![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nbgr0vtx | Structured version Visualization version GIF version |
Description: In a null graph (with no vertices), all neighborhoods are empty. (Contributed by AV, 15-Nov-2020.) |
Ref | Expression |
---|---|
nbgr0vtx | ⊢ ((Vtx‘𝐺) = ∅ → (𝐺 NeighbVtx 𝐾) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ral0 4513 | . . 3 ⊢ ∀𝑛 ∈ ∅ ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒 | |
2 | difeq1 4116 | . . . . 5 ⊢ ((Vtx‘𝐺) = ∅ → ((Vtx‘𝐺) ∖ {𝐾}) = (∅ ∖ {𝐾})) | |
3 | 0dif 4402 | . . . . 5 ⊢ (∅ ∖ {𝐾}) = ∅ | |
4 | 2, 3 | eqtrdi 2789 | . . . 4 ⊢ ((Vtx‘𝐺) = ∅ → ((Vtx‘𝐺) ∖ {𝐾}) = ∅) |
5 | 4 | raleqdv 3326 | . . 3 ⊢ ((Vtx‘𝐺) = ∅ → (∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝐾}) ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒 ↔ ∀𝑛 ∈ ∅ ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒)) |
6 | 1, 5 | mpbiri 258 | . 2 ⊢ ((Vtx‘𝐺) = ∅ → ∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝐾}) ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒) |
7 | 6 | nbgr0vtxlem 28612 | 1 ⊢ ((Vtx‘𝐺) = ∅ → (𝐺 NeighbVtx 𝐾) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1542 ∀wral 3062 ∃wrex 3071 ∖ cdif 3946 ⊆ wss 3949 ∅c0 4323 {csn 4629 {cpr 4631 ‘cfv 6544 (class class class)co 7409 Vtxcvtx 28256 Edgcedg 28307 NeighbVtx cnbgr 28589 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-1st 7975 df-2nd 7976 df-nbgr 28590 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |