|   | Mathbox for Glauco Siliprandi | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ibliooicc | Structured version Visualization version GIF version | ||
| Description: If a function is integrable on an open interval, it is integrable on the corresponding closed interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) | 
| Ref | Expression | 
|---|---|
| ibliooicc.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) | 
| ibliooicc.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) | 
| ibliooicc.3 | ⊢ (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐶) ∈ 𝐿1) | 
| ibliooicc.4 | ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐶 ∈ ℂ) | 
| Ref | Expression | 
|---|---|
| ibliooicc | ⊢ (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐶) ∈ 𝐿1) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ibliooicc.3 | . 2 ⊢ (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐶) ∈ 𝐿1) | |
| 2 | ioossicc 13474 | . . . . 5 ⊢ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) | |
| 3 | 2 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)) | 
| 4 | ibliooicc.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 5 | ibliooicc.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 6 | 4, 5 | iccssred 13475 | . . . 4 ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℝ) | 
| 7 | 4 | rexrd 11312 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | 
| 8 | 5 | rexrd 11312 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | 
| 9 | icc0 13436 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴)) | |
| 10 | 7, 8, 9 | syl2anc 584 | . . . . . . . . 9 ⊢ (𝜑 → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴)) | 
| 11 | 10 | biimpar 477 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → (𝐴[,]𝐵) = ∅) | 
| 12 | 11 | difeq1d 4124 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → ((𝐴[,]𝐵) ∖ (𝐴(,)𝐵)) = (∅ ∖ (𝐴(,)𝐵))) | 
| 13 | 0dif 4404 | . . . . . . . 8 ⊢ (∅ ∖ (𝐴(,)𝐵)) = ∅ | |
| 14 | 0ss 4399 | . . . . . . . 8 ⊢ ∅ ⊆ {𝐴, 𝐵} | |
| 15 | 13, 14 | eqsstri 4029 | . . . . . . 7 ⊢ (∅ ∖ (𝐴(,)𝐵)) ⊆ {𝐴, 𝐵} | 
| 16 | 12, 15 | eqsstrdi 4027 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → ((𝐴[,]𝐵) ∖ (𝐴(,)𝐵)) ⊆ {𝐴, 𝐵}) | 
| 17 | ssid 4005 | . . . . . . 7 ⊢ ((𝐴[,]𝐵) ∖ (𝐴(,)𝐵)) ⊆ ((𝐴[,]𝐵) ∖ (𝐴(,)𝐵)) | |
| 18 | 7 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → 𝐴 ∈ ℝ*) | 
| 19 | 8 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → 𝐵 ∈ ℝ*) | 
| 20 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → 𝐴 ≤ 𝐵) | |
| 21 | iccdifioo 45533 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → ((𝐴[,]𝐵) ∖ (𝐴(,)𝐵)) = {𝐴, 𝐵}) | |
| 22 | 18, 19, 20, 21 | syl3anc 1372 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → ((𝐴[,]𝐵) ∖ (𝐴(,)𝐵)) = {𝐴, 𝐵}) | 
| 23 | 17, 22 | sseqtrid 4025 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → ((𝐴[,]𝐵) ∖ (𝐴(,)𝐵)) ⊆ {𝐴, 𝐵}) | 
| 24 | 16, 23, 5, 4 | ltlecasei 11370 | . . . . 5 ⊢ (𝜑 → ((𝐴[,]𝐵) ∖ (𝐴(,)𝐵)) ⊆ {𝐴, 𝐵}) | 
| 25 | prssi 4820 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → {𝐴, 𝐵} ⊆ ℝ) | |
