Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ibliooicc Structured version   Visualization version   GIF version

Theorem ibliooicc 42263
Description: If a function is integrable on an open interval, it is integrable on the corresponding closed interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
ibliooicc.1 (𝜑𝐴 ∈ ℝ)
ibliooicc.2 (𝜑𝐵 ∈ ℝ)
ibliooicc.3 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐶) ∈ 𝐿1)
ibliooicc.4 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐶 ∈ ℂ)
Assertion
Ref Expression
ibliooicc (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐶) ∈ 𝐿1)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem ibliooicc
StepHypRef Expression
1 ibliooicc.3 . 2 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐶) ∈ 𝐿1)
2 ioossicc 12825 . . . . 5 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
32a1i 11 . . . 4 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵))
4 ibliooicc.1 . . . . 5 (𝜑𝐴 ∈ ℝ)
5 ibliooicc.2 . . . . 5 (𝜑𝐵 ∈ ℝ)
64, 5iccssred 41787 . . . 4 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
74rexrd 10693 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ*)
85rexrd 10693 . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ*)
9 icc0 12789 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴))
107, 8, 9syl2anc 586 . . . . . . . . 9 (𝜑 → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴))
1110biimpar 480 . . . . . . . 8 ((𝜑𝐵 < 𝐴) → (𝐴[,]𝐵) = ∅)
1211difeq1d 4100 . . . . . . 7 ((𝜑𝐵 < 𝐴) → ((𝐴[,]𝐵) ∖ (𝐴(,)𝐵)) = (∅ ∖ (𝐴(,)𝐵)))
13 0dif 4357 . . . . . . . 8 (∅ ∖ (𝐴(,)𝐵)) = ∅
14 0ss 4352 . . . . . . . 8 ∅ ⊆ {𝐴, 𝐵}
1513, 14eqsstri 4003 . . . . . . 7 (∅ ∖ (𝐴(,)𝐵)) ⊆ {𝐴, 𝐵}
1612, 15eqsstrdi 4023 . . . . . 6 ((𝜑𝐵 < 𝐴) → ((𝐴[,]𝐵) ∖ (𝐴(,)𝐵)) ⊆ {𝐴, 𝐵})
17 ssid 3991 . . . . . . 7 ((𝐴[,]𝐵) ∖ (𝐴(,)𝐵)) ⊆ ((𝐴[,]𝐵) ∖ (𝐴(,)𝐵))
187adantr 483 . . . . . . . 8 ((𝜑𝐴𝐵) → 𝐴 ∈ ℝ*)
198adantr 483 . . . . . . . 8 ((𝜑𝐴𝐵) → 𝐵 ∈ ℝ*)
20 simpr 487 . . . . . . . 8 ((𝜑𝐴𝐵) → 𝐴𝐵)
21 iccdifioo 41798 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ((𝐴[,]𝐵) ∖ (𝐴(,)𝐵)) = {𝐴, 𝐵})
2218, 19, 20, 21syl3anc 1367 . . . . . . 7 ((𝜑𝐴𝐵) → ((𝐴[,]𝐵) ∖ (𝐴(,)𝐵)) = {𝐴, 𝐵})
2317, 22sseqtrid 4021 . . . . . 6 ((𝜑𝐴𝐵) → ((𝐴[,]𝐵) ∖ (𝐴(,)𝐵)) ⊆ {𝐴, 𝐵})
2416, 23, 5, 4ltlecasei 10750 . . . . 5 (𝜑 → ((𝐴[,]𝐵) ∖ (𝐴(,)𝐵)) ⊆ {𝐴, 𝐵})
25 prssi 4756 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → {𝐴, 𝐵} ⊆ ℝ)
264, 5, 25syl2anc 586 . . . . 5 (𝜑 → {𝐴, 𝐵} ⊆ ℝ)
27 prfi 8795 . . . . . 6 {𝐴, 𝐵} ∈ Fin
28 ovolfi 24097 . . . . . 6 (({𝐴, 𝐵} ∈ Fin ∧ {𝐴, 𝐵} ⊆ ℝ) → (vol*‘{𝐴, 𝐵}) = 0)
2927, 26, 28sylancr 589 . . . . 5 (𝜑 → (vol*‘{𝐴, 𝐵}) = 0)
30 ovolssnul 24090 . . . . 5 ((((𝐴[,]𝐵) ∖ (𝐴(,)𝐵)) ⊆ {𝐴, 𝐵} ∧ {𝐴, 𝐵} ⊆ ℝ ∧ (vol*‘{𝐴, 𝐵}) = 0) → (vol*‘((𝐴[,]𝐵) ∖ (𝐴(,)𝐵))) = 0)
3124, 26, 29, 30syl3anc 1367 . . . 4 (𝜑 → (vol*‘((𝐴[,]𝐵) ∖ (𝐴(,)𝐵))) = 0)
32 ibliooicc.4 . . . 4 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐶 ∈ ℂ)
333, 6, 31, 32itgss3 24417 . . 3 (𝜑 → (((𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐶) ∈ 𝐿1 ↔ (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐶) ∈ 𝐿1) ∧ ∫(𝐴(,)𝐵)𝐶 d𝑥 = ∫(𝐴[,]𝐵)𝐶 d𝑥))
3433simpld 497 . 2 (𝜑 → ((𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐶) ∈ 𝐿1 ↔ (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐶) ∈ 𝐿1))
351, 34mpbid 234 1 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐶) ∈ 𝐿1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  cdif 3935  wss 3938  c0 4293  {cpr 4571   class class class wbr 5068  cmpt 5148  cfv 6357  (class class class)co 7158  Fincfn 8511  cc 10537  cr 10538  0cc0 10539  *cxr 10676   < clt 10677  cle 10678  (,)cioo 12741  [,]cicc 12744  vol*covol 24065  𝐿1cibl 24220  citg 24221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-addf 10618
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-symdif 4221  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-disj 5034  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-ofr 7412  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fi 8877  df-sup 8908  df-inf 8909  df-oi 8976  df-dju 9332  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-n0 11901  df-z 11985  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-mod 13241  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847  df-sum 15045  df-rest 16698  df-topgen 16719  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-mopn 20543  df-top 21504  df-topon 21521  df-bases 21556  df-cmp 21997  df-ovol 24067  df-vol 24068  df-mbf 24222  df-itg1 24223  df-itg2 24224  df-ibl 24225  df-itg 24226
This theorem is referenced by:  fourierdlem69  42467  fourierdlem73  42471  fourierdlem81  42479  fourierdlem93  42491
  Copyright terms: Public domain W3C validator