| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nbgr0vtx | Structured version Visualization version GIF version | ||
| Description: In a null graph (with no vertices), all neighborhoods are empty. (Contributed by AV, 15-Nov-2020.) (Proof shortened by AV, 10-May-2025.) |
| Ref | Expression |
|---|---|
| nbgr0vtx | ⊢ ((Vtx‘𝐺) = ∅ → (𝐺 NeighbVtx 𝐾) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nel02 4286 | . . 3 ⊢ ((Vtx‘𝐺) = ∅ → ¬ 𝐾 ∈ (Vtx‘𝐺)) | |
| 2 | df-nel 3033 | . . 3 ⊢ (𝐾 ∉ (Vtx‘𝐺) ↔ ¬ 𝐾 ∈ (Vtx‘𝐺)) | |
| 3 | 1, 2 | sylibr 234 | . 2 ⊢ ((Vtx‘𝐺) = ∅ → 𝐾 ∉ (Vtx‘𝐺)) |
| 4 | eqid 2731 | . . 3 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 5 | 4 | nbgrnvtx0 29317 | . 2 ⊢ (𝐾 ∉ (Vtx‘𝐺) → (𝐺 NeighbVtx 𝐾) = ∅) |
| 6 | 3, 5 | syl 17 | 1 ⊢ ((Vtx‘𝐺) = ∅ → (𝐺 NeighbVtx 𝐾) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2111 ∉ wnel 3032 ∅c0 4280 ‘cfv 6481 (class class class)co 7346 Vtxcvtx 28974 NeighbVtx cnbgr 29310 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-nbgr 29311 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |