| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xpss | GIF version | ||
| Description: A cross product is included in the ordered pair universe. Exercise 3 of [TakeutiZaring] p. 25. (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| xpss | ⊢ (𝐴 × 𝐵) ⊆ (V × V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssv 3246 | . 2 ⊢ 𝐴 ⊆ V | |
| 2 | ssv 3246 | . 2 ⊢ 𝐵 ⊆ V | |
| 3 | xpss12 4823 | . 2 ⊢ ((𝐴 ⊆ V ∧ 𝐵 ⊆ V) → (𝐴 × 𝐵) ⊆ (V × V)) | |
| 4 | 1, 2, 3 | mp2an 426 | 1 ⊢ (𝐴 × 𝐵) ⊆ (V × V) |
| Colors of variables: wff set class |
| Syntax hints: Vcvv 2799 ⊆ wss 3197 × cxp 4714 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-in 3203 df-ss 3210 df-opab 4145 df-xp 4722 |
| This theorem is referenced by: relxp 4825 eqbrrdva 4889 relrelss 5251 funinsn 5366 eqopi 6308 op1steq 6315 dfoprab4 6328 f1od2 6371 frecuzrdgtcl 10621 frecuzrdgfunlem 10628 reldvdsrsrg 14041 upxp 14931 |
| Copyright terms: Public domain | W3C validator |