![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fzouzsplit | GIF version |
Description: Split an upper integer set into a half-open integer range and another upper integer set. (Contributed by Mario Carneiro, 21-Sep-2016.) |
Ref | Expression |
---|---|
fzouzsplit | ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (ℤ≥‘𝐴) = ((𝐴..^𝐵) ∪ (ℤ≥‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzelz 9539 | . . . . . . . 8 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐵 ∈ ℤ) | |
2 | eluzelz 9539 | . . . . . . . 8 ⊢ (𝑥 ∈ (ℤ≥‘𝐴) → 𝑥 ∈ ℤ) | |
3 | zlelttric 9300 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝐵 ≤ 𝑥 ∨ 𝑥 < 𝐵)) | |
4 | 1, 2, 3 | syl2an 289 | . . . . . . 7 ⊢ ((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝑥 ∈ (ℤ≥‘𝐴)) → (𝐵 ≤ 𝑥 ∨ 𝑥 < 𝐵)) |
5 | 4 | orcomd 729 | . . . . . 6 ⊢ ((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝑥 ∈ (ℤ≥‘𝐴)) → (𝑥 < 𝐵 ∨ 𝐵 ≤ 𝑥)) |
6 | id 19 | . . . . . . . 8 ⊢ (𝑥 ∈ (ℤ≥‘𝐴) → 𝑥 ∈ (ℤ≥‘𝐴)) | |
7 | elfzo2 10152 | . . . . . . . . . 10 ⊢ (𝑥 ∈ (𝐴..^𝐵) ↔ (𝑥 ∈ (ℤ≥‘𝐴) ∧ 𝐵 ∈ ℤ ∧ 𝑥 < 𝐵)) | |
8 | df-3an 980 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ (ℤ≥‘𝐴) ∧ 𝐵 ∈ ℤ ∧ 𝑥 < 𝐵) ↔ ((𝑥 ∈ (ℤ≥‘𝐴) ∧ 𝐵 ∈ ℤ) ∧ 𝑥 < 𝐵)) | |
9 | 7, 8 | bitri 184 | . . . . . . . . 9 ⊢ (𝑥 ∈ (𝐴..^𝐵) ↔ ((𝑥 ∈ (ℤ≥‘𝐴) ∧ 𝐵 ∈ ℤ) ∧ 𝑥 < 𝐵)) |
10 | 9 | baib 919 | . . . . . . . 8 ⊢ ((𝑥 ∈ (ℤ≥‘𝐴) ∧ 𝐵 ∈ ℤ) → (𝑥 ∈ (𝐴..^𝐵) ↔ 𝑥 < 𝐵)) |
11 | 6, 1, 10 | syl2anr 290 | . . . . . . 7 ⊢ ((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝑥 ∈ (ℤ≥‘𝐴)) → (𝑥 ∈ (𝐴..^𝐵) ↔ 𝑥 < 𝐵)) |
12 | eluz 9543 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑥 ∈ (ℤ≥‘𝐵) ↔ 𝐵 ≤ 𝑥)) | |
13 | 1, 2, 12 | syl2an 289 | . . . . . . 7 ⊢ ((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝑥 ∈ (ℤ≥‘𝐴)) → (𝑥 ∈ (ℤ≥‘𝐵) ↔ 𝐵 ≤ 𝑥)) |
14 | 11, 13 | orbi12d 793 | . . . . . 6 ⊢ ((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝑥 ∈ (ℤ≥‘𝐴)) → ((𝑥 ∈ (𝐴..^𝐵) ∨ 𝑥 ∈ (ℤ≥‘𝐵)) ↔ (𝑥 < 𝐵 ∨ 𝐵 ≤ 𝑥))) |
15 | 5, 14 | mpbird 167 | . . . . 5 ⊢ ((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝑥 ∈ (ℤ≥‘𝐴)) → (𝑥 ∈ (𝐴..^𝐵) ∨ 𝑥 ∈ (ℤ≥‘𝐵))) |
16 | 15 | ex 115 | . . . 4 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝑥 ∈ (ℤ≥‘𝐴) → (𝑥 ∈ (𝐴..^𝐵) ∨ 𝑥 ∈ (ℤ≥‘𝐵)))) |
17 | elun 3278 | . . . 4 ⊢ (𝑥 ∈ ((𝐴..^𝐵) ∪ (ℤ≥‘𝐵)) ↔ (𝑥 ∈ (𝐴..^𝐵) ∨ 𝑥 ∈ (ℤ≥‘𝐵))) | |
18 | 16, 17 | imbitrrdi 162 | . . 3 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝑥 ∈ (ℤ≥‘𝐴) → 𝑥 ∈ ((𝐴..^𝐵) ∪ (ℤ≥‘𝐵)))) |
19 | 18 | ssrdv 3163 | . 2 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (ℤ≥‘𝐴) ⊆ ((𝐴..^𝐵) ∪ (ℤ≥‘𝐵))) |
20 | elfzouz 10153 | . . . . 5 ⊢ (𝑥 ∈ (𝐴..^𝐵) → 𝑥 ∈ (ℤ≥‘𝐴)) | |
21 | 20 | ssriv 3161 | . . . 4 ⊢ (𝐴..^𝐵) ⊆ (ℤ≥‘𝐴) |
22 | 21 | a1i 9 | . . 3 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐴..^𝐵) ⊆ (ℤ≥‘𝐴)) |
23 | uzss 9550 | . . 3 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (ℤ≥‘𝐵) ⊆ (ℤ≥‘𝐴)) | |
24 | 22, 23 | unssd 3313 | . 2 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → ((𝐴..^𝐵) ∪ (ℤ≥‘𝐵)) ⊆ (ℤ≥‘𝐴)) |
25 | 19, 24 | eqssd 3174 | 1 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (ℤ≥‘𝐴) = ((𝐴..^𝐵) ∪ (ℤ≥‘𝐵))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 708 ∧ w3a 978 = wceq 1353 ∈ wcel 2148 ∪ cun 3129 ⊆ wss 3131 class class class wbr 4005 ‘cfv 5218 (class class class)co 5877 < clt 7994 ≤ cle 7995 ℤcz 9255 ℤ≥cuz 9530 ..^cfzo 10144 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7904 ax-resscn 7905 ax-1cn 7906 ax-1re 7907 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-addcom 7913 ax-addass 7915 ax-distr 7917 ax-i2m1 7918 ax-0lt1 7919 ax-0id 7921 ax-rnegex 7922 ax-cnre 7924 ax-pre-ltirr 7925 ax-pre-ltwlin 7926 ax-pre-lttrn 7927 ax-pre-ltadd 7929 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-fv 5226 df-riota 5833 df-ov 5880 df-oprab 5881 df-mpo 5882 df-1st 6143 df-2nd 6144 df-pnf 7996 df-mnf 7997 df-xr 7998 df-ltxr 7999 df-le 8000 df-sub 8132 df-neg 8133 df-inn 8922 df-n0 9179 df-z 9256 df-uz 9531 df-fz 10011 df-fzo 10145 |
This theorem is referenced by: zsupcllemstep 11948 |
Copyright terms: Public domain | W3C validator |