MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nbgr0vtx Structured version   Visualization version   GIF version

Theorem nbgr0vtx 29300
Description: In a null graph (with no vertices), all neighborhoods are empty. (Contributed by AV, 15-Nov-2020.) (Proof shortened by AV, 10-May-2025.)
Assertion
Ref Expression
nbgr0vtx ((Vtx‘𝐺) = ∅ → (𝐺 NeighbVtx 𝐾) = ∅)

Proof of Theorem nbgr0vtx
StepHypRef Expression
1 nel02 4290 . . 3 ((Vtx‘𝐺) = ∅ → ¬ 𝐾 ∈ (Vtx‘𝐺))
2 df-nel 3030 . . 3 (𝐾 ∉ (Vtx‘𝐺) ↔ ¬ 𝐾 ∈ (Vtx‘𝐺))
31, 2sylibr 234 . 2 ((Vtx‘𝐺) = ∅ → 𝐾 ∉ (Vtx‘𝐺))
4 eqid 2729 . . 3 (Vtx‘𝐺) = (Vtx‘𝐺)
54nbgrnvtx0 29284 . 2 (𝐾 ∉ (Vtx‘𝐺) → (𝐺 NeighbVtx 𝐾) = ∅)
63, 5syl 17 1 ((Vtx‘𝐺) = ∅ → (𝐺 NeighbVtx 𝐾) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2109  wnel 3029  c0 4284  cfv 6482  (class class class)co 7349  Vtxcvtx 28941   NeighbVtx cnbgr 29277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-nbgr 29278
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator