ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqopi GIF version

Theorem eqopi 6230
Description: Equality with an ordered pair. (Contributed by NM, 15-Dec-2008.) (Revised by Mario Carneiro, 23-Feb-2014.)
Assertion
Ref Expression
eqopi ((𝐴 ∈ (𝑉 × 𝑊) ∧ ((1st𝐴) = 𝐵 ∧ (2nd𝐴) = 𝐶)) → 𝐴 = ⟨𝐵, 𝐶⟩)

Proof of Theorem eqopi
StepHypRef Expression
1 xpss 4771 . . 3 (𝑉 × 𝑊) ⊆ (V × V)
21sseli 3179 . 2 (𝐴 ∈ (𝑉 × 𝑊) → 𝐴 ∈ (V × V))
3 elxp6 6227 . . . 4 (𝐴 ∈ (V × V) ↔ (𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩ ∧ ((1st𝐴) ∈ V ∧ (2nd𝐴) ∈ V)))
43simplbi 274 . . 3 (𝐴 ∈ (V × V) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
5 opeq12 3810 . . 3 (((1st𝐴) = 𝐵 ∧ (2nd𝐴) = 𝐶) → ⟨(1st𝐴), (2nd𝐴)⟩ = ⟨𝐵, 𝐶⟩)
64, 5sylan9eq 2249 . 2 ((𝐴 ∈ (V × V) ∧ ((1st𝐴) = 𝐵 ∧ (2nd𝐴) = 𝐶)) → 𝐴 = ⟨𝐵, 𝐶⟩)
72, 6sylan 283 1 ((𝐴 ∈ (𝑉 × 𝑊) ∧ ((1st𝐴) = 𝐵 ∧ (2nd𝐴) = 𝐶)) → 𝐴 = ⟨𝐵, 𝐶⟩)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  Vcvv 2763  cop 3625   × cxp 4661  cfv 5258  1st c1st 6196  2nd c2nd 6197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-iota 5219  df-fun 5260  df-fv 5266  df-1st 6198  df-2nd 6199
This theorem is referenced by:  op1steq  6237  dfoprab3  6249  1stconst  6279  2ndconst  6280  cnvoprab  6292  upxp  14508
  Copyright terms: Public domain W3C validator