ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqopi GIF version

Theorem eqopi 6070
Description: Equality with an ordered pair. (Contributed by NM, 15-Dec-2008.) (Revised by Mario Carneiro, 23-Feb-2014.)
Assertion
Ref Expression
eqopi ((𝐴 ∈ (𝑉 × 𝑊) ∧ ((1st𝐴) = 𝐵 ∧ (2nd𝐴) = 𝐶)) → 𝐴 = ⟨𝐵, 𝐶⟩)

Proof of Theorem eqopi
StepHypRef Expression
1 xpss 4647 . . 3 (𝑉 × 𝑊) ⊆ (V × V)
21sseli 3093 . 2 (𝐴 ∈ (𝑉 × 𝑊) → 𝐴 ∈ (V × V))
3 elxp6 6067 . . . 4 (𝐴 ∈ (V × V) ↔ (𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩ ∧ ((1st𝐴) ∈ V ∧ (2nd𝐴) ∈ V)))
43simplbi 272 . . 3 (𝐴 ∈ (V × V) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
5 opeq12 3707 . . 3 (((1st𝐴) = 𝐵 ∧ (2nd𝐴) = 𝐶) → ⟨(1st𝐴), (2nd𝐴)⟩ = ⟨𝐵, 𝐶⟩)
64, 5sylan9eq 2192 . 2 ((𝐴 ∈ (V × V) ∧ ((1st𝐴) = 𝐵 ∧ (2nd𝐴) = 𝐶)) → 𝐴 = ⟨𝐵, 𝐶⟩)
72, 6sylan 281 1 ((𝐴 ∈ (𝑉 × 𝑊) ∧ ((1st𝐴) = 𝐵 ∧ (2nd𝐴) = 𝐶)) → 𝐴 = ⟨𝐵, 𝐶⟩)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  wcel 1480  Vcvv 2686  cop 3530   × cxp 4537  cfv 5123  1st c1st 6036  2nd c2nd 6037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-sbc 2910  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-iota 5088  df-fun 5125  df-fv 5131  df-1st 6038  df-2nd 6039
This theorem is referenced by:  op1steq  6077  dfoprab3  6089  1stconst  6118  2ndconst  6119  cnvoprab  6131  upxp  12455
  Copyright terms: Public domain W3C validator