Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nbgr0vtx | Structured version Visualization version GIF version |
Description: In a null graph (with no vertices), all neighborhoods are empty. (Contributed by AV, 15-Nov-2020.) |
Ref | Expression |
---|---|
nbgr0vtx | ⊢ ((Vtx‘𝐺) = ∅ → (𝐺 NeighbVtx 𝐾) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ral0 4448 | . . 3 ⊢ ∀𝑛 ∈ ∅ ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒 | |
2 | difeq1 4054 | . . . . 5 ⊢ ((Vtx‘𝐺) = ∅ → ((Vtx‘𝐺) ∖ {𝐾}) = (∅ ∖ {𝐾})) | |
3 | 0dif 4340 | . . . . 5 ⊢ (∅ ∖ {𝐾}) = ∅ | |
4 | 2, 3 | eqtrdi 2795 | . . . 4 ⊢ ((Vtx‘𝐺) = ∅ → ((Vtx‘𝐺) ∖ {𝐾}) = ∅) |
5 | 4 | raleqdv 3346 | . . 3 ⊢ ((Vtx‘𝐺) = ∅ → (∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝐾}) ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒 ↔ ∀𝑛 ∈ ∅ ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒)) |
6 | 1, 5 | mpbiri 257 | . 2 ⊢ ((Vtx‘𝐺) = ∅ → ∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝐾}) ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒) |
7 | 6 | nbgr0vtxlem 27703 | 1 ⊢ ((Vtx‘𝐺) = ∅ → (𝐺 NeighbVtx 𝐾) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∀wral 3065 ∃wrex 3066 ∖ cdif 3888 ⊆ wss 3891 ∅c0 4261 {csn 4566 {cpr 4568 ‘cfv 6430 (class class class)co 7268 Vtxcvtx 27347 Edgcedg 27398 NeighbVtx cnbgr 27680 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fv 6438 df-ov 7271 df-oprab 7272 df-mpo 7273 df-1st 7817 df-2nd 7818 df-nbgr 27681 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |