ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzouzsplit GIF version

Theorem fzouzsplit 10197
Description: Split an upper integer set into a half-open integer range and another upper integer set. (Contributed by Mario Carneiro, 21-Sep-2016.)
Assertion
Ref Expression
fzouzsplit (𝐵 ∈ (ℤ𝐴) → (ℤ𝐴) = ((𝐴..^𝐵) ∪ (ℤ𝐵)))

Proof of Theorem fzouzsplit
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eluzelz 9555 . . . . . . . 8 (𝐵 ∈ (ℤ𝐴) → 𝐵 ∈ ℤ)
2 eluzelz 9555 . . . . . . . 8 (𝑥 ∈ (ℤ𝐴) → 𝑥 ∈ ℤ)
3 zlelttric 9316 . . . . . . . 8 ((𝐵 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝐵𝑥𝑥 < 𝐵))
41, 2, 3syl2an 289 . . . . . . 7 ((𝐵 ∈ (ℤ𝐴) ∧ 𝑥 ∈ (ℤ𝐴)) → (𝐵𝑥𝑥 < 𝐵))
54orcomd 730 . . . . . 6 ((𝐵 ∈ (ℤ𝐴) ∧ 𝑥 ∈ (ℤ𝐴)) → (𝑥 < 𝐵𝐵𝑥))
6 id 19 . . . . . . . 8 (𝑥 ∈ (ℤ𝐴) → 𝑥 ∈ (ℤ𝐴))
7 elfzo2 10168 . . . . . . . . . 10 (𝑥 ∈ (𝐴..^𝐵) ↔ (𝑥 ∈ (ℤ𝐴) ∧ 𝐵 ∈ ℤ ∧ 𝑥 < 𝐵))
8 df-3an 982 . . . . . . . . . 10 ((𝑥 ∈ (ℤ𝐴) ∧ 𝐵 ∈ ℤ ∧ 𝑥 < 𝐵) ↔ ((𝑥 ∈ (ℤ𝐴) ∧ 𝐵 ∈ ℤ) ∧ 𝑥 < 𝐵))
97, 8bitri 184 . . . . . . . . 9 (𝑥 ∈ (𝐴..^𝐵) ↔ ((𝑥 ∈ (ℤ𝐴) ∧ 𝐵 ∈ ℤ) ∧ 𝑥 < 𝐵))
109baib 920 . . . . . . . 8 ((𝑥 ∈ (ℤ𝐴) ∧ 𝐵 ∈ ℤ) → (𝑥 ∈ (𝐴..^𝐵) ↔ 𝑥 < 𝐵))
116, 1, 10syl2anr 290 . . . . . . 7 ((𝐵 ∈ (ℤ𝐴) ∧ 𝑥 ∈ (ℤ𝐴)) → (𝑥 ∈ (𝐴..^𝐵) ↔ 𝑥 < 𝐵))
12 eluz 9559 . . . . . . . 8 ((𝐵 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑥 ∈ (ℤ𝐵) ↔ 𝐵𝑥))
131, 2, 12syl2an 289 . . . . . . 7 ((𝐵 ∈ (ℤ𝐴) ∧ 𝑥 ∈ (ℤ𝐴)) → (𝑥 ∈ (ℤ𝐵) ↔ 𝐵𝑥))
1411, 13orbi12d 794 . . . . . 6 ((𝐵 ∈ (ℤ𝐴) ∧ 𝑥 ∈ (ℤ𝐴)) → ((𝑥 ∈ (𝐴..^𝐵) ∨ 𝑥 ∈ (ℤ𝐵)) ↔ (𝑥 < 𝐵𝐵𝑥)))
155, 14mpbird 167 . . . . 5 ((𝐵 ∈ (ℤ𝐴) ∧ 𝑥 ∈ (ℤ𝐴)) → (𝑥 ∈ (𝐴..^𝐵) ∨ 𝑥 ∈ (ℤ𝐵)))
1615ex 115 . . . 4 (𝐵 ∈ (ℤ𝐴) → (𝑥 ∈ (ℤ𝐴) → (𝑥 ∈ (𝐴..^𝐵) ∨ 𝑥 ∈ (ℤ𝐵))))
17 elun 3291 . . . 4 (𝑥 ∈ ((𝐴..^𝐵) ∪ (ℤ𝐵)) ↔ (𝑥 ∈ (𝐴..^𝐵) ∨ 𝑥 ∈ (ℤ𝐵)))
1816, 17imbitrrdi 162 . . 3 (𝐵 ∈ (ℤ𝐴) → (𝑥 ∈ (ℤ𝐴) → 𝑥 ∈ ((𝐴..^𝐵) ∪ (ℤ𝐵))))
1918ssrdv 3176 . 2 (𝐵 ∈ (ℤ𝐴) → (ℤ𝐴) ⊆ ((𝐴..^𝐵) ∪ (ℤ𝐵)))
20 elfzouz 10169 . . . . 5 (𝑥 ∈ (𝐴..^𝐵) → 𝑥 ∈ (ℤ𝐴))
2120ssriv 3174 . . . 4 (𝐴..^𝐵) ⊆ (ℤ𝐴)
2221a1i 9 . . 3 (𝐵 ∈ (ℤ𝐴) → (𝐴..^𝐵) ⊆ (ℤ𝐴))
23 uzss 9566 . . 3 (𝐵 ∈ (ℤ𝐴) → (ℤ𝐵) ⊆ (ℤ𝐴))
2422, 23unssd 3326 . 2 (𝐵 ∈ (ℤ𝐴) → ((𝐴..^𝐵) ∪ (ℤ𝐵)) ⊆ (ℤ𝐴))
2519, 24eqssd 3187 1 (𝐵 ∈ (ℤ𝐴) → (ℤ𝐴) = ((𝐴..^𝐵) ∪ (ℤ𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709  w3a 980   = wceq 1364  wcel 2160  cun 3142  wss 3144   class class class wbr 4018  cfv 5231  (class class class)co 5891   < clt 8010  cle 8011  cz 9271  cuz 9546  ..^cfzo 10160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-cnex 7920  ax-resscn 7921  ax-1cn 7922  ax-1re 7923  ax-icn 7924  ax-addcl 7925  ax-addrcl 7926  ax-mulcl 7927  ax-addcom 7929  ax-addass 7931  ax-distr 7933  ax-i2m1 7934  ax-0lt1 7935  ax-0id 7937  ax-rnegex 7938  ax-cnre 7940  ax-pre-ltirr 7941  ax-pre-ltwlin 7942  ax-pre-lttrn 7943  ax-pre-ltadd 7945
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4308  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5233  df-fn 5234  df-f 5235  df-fv 5239  df-riota 5847  df-ov 5894  df-oprab 5895  df-mpo 5896  df-1st 6159  df-2nd 6160  df-pnf 8012  df-mnf 8013  df-xr 8014  df-ltxr 8015  df-le 8016  df-sub 8148  df-neg 8149  df-inn 8938  df-n0 9195  df-z 9272  df-uz 9547  df-fz 10027  df-fzo 10161
This theorem is referenced by:  zsupcllemstep  11964
  Copyright terms: Public domain W3C validator