| 26 | 4, 5, 25 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → {𝐴, 𝐵} ⊆ ℝ) | 
| 27 | prfi 9364 | . . . . . 6 ⊢ {𝐴, 𝐵} ∈ Fin | |
| 28 | ovolfi 25530 | . . . . . 6 ⊢ (({𝐴, 𝐵} ∈ Fin ∧ {𝐴, 𝐵} ⊆ ℝ) → (vol*‘{𝐴, 𝐵}) = 0) | |
| 29 | 27, 26, 28 | sylancr 587 | . . . . 5 ⊢ (𝜑 → (vol*‘{𝐴, 𝐵}) = 0) | 
| 30 | ovolssnul 25523 | . . . . 5 ⊢ ((((𝐴[,]𝐵) ∖ (𝐴(,)𝐵)) ⊆ {𝐴, 𝐵} ∧ {𝐴, 𝐵} ⊆ ℝ ∧ (vol*‘{𝐴, 𝐵}) = 0) → (vol*‘((𝐴[,]𝐵) ∖ (𝐴(,)𝐵))) = 0) | |
| 31 | 24, 26, 29, 30 | syl3anc 1372 | . . . 4 ⊢ (𝜑 → (vol*‘((𝐴[,]𝐵) ∖ (𝐴(,)𝐵))) = 0) | 
| 32 | ibliooicc.4 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐶 ∈ ℂ) | |
| 33 | 3, 6, 31, 32 | itgss3 25851 | . . 3 ⊢ (𝜑 → (((𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐶) ∈ 𝐿1 ↔ (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐶) ∈ 𝐿1) ∧ ∫(𝐴(,)𝐵)𝐶 d𝑥 = ∫(𝐴[,]𝐵)𝐶 d𝑥)) | 
| 34 | 33 | simpld 494 | . 2 ⊢ (𝜑 → ((𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐶) ∈ 𝐿1 ↔ (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐶) ∈ 𝐿1)) | 
| 35 | 1, 34 | mpbid 232 | 1 ⊢ (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐶) ∈ 𝐿1) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∖ cdif 3947 ⊆ wss 3950 ∅c0 4332 {cpr 4627 class class class wbr 5142 ↦ cmpt 5224 ‘cfv 6560 (class class class)co 7432 Fincfn 8986 ℂcc 11154 ℝcr 11155 0cc0 11156 ℝ*cxr 11295 < clt 11296 ≤ cle 11297 (,)cioo 13388 [,]cicc 13391 vol*covol 25498 𝐿1cibl 25653 ∫citg 25654 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-inf2 9682 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 ax-pre-sup 11234 ax-addf 11235 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-symdif 4252 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-disj 5110 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-se 5637 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-isom 6569 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-of 7698 df-ofr 7699 df-om 7889 df-1st 8015 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-2o 8508 df-er 8746 df-map 8869 df-pm 8870 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-fi 9452 df-sup 9483 df-inf 9484 df-oi 9551 df-dju 9942 df-card 9980 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-div 11922 df-nn 12268 df-2 12330 df-3 12331 df-4 12332 df-n0 12529 df-z 12616 df-uz 12880 df-q 12992 df-rp 13036 df-xneg 13155 df-xadd 13156 df-xmul 13157 df-ioo 13392 df-ico 13394 df-icc 13395 df-fz 13549 df-fzo 13696 df-fl 13833 df-mod 13911 df-seq 14044 df-exp 14104 df-hash 14371 df-cj 15139 df-re 15140 df-im 15141 df-sqrt 15275 df-abs 15276 df-clim 15525 df-sum 15724 df-rest 17468 df-topgen 17489 df-psmet 21357 df-xmet 21358 df-met 21359 df-bl 21360 df-mopn 21361 df-top 22901 df-topon 22918 df-bases 22954 df-cmp 23396 df-ovol 25500 df-vol 25501 df-mbf 25655 df-itg1 25656 df-itg2 25657 df-ibl 25658 df-itg 25659 | 
| This theorem is referenced by: fourierdlem69 46195 fourierdlem73 46199 fourierdlem81 46207 fourierdlem93 46219 | 
| Copyright terms: Public domain | W3C validator |