| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xpss | GIF version | ||
| Description: A cross product is included in the ordered pair universe. Exercise 3 of [TakeutiZaring] p. 25. (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| xpss | ⊢ (𝐴 × 𝐵) ⊆ (V × V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssv 3216 | . 2 ⊢ 𝐴 ⊆ V | |
| 2 | ssv 3216 | . 2 ⊢ 𝐵 ⊆ V | |
| 3 | xpss12 4786 | . 2 ⊢ ((𝐴 ⊆ V ∧ 𝐵 ⊆ V) → (𝐴 × 𝐵) ⊆ (V × V)) | |
| 4 | 1, 2, 3 | mp2an 426 | 1 ⊢ (𝐴 × 𝐵) ⊆ (V × V) |
| Colors of variables: wff set class |
| Syntax hints: Vcvv 2773 ⊆ wss 3167 × cxp 4677 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-in 3173 df-ss 3180 df-opab 4110 df-xp 4685 |
| This theorem is referenced by: relxp 4788 eqbrrdva 4852 relrelss 5214 funinsn 5328 eqopi 6265 op1steq 6272 dfoprab4 6285 f1od2 6328 frecuzrdgtcl 10564 frecuzrdgfunlem 10571 reldvdsrsrg 13898 upxp 14788 |
| Copyright terms: Public domain | W3C validator |