![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ibliooicc | Structured version Visualization version GIF version |
Description: If a function is integrable on an open interval, it is integrable on the corresponding closed interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
ibliooicc.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ibliooicc.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
ibliooicc.3 | ⊢ (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐶) ∈ 𝐿1) |
ibliooicc.4 | ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐶 ∈ ℂ) |
Ref | Expression |
---|---|
ibliooicc | ⊢ (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐶) ∈ 𝐿1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ibliooicc.3 | . 2 ⊢ (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐶) ∈ 𝐿1) | |
2 | ioossicc 13440 | . . . . 5 ⊢ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) | |
3 | 2 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)) |
4 | ibliooicc.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
5 | ibliooicc.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
6 | 4, 5 | iccssred 13441 | . . . 4 ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℝ) |
7 | 4 | rexrd 11292 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
8 | 5 | rexrd 11292 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
9 | icc0 13402 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴)) | |
10 | 7, 8, 9 | syl2anc 582 | . . . . . . . . 9 ⊢ (𝜑 → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴)) |
11 | 10 | biimpar 476 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → (𝐴[,]𝐵) = ∅) |
12 | 11 | difeq1d 4111 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → ((𝐴[,]𝐵) ∖ (𝐴(,)𝐵)) = (∅ ∖ (𝐴(,)𝐵))) |
13 | 0dif 4395 | . . . . . . . 8 ⊢ (∅ ∖ (𝐴(,)𝐵)) = ∅ | |
14 | 0ss 4390 | . . . . . . . 8 ⊢ ∅ ⊆ {𝐴, 𝐵} | |
15 | 13, 14 | eqsstri 4006 | . . . . . . 7 ⊢ (∅ ∖ (𝐴(,)𝐵)) ⊆ {𝐴, 𝐵} |
16 | 12, 15 | eqsstrdi 4026 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → ((𝐴[,]𝐵) ∖ (𝐴(,)𝐵)) ⊆ {𝐴, 𝐵}) |
17 | ssid 3994 | . . . . . . 7 ⊢ ((𝐴[,]𝐵) ∖ (𝐴(,)𝐵)) ⊆ ((𝐴[,]𝐵) ∖ (𝐴(,)𝐵)) | |
18 | 7 | adantr 479 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → 𝐴 ∈ ℝ*) |
19 | 8 | adantr 479 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → 𝐵 ∈ ℝ*) |
20 | simpr 483 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → 𝐴 ≤ 𝐵) | |
21 | iccdifioo 44935 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → ((𝐴[,]𝐵) ∖ (𝐴(,)𝐵)) = {𝐴, 𝐵}) | |
22 | 18, 19, 20, 21 | syl3anc 1368 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → ((𝐴[,]𝐵) ∖ (𝐴(,)𝐵)) = {𝐴, 𝐵}) |
23 | 17, 22 | sseqtrid 4024 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → ((𝐴[,]𝐵) ∖ (𝐴(,)𝐵)) ⊆ {𝐴, 𝐵}) |
24 | 16, 23, 5, 4 | ltlecasei 11350 | . . . . 5 ⊢ (𝜑 → ((𝐴[,]𝐵) ∖ (𝐴(,)𝐵)) ⊆ {𝐴, 𝐵}) |
25 | prssi 4818 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → {𝐴, 𝐵} ⊆ ℝ) | |
26 | 4, 5, 25 | syl2anc 582 | . . . . 5 ⊢ (𝜑 → {𝐴, 𝐵} ⊆ ℝ) |
27 | prfi 9344 | . . . . . 6 ⊢ {𝐴, 𝐵} ∈ Fin | |
28 | ovolfi 25439 | . . . . . 6 ⊢ (({𝐴, 𝐵} ∈ Fin ∧ {𝐴, 𝐵} ⊆ ℝ) → (vol*‘{𝐴, 𝐵}) = 0) | |
