| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > xpss | GIF version | ||
| Description: A cross product is included in the ordered pair universe. Exercise 3 of [TakeutiZaring] p. 25. (Contributed by NM, 2-Aug-1994.) | 
| Ref | Expression | 
|---|---|
| xpss | ⊢ (𝐴 × 𝐵) ⊆ (V × V) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ssv 3205 | . 2 ⊢ 𝐴 ⊆ V | |
| 2 | ssv 3205 | . 2 ⊢ 𝐵 ⊆ V | |
| 3 | xpss12 4770 | . 2 ⊢ ((𝐴 ⊆ V ∧ 𝐵 ⊆ V) → (𝐴 × 𝐵) ⊆ (V × V)) | |
| 4 | 1, 2, 3 | mp2an 426 | 1 ⊢ (𝐴 × 𝐵) ⊆ (V × V) | 
| Colors of variables: wff set class | 
| Syntax hints: Vcvv 2763 ⊆ wss 3157 × cxp 4661 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 df-ss 3170 df-opab 4095 df-xp 4669 | 
| This theorem is referenced by: relxp 4772 eqbrrdva 4836 relrelss 5196 funinsn 5307 eqopi 6230 op1steq 6237 dfoprab4 6250 f1od2 6293 frecuzrdgtcl 10504 frecuzrdgfunlem 10511 reldvdsrsrg 13648 upxp 14508 | 
| Copyright terms: Public domain | W3C validator |