ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpss GIF version

Theorem xpss 4824
Description: A cross product is included in the ordered pair universe. Exercise 3 of [TakeutiZaring] p. 25. (Contributed by NM, 2-Aug-1994.)
Assertion
Ref Expression
xpss (𝐴 × 𝐵) ⊆ (V × V)

Proof of Theorem xpss
StepHypRef Expression
1 ssv 3246 . 2 𝐴 ⊆ V
2 ssv 3246 . 2 𝐵 ⊆ V
3 xpss12 4823 . 2 ((𝐴 ⊆ V ∧ 𝐵 ⊆ V) → (𝐴 × 𝐵) ⊆ (V × V))
41, 2, 3mp2an 426 1 (𝐴 × 𝐵) ⊆ (V × V)
Colors of variables: wff set class
Syntax hints:  Vcvv 2799  wss 3197   × cxp 4714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-in 3203  df-ss 3210  df-opab 4145  df-xp 4722
This theorem is referenced by:  relxp  4825  eqbrrdva  4889  relrelss  5251  funinsn  5366  eqopi  6308  op1steq  6315  dfoprab4  6328  f1od2  6371  frecuzrdgtcl  10621  frecuzrdgfunlem  10628  reldvdsrsrg  14041  upxp  14931
  Copyright terms: Public domain W3C validator