ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpss GIF version

Theorem xpss 4768
Description: A cross product is included in the ordered pair universe. Exercise 3 of [TakeutiZaring] p. 25. (Contributed by NM, 2-Aug-1994.)
Assertion
Ref Expression
xpss (𝐴 × 𝐵) ⊆ (V × V)

Proof of Theorem xpss
StepHypRef Expression
1 ssv 3202 . 2 𝐴 ⊆ V
2 ssv 3202 . 2 𝐵 ⊆ V
3 xpss12 4767 . 2 ((𝐴 ⊆ V ∧ 𝐵 ⊆ V) → (𝐴 × 𝐵) ⊆ (V × V))
41, 2, 3mp2an 426 1 (𝐴 × 𝐵) ⊆ (V × V)
Colors of variables: wff set class
Syntax hints:  Vcvv 2760  wss 3154   × cxp 4658
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-in 3160  df-ss 3167  df-opab 4092  df-xp 4666
This theorem is referenced by:  relxp  4769  eqbrrdva  4833  relrelss  5193  funinsn  5304  eqopi  6227  op1steq  6234  dfoprab4  6247  f1od2  6290  frecuzrdgtcl  10486  frecuzrdgfunlem  10493  reldvdsrsrg  13591  upxp  14451
  Copyright terms: Public domain W3C validator