ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfoprab4 GIF version

Theorem dfoprab4 6171
Description: Operation class abstraction expressed without existential quantifiers. (Contributed by NM, 3-Sep-2007.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypothesis
Ref Expression
dfoprab4.1 (𝑤 = ⟨𝑥, 𝑦⟩ → (𝜑𝜓))
Assertion
Ref Expression
dfoprab4 {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (𝐴 × 𝐵) ∧ 𝜑)} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)}
Distinct variable groups:   𝑥,𝑤,𝑦,𝐴   𝑤,𝐵,𝑥,𝑦   𝜑,𝑥,𝑦   𝜓,𝑤   𝑧,𝑤,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑧,𝑤)   𝜓(𝑥,𝑦,𝑧)   𝐴(𝑧)   𝐵(𝑧)

Proof of Theorem dfoprab4
StepHypRef Expression
1 xpss 4719 . . . . . 6 (𝐴 × 𝐵) ⊆ (V × V)
21sseli 3143 . . . . 5 (𝑤 ∈ (𝐴 × 𝐵) → 𝑤 ∈ (V × V))
32adantr 274 . . . 4 ((𝑤 ∈ (𝐴 × 𝐵) ∧ 𝜑) → 𝑤 ∈ (V × V))
43pm4.71ri 390 . . 3 ((𝑤 ∈ (𝐴 × 𝐵) ∧ 𝜑) ↔ (𝑤 ∈ (V × V) ∧ (𝑤 ∈ (𝐴 × 𝐵) ∧ 𝜑)))
54opabbii 4056 . 2 {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (𝐴 × 𝐵) ∧ 𝜑)} = {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (V × V) ∧ (𝑤 ∈ (𝐴 × 𝐵) ∧ 𝜑))}
6 eleq1 2233 . . . . 5 (𝑤 = ⟨𝑥, 𝑦⟩ → (𝑤 ∈ (𝐴 × 𝐵) ↔ ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵)))
7 opelxp 4641 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) ↔ (𝑥𝐴𝑦𝐵))
86, 7bitrdi 195 . . . 4 (𝑤 = ⟨𝑥, 𝑦⟩ → (𝑤 ∈ (𝐴 × 𝐵) ↔ (𝑥𝐴𝑦𝐵)))
9 dfoprab4.1 . . . 4 (𝑤 = ⟨𝑥, 𝑦⟩ → (𝜑𝜓))
108, 9anbi12d 470 . . 3 (𝑤 = ⟨𝑥, 𝑦⟩ → ((𝑤 ∈ (𝐴 × 𝐵) ∧ 𝜑) ↔ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)))
1110dfoprab3 6170 . 2 {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (V × V) ∧ (𝑤 ∈ (𝐴 × 𝐵) ∧ 𝜑))} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)}
125, 11eqtri 2191 1 {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (𝐴 × 𝐵) ∧ 𝜑)} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)}
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1348  wcel 2141  Vcvv 2730  cop 3586  {copab 4049   × cxp 4609  {coprab 5854
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fo 5204  df-fv 5206  df-oprab 5857  df-1st 6119  df-2nd 6120
This theorem is referenced by:  dfoprab4f  6172  dfxp3  6173
  Copyright terms: Public domain W3C validator