ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vtxvalprc GIF version

Theorem vtxvalprc 15650
Description: Degenerated case 4 for vertices: The set of vertices of a proper class is the empty set. (Contributed by AV, 12-Oct-2020.)
Assertion
Ref Expression
vtxvalprc (𝐶 ∉ V → (Vtx‘𝐶) = ∅)

Proof of Theorem vtxvalprc
StepHypRef Expression
1 df-nel 2472 . 2 (𝐶 ∉ V ↔ ¬ 𝐶 ∈ V)
2 fvprc 5570 . 2 𝐶 ∈ V → (Vtx‘𝐶) = ∅)
31, 2sylbi 121 1 (𝐶 ∉ V → (Vtx‘𝐶) = ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1373  wcel 2176  wnel 2471  Vcvv 2772  c0 3460  cfv 5271  Vtxcvtx 15611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-setind 4585
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-iota 5232  df-fv 5279
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator