ⊆ (𝑆 ∪ {0})
98, 1sseqtrri 3190 . . . . . . . 8 𝑆𝑇
10 un0mulcl.3 . . . . . . . 8 ((𝜑 ∧ (𝑀𝑆𝑁𝑆)) → (𝑀 · 𝑁) ∈ 𝑆)
119, 10sselid 3153 . . . . . . 7 ((𝜑 ∧ (𝑀𝑆𝑁𝑆)) → (𝑀 · 𝑁) ∈ 𝑇)
1211expr 375 . . . . . 6 ((𝜑𝑀𝑆) → (𝑁𝑆 → (𝑀 · 𝑁) ∈ 𝑇))
13 un0addcl.1 . . . . . . . . . . 11 (𝜑𝑆 ⊆ ℂ)
1413sselda 3155 . . . . . . . . . 10 ((𝜑𝑁𝑆) → 𝑁 ∈ ℂ)
1514mul02d 8339 . . . . . . . . 9 ((𝜑𝑁𝑆) → (0 · 𝑁) = 0)
16 ssun2 3299 . . . . . . . . . . 11 {0} ⊆ (𝑆 ∪ {0})
1716, 1sseqtrri 3190 . . . . . . . . . 10 {0} ⊆ 𝑇
18 c0ex 7942 . . . . . . . . . . 11 0 ∈ V
1918snss 3726 . . . . . . . . . 10 (0 ∈ 𝑇 ↔ {0} ⊆ 𝑇)
2017, 19mpbir 146 . . . . . . . . 9 0 ∈ 𝑇
2115, 20eqeltrdi 2268 . . . . . . . 8 ((𝜑𝑁𝑆) → (0 · 𝑁) ∈ 𝑇)
22 elsni 3609 . . . . . . . . . 10 (𝑀 ∈ {0} → 𝑀 = 0)
2322oveq1d 5884 . . . . . . . . 9 (𝑀 ∈ {0} → (𝑀 · 𝑁) = (0 · 𝑁))
2423eleq1d 2246 . . . . . . . 8 (𝑀 ∈ {0} → ((𝑀 · 𝑁) ∈ 𝑇 ↔ (0 · 𝑁) ∈ 𝑇))
2521, 24syl5ibrcom 157 . . . . . . 7 ((𝜑𝑁𝑆) → (𝑀 ∈ {0} → (𝑀 · 𝑁) ∈ 𝑇))
2625impancom 260 . . . . . 6 ((𝜑𝑀 ∈ {0}) → (𝑁𝑆 → (𝑀 · 𝑁) ∈ 𝑇))
2712, 26jaodan 797 . . . . 5 ((𝜑 ∧ (𝑀𝑆𝑀 ∈ {0})) → (𝑁𝑆 → (𝑀 · 𝑁) ∈ 𝑇))
287, 27sylan2b 287 . . . 4 ((𝜑𝑀𝑇) → (𝑁𝑆 → (𝑀 · 𝑁) ∈ 𝑇))
29 0cnd 7941 . . . . . . . . . . 11 (𝜑 → 0 ∈ ℂ)
3029snssd 3736 . . . . . . . . . 10 (𝜑 → {0} ⊆ ℂ)
3113, 30unssd 3311 . . . . . . . . 9 (𝜑 → (𝑆 ∪ {0}) ⊆ ℂ)
321, 31eqsstrid 3201 . . . . . . . 8 (𝜑𝑇 ⊆ ℂ)
3332sselda 3155 . . . . . . 7 ((𝜑𝑀𝑇) → 𝑀 ∈ ℂ)
3433mul01d 8340 . . . . . 6 ((𝜑𝑀𝑇) → (𝑀 · 0) = 0)
3534, 20eqeltrdi 2268 . . . . 5 ((𝜑𝑀𝑇) → (𝑀 · 0) ∈ 𝑇)
36 elsni 3609 . . . . . . 7 (𝑁 ∈ {0} → 𝑁 = 0)
3736oveq2d 5885 . . . . . 6 (𝑁 ∈ {0} → (𝑀 · 𝑁) = (𝑀 · 0))
3837eleq1d 2246 . . . . 5 (𝑁 ∈ {0} → ((𝑀 · 𝑁) ∈ 𝑇 ↔ (𝑀 · 0) ∈ 𝑇))
3935, 38syl5ibrcom 157 . . . 4 ((𝜑𝑀𝑇) → (𝑁 ∈ {0} → (𝑀 · 𝑁) ∈ 𝑇))
4028, 39jaod 717 . . 3 ((𝜑𝑀𝑇) → ((𝑁𝑆𝑁 ∈ {0}) → (𝑀 · 𝑁) ∈ 𝑇))
414, 40biimtrid 152 . 2 ((𝜑𝑀𝑇) → (𝑁𝑇 → (𝑀 · 𝑁) ∈ 𝑇))
4241impr 379 1 ((𝜑 ∧ (𝑀𝑇𝑁𝑇)) → (𝑀 · 𝑁) ∈ 𝑇)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 708   = wceq 1353  wcel 2148  cun 3127  wss 3129  {csn 3591  (class class class)co 5869  cc 7800  0cc0 7802   · cmul 7807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-setind 4533  ax-resscn 7894  ax-1cn 7895  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-distr 7906  ax-i2m1 7907  ax-0id 7910  ax-rnegex 7911  ax-cnre 7913
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-br 4001  df-opab 4062  df-id 4290  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-iota 5174  df-fun 5214  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-sub 8120
This theorem is referenced by:  nn0mulcl  9201
  Copyright terms: Public domain W3C validator