![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fzouzsplit | GIF version |
Description: Split an upper integer set into a half-open integer range and another upper integer set. (Contributed by Mario Carneiro, 21-Sep-2016.) |
Ref | Expression |
---|---|
fzouzsplit | ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (ℤ≥‘𝐴) = ((𝐴..^𝐵) ∪ (ℤ≥‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzelz 9555 | . . . . . . . 8 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐵 ∈ ℤ) | |
2 | eluzelz 9555 | . . . . . . . 8 ⊢ (𝑥 ∈ (ℤ≥‘𝐴) → 𝑥 ∈ ℤ) | |
3 | zlelttric 9316 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝐵 ≤ 𝑥 ∨ 𝑥 < 𝐵)) | |
4 | 1, 2, 3 | syl2an 289 | . . . . . . 7 ⊢ ((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝑥 ∈ (ℤ≥‘𝐴)) → (𝐵 ≤ 𝑥 ∨ 𝑥 < 𝐵)) |
5 | 4 | orcomd 730 | . . . . . 6 ⊢ ((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝑥 ∈ (ℤ≥‘𝐴)) → (𝑥 < 𝐵 ∨ 𝐵 ≤ 𝑥)) |
6 | id 19 | . . . . . . . 8 ⊢ (𝑥 ∈ (ℤ≥‘𝐴) → 𝑥 ∈ (ℤ≥‘𝐴)) | |
7 | elfzo2 10168 | . . . . . . . . . 10 ⊢ (𝑥 ∈ (𝐴..^𝐵) ↔ (𝑥 ∈ (ℤ≥‘𝐴) ∧ 𝐵 ∈ ℤ ∧ 𝑥 < 𝐵)) | |
8 | df-3an 982 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ (ℤ≥‘𝐴) ∧ 𝐵 ∈ ℤ ∧ 𝑥 < 𝐵) ↔ ((𝑥 ∈ (ℤ≥‘𝐴) ∧ 𝐵 ∈ ℤ) ∧ 𝑥 < 𝐵)) | |
9 | 7, 8 | bitri 184 | . . . . . . . . 9 ⊢ (𝑥 ∈ (𝐴..^𝐵) ↔ ((𝑥 ∈ (ℤ≥‘𝐴) ∧ 𝐵 ∈ ℤ) ∧ 𝑥 < 𝐵)) |
10 | 9 | baib 920 | . . . . . . . 8 ⊢ ((𝑥 ∈ (ℤ≥‘𝐴) ∧ 𝐵 ∈ ℤ) → (𝑥 ∈ (𝐴..^𝐵) ↔ 𝑥 < 𝐵)) |
11 | 6, 1, 10 | syl2anr 290 | . . . . . . 7 ⊢ ((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝑥 ∈ (ℤ≥‘𝐴)) → (𝑥 ∈ (𝐴..^𝐵) ↔ 𝑥 < 𝐵)) |
12 | eluz 9559 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑥 ∈ (ℤ≥‘𝐵) ↔ 𝐵 ≤ 𝑥)) | |
13 | 1, 2, 12 | syl2an 289 | . . . . . . 7 ⊢ ((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝑥 ∈ (ℤ≥‘𝐴)) → (𝑥 ∈ (ℤ≥‘𝐵) ↔ 𝐵 ≤ 𝑥)) |
14 | 11, 13 | orbi12d 794 | . . . . . 6 ⊢ ((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝑥 ∈ (ℤ≥‘𝐴)) → ((𝑥 ∈ (𝐴..^𝐵) ∨ 𝑥 ∈ (ℤ≥‘𝐵)) ↔ (𝑥 < 𝐵 ∨ 𝐵 ≤ 𝑥))) |
15 | 5, 14 | mpbird 167 | . . . . 5 ⊢ ((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝑥 ∈ (ℤ≥‘𝐴)) → (𝑥 ∈ (𝐴..^𝐵) ∨ 𝑥 ∈ (ℤ≥‘𝐵))) |
16 | 15 | ex 115 | . . . 4 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝑥 ∈ (ℤ≥‘𝐴) → (𝑥 ∈ (𝐴..^𝐵) ∨ 𝑥 ∈ (ℤ≥‘𝐵)))) |
17 | elun 3291 | . . . 4 ⊢ (𝑥 ∈ ((𝐴..^𝐵) ∪ (ℤ≥‘𝐵)) ↔ (𝑥 ∈ (𝐴..^𝐵) ∨ 𝑥 ∈ (ℤ≥‘𝐵))) | |
18 | 16, 17 | imbitrrdi 162 | . . 3 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝑥 ∈ (ℤ≥‘𝐴) → 𝑥 ∈ ((𝐴..^𝐵) ∪ (ℤ≥‘𝐵)))) |
19 | 18 | ssrdv 3176 | . 2 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (ℤ≥‘𝐴) ⊆ ((𝐴..^𝐵) ∪ (ℤ≥‘𝐵))) |
20 | elfzouz 10169 | . . . . 5 ⊢ (𝑥 ∈ (𝐴..^𝐵) → 𝑥 ∈ (ℤ≥‘𝐴)) | |
21 | 20 | ssriv 3174 | . . . 4 ⊢ (𝐴..^𝐵) ⊆ (ℤ≥‘𝐴) |
22 | 21 | a1i 9 | . . 3 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐴..^𝐵) ⊆ (ℤ≥‘𝐴)) |
23 | uzss 9566 | . . 3 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (ℤ≥‘𝐵) ⊆ (ℤ≥‘𝐴)) | |
24 | 22, 23 | unssd 3326 | . 2 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → ((𝐴..^𝐵) ∪ (ℤ≥‘𝐵)) ⊆ (ℤ≥‘𝐴)) |
25 | 19, 24 | eqssd 3187 | 1 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (ℤ≥‘𝐴) = ((𝐴..^𝐵) ∪ (ℤ≥‘𝐵))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 ∧ w3a 980 = wceq 1364 ∈ wcel 2160 ∪ cun 3142 ⊆ wss 3144 class class class wbr 4018 ‘cfv 5231 (class class class)co 5891 < clt 8010 ≤ cle 8011 ℤcz 9271 ℤ≥cuz 9546 ..^cfzo 10160 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4189 ax-pr 4224 ax-un 4448 ax-setind 4551 ax-cnex 7920 ax-resscn 7921 ax-1cn 7922 ax-1re 7923 ax-icn 7924 ax-addcl 7925 ax-addrcl 7926 ax-mulcl 7927 ax-addcom 7929 ax-addass 7931 ax-distr 7933 ax-i2m1 7934 ax-0lt1 7935 ax-0id 7937 ax-rnegex 7938 ax-cnre 7940 ax-pre-ltirr 7941 ax-pre-ltwlin 7942 ax-pre-lttrn 7943 ax-pre-ltadd 7945 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4308 df-xp 4647 df-rel 4648 df-cnv 4649 df-co 4650 df-dm 4651 df-rn 4652 df-res 4653 df-ima 4654 df-iota 5193 df-fun 5233 df-fn 5234 df-f 5235 df-fv 5239 df-riota 5847 df-ov 5894 df-oprab 5895 df-mpo 5896 df-1st 6159 df-2nd 6160 df-pnf 8012 df-mnf 8013 df-xr 8014 df-ltxr 8015 df-le 8016 df-sub 8148 df-neg 8149 df-inn 8938 df-n0 9195 df-z 9272 df-uz 9547 df-fz 10027 df-fzo 10161 |
This theorem is referenced by: zsupcllemstep 11964 |
Copyright terms: Public domain | W3C validator |