ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzouzsplit GIF version

Theorem fzouzsplit 9651
Description: Split an upper integer set into a half-open integer range and another upper integer set. (Contributed by Mario Carneiro, 21-Sep-2016.)
Assertion
Ref Expression
fzouzsplit (𝐵 ∈ (ℤ𝐴) → (ℤ𝐴) = ((𝐴..^𝐵) ∪ (ℤ𝐵)))

Proof of Theorem fzouzsplit
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eluzelz 9089 . . . . . . . 8 (𝐵 ∈ (ℤ𝐴) → 𝐵 ∈ ℤ)
2 eluzelz 9089 . . . . . . . 8 (𝑥 ∈ (ℤ𝐴) → 𝑥 ∈ ℤ)
3 zlelttric 8856 . . . . . . . 8 ((𝐵 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝐵𝑥𝑥 < 𝐵))
41, 2, 3syl2an 284 . . . . . . 7 ((𝐵 ∈ (ℤ𝐴) ∧ 𝑥 ∈ (ℤ𝐴)) → (𝐵𝑥𝑥 < 𝐵))
54orcomd 684 . . . . . 6 ((𝐵 ∈ (ℤ𝐴) ∧ 𝑥 ∈ (ℤ𝐴)) → (𝑥 < 𝐵𝐵𝑥))
6 id 19 . . . . . . . 8 (𝑥 ∈ (ℤ𝐴) → 𝑥 ∈ (ℤ𝐴))
7 elfzo2 9622 . . . . . . . . . 10 (𝑥 ∈ (𝐴..^𝐵) ↔ (𝑥 ∈ (ℤ𝐴) ∧ 𝐵 ∈ ℤ ∧ 𝑥 < 𝐵))
8 df-3an 927 . . . . . . . . . 10 ((𝑥 ∈ (ℤ𝐴) ∧ 𝐵 ∈ ℤ ∧ 𝑥 < 𝐵) ↔ ((𝑥 ∈ (ℤ𝐴) ∧ 𝐵 ∈ ℤ) ∧ 𝑥 < 𝐵))
97, 8bitri 183 . . . . . . . . 9 (𝑥 ∈ (𝐴..^𝐵) ↔ ((𝑥 ∈ (ℤ𝐴) ∧ 𝐵 ∈ ℤ) ∧ 𝑥 < 𝐵))
109baib 867 . . . . . . . 8 ((𝑥 ∈ (ℤ𝐴) ∧ 𝐵 ∈ ℤ) → (𝑥 ∈ (𝐴..^𝐵) ↔ 𝑥 < 𝐵))
116, 1, 10syl2anr 285 . . . . . . 7 ((𝐵 ∈ (ℤ𝐴) ∧ 𝑥 ∈ (ℤ𝐴)) → (𝑥 ∈ (𝐴..^𝐵) ↔ 𝑥 < 𝐵))
12 eluz 9093 . . . . . . . 8 ((𝐵 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑥 ∈ (ℤ𝐵) ↔ 𝐵𝑥))
131, 2, 12syl2an 284 . . . . . . 7 ((𝐵 ∈ (ℤ𝐴) ∧ 𝑥 ∈ (ℤ𝐴)) → (𝑥 ∈ (ℤ𝐵) ↔ 𝐵𝑥))
1411, 13orbi12d 743 . . . . . 6 ((𝐵 ∈ (ℤ𝐴) ∧ 𝑥 ∈ (ℤ𝐴)) → ((𝑥 ∈ (𝐴..^𝐵) ∨ 𝑥 ∈ (ℤ𝐵)) ↔ (𝑥 < 𝐵𝐵𝑥)))
155, 14mpbird 166 . . . . 5 ((𝐵 ∈ (ℤ𝐴) ∧ 𝑥 ∈ (ℤ𝐴)) → (𝑥 ∈ (𝐴..^𝐵) ∨ 𝑥 ∈ (ℤ𝐵)))
1615ex 114 . . . 4 (𝐵 ∈ (ℤ𝐴) → (𝑥 ∈ (ℤ𝐴) → (𝑥 ∈ (𝐴..^𝐵) ∨ 𝑥 ∈ (ℤ𝐵))))
17 elun 3142 . . . 4 (𝑥 ∈ ((𝐴..^𝐵) ∪ (ℤ𝐵)) ↔ (𝑥 ∈ (𝐴..^𝐵) ∨ 𝑥 ∈ (ℤ𝐵)))
1816, 17syl6ibr 161 . . 3 (𝐵 ∈ (ℤ𝐴) → (𝑥 ∈ (ℤ𝐴) → 𝑥 ∈ ((𝐴..^𝐵) ∪ (ℤ𝐵))))
1918ssrdv 3032 . 2 (𝐵 ∈ (ℤ𝐴) → (ℤ𝐴) ⊆ ((𝐴..^𝐵) ∪ (ℤ𝐵)))