29 | 27, 26, 28 | sylancr 585 | . . . . 5 ⊢ (𝜑 → (vol*‘{𝐴, 𝐵}) = 0) |
30 | ovolssnul 25432 | . . . . 5 ⊢ ((((𝐴[,]𝐵) ∖ (𝐴(,)𝐵)) ⊆ {𝐴, 𝐵} ∧ {𝐴, 𝐵} ⊆ ℝ ∧ (vol*‘{𝐴, 𝐵}) = 0) → (vol*‘((𝐴[,]𝐵) ∖ (𝐴(,)𝐵))) = 0) | |
31 | 24, 26, 29, 30 | syl3anc 1368 | . . . 4 ⊢ (𝜑 → (vol*‘((𝐴[,]𝐵) ∖ (𝐴(,)𝐵))) = 0) |
32 | ibliooicc.4 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐶 ∈ ℂ) | |
33 | 3, 6, 31, 32 | itgss3 25760 | . . 3 ⊢ (𝜑 → (((𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐶) ∈ 𝐿1 ↔ (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐶) ∈ 𝐿1) ∧ ∫(𝐴(,)𝐵)𝐶 d𝑥 = ∫(𝐴[,]𝐵)𝐶 d𝑥)) |
34 | 33 | simpld 493 | . 2 ⊢ (𝜑 → ((𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐶) ∈ 𝐿1 ↔ (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐶) ∈ 𝐿1)) |
35 | 1, 34 | mpbid 231 | 1 ⊢ (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐶) ∈ 𝐿1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∖ cdif 3936 ⊆ wss 3939 ∅c0 4316 {cpr 4624 class class class wbr 5141 ↦ cmpt 5224 ‘cfv 6541 (class class class)co 7414 Fincfn 8960 ℂcc 11134 ℝcr 11135 0cc0 11136 ℝ*cxr 11275 < clt 11276 ≤ cle 11277 (,)cioo 13354 [,]cicc 13357 vol*covol 25407 𝐿1cibl 25562 ∫citg 25563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5357 ax-pr 5421 ax-un 7736 ax-inf2 9662 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 ax-pre-sup 11214 ax-addf 11215 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-pss 3958 df-symdif 4235 df-nul 4317 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-int 4943 df-iun 4991 df-disj 5107 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5568 df-eprel 5574 df-po 5582 df-so 5583 df-fr 5625 df-se 5626 df-we 5627 df-xp 5676 df-rel 5677 df-cnv 5678 df-co 5679 df-dm 5680 df-rn 5681 df-res 5682 df-ima 5683 df-pred 6298 df-ord 6365 df-on 6366 df-lim 6367 df-suc 6368 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-isom 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7680 df-ofr 7681 df-om 7867 df-1st 7989 df-2nd 7990 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-1o 8483 df-2o 8484 df-er 8721 df-map 8843 df-pm 8844 df-en 8961 df-dom 8962 df-sdom 8963 df-fin 8964 df-fi 9432 df-sup 9463 df-inf 9464 df-oi 9531 df-dju 9922 df-card 9960 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11474 df-neg 11475 df-div 11900 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-n0 12501 df-z 12587 df-uz 12851 df-q 12961 df-rp 13005 df-xneg 13122 df-xadd 13123 df-xmul 13124 df-ioo 13358 df-ico 13360 df-icc 13361 df-fz 13515 df-fzo 13658 df-fl 13787 df-mod 13865 df-seq 13997 df-exp 14057 df-hash 14320 df-cj 15076 df-re 15077 df-im 15078 df-sqrt 15212 df-abs 15213 df-clim 15462 df-sum 15663 df-rest 17401 df-topgen 17422 df-psmet 21273 df-xmet 21274 df-met 21275 df-bl 21276 df-mopn 21277 df-top 22812 df-topon 22829 df-bases 22865 df-cmp 23307 df-ovol 25409 df-vol 25410 df-mbf 25564 df-itg1 25565 df-itg2 25566 df-ibl 25567 df-itg 25568 |
This theorem is referenced by: fourierdlem69 45598 fourierdlem73 45602 fourierdlem81 45610 fourierdlem93 45622 |
Copyright terms: Public domain | W3C validator |