20 elfzouz 9623 . . . . 5 (𝑥 ∈ (𝐴..^𝐵) → 𝑥 ∈ (ℤ𝐴))
2120ssriv 3030 . . . 4 (𝐴..^𝐵) ⊆ (ℤ𝐴)
2221a1i 9 . . 3 (𝐵 ∈ (ℤ𝐴) → (𝐴..^𝐵) ⊆ (ℤ𝐴))
23 uzss 9100 . . 3 (𝐵 ∈ (ℤ𝐴) → (ℤ𝐵) ⊆ (ℤ𝐴))
2422, 23unssd 3177 . 2 (𝐵 ∈ (ℤ𝐴) → ((𝐴..^𝐵) ∪ (ℤ𝐵)) ⊆ (ℤ𝐴))
2519, 24eqssd 3043 1 (𝐵 ∈ (ℤ𝐴) → (ℤ𝐴) = ((𝐴..^𝐵) ∪ (ℤ𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 665  w3a 925   = wceq 1290  wcel 1439  cun 2998  wss 3000   class class class wbr 3851  cfv 5028  (class class class)co 5666   < clt 7583  cle 7584  cz 8811  cuz 9080  ..^cfzo 9614
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3963  ax-pow 4015  ax-pr 4045  ax-un 4269  ax-setind 4366  ax-cnex 7497  ax-resscn 7498  ax-1cn 7499  ax-1re 7500  ax-icn 7501  ax-addcl 7502  ax-addrcl 7503  ax-mulcl 7504  ax-addcom 7506  ax-addass 7508  ax-distr 7510  ax-i2m1 7511  ax-0lt1 7512  ax-0id 7514  ax-rnegex 7515  ax-cnre 7517  ax-pre-ltirr 7518  ax-pre-ltwlin 7519  ax-pre-lttrn 7520  ax-pre-ltadd 7522
This theorem depends on definitions:  df-bi 116  df-3or 926  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-nel 2352  df-ral 2365  df-rex 2366  df-reu 2367  df-rab 2369  df-v 2622  df-sbc 2842  df-csb 2935  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-int 3695  df-iun 3738  df-br 3852  df-opab 3906  df-mpt 3907  df-id 4129  df-xp 4458  df-rel 4459  df-cnv 4460  df-co 4461  df-dm 4462  df-rn 4463  df-res 4464  df-ima 4465  df-iota 4993  df-fun 5030  df-fn 5031  df-f 5032  df-fv 5036  df-riota 5622  df-ov 5669  df-oprab 5670  df-mpt2 5671  df-1st 5925  df-2nd 5926  df-pnf 7585  df-mnf 7586  df-xr 7587  df-ltxr 7588  df-le 7589  df-sub 7716  df-neg 7717  df-inn 8484  df-n0 8735  df-z 8812  df-uz 9081  df-fz 9486  df-fzo 9615
This theorem is referenced by:  zsupcllemstep  11280
  Copyright terms: Public domain W3C validator