| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > newval | Structured version Visualization version GIF version | ||
| Description: The value of the new options function. (Contributed by Scott Fenton, 9-Oct-2024.) |
| Ref | Expression |
|---|---|
| newval | ⊢ ( N ‘𝐴) = (( M ‘𝐴) ∖ ( O ‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6876 | . . . 4 ⊢ (𝑥 = 𝐴 → ( M ‘𝑥) = ( M ‘𝐴)) | |
| 2 | fveq2 6876 | . . . 4 ⊢ (𝑥 = 𝐴 → ( O ‘𝑥) = ( O ‘𝐴)) | |
| 3 | 1, 2 | difeq12d 4102 | . . 3 ⊢ (𝑥 = 𝐴 → (( M ‘𝑥) ∖ ( O ‘𝑥)) = (( M ‘𝐴) ∖ ( O ‘𝐴))) |
| 4 | df-new 27809 | . . 3 ⊢ N = (𝑥 ∈ On ↦ (( M ‘𝑥) ∖ ( O ‘𝑥))) | |
| 5 | fvex 6889 | . . . 4 ⊢ ( M ‘𝐴) ∈ V | |
| 6 | 5 | difexi 5300 | . . 3 ⊢ (( M ‘𝐴) ∖ ( O ‘𝐴)) ∈ V |
| 7 | 3, 4, 6 | fvmpt 6986 | . 2 ⊢ (𝐴 ∈ On → ( N ‘𝐴) = (( M ‘𝐴) ∖ ( O ‘𝐴))) |
| 8 | 4 | fvmptndm 7017 | . . 3 ⊢ (¬ 𝐴 ∈ On → ( N ‘𝐴) = ∅) |
| 9 | df-made 27807 | . . . . . . . . 9 ⊢ M = recs((𝑓 ∈ V ↦ ( |s “ (𝒫 ∪ ran 𝑓 × 𝒫 ∪ ran 𝑓)))) | |
| 10 | 9 | tfr1 8411 | . . . . . . . 8 ⊢ M Fn On |
| 11 | 10 | fndmi 6642 | . . . . . . 7 ⊢ dom M = On |
| 12 | 11 | eleq2i 2826 | . . . . . 6 ⊢ (𝐴 ∈ dom M ↔ 𝐴 ∈ On) |
| 13 | ndmfv 6911 | . . . . . 6 ⊢ (¬ 𝐴 ∈ dom M → ( M ‘𝐴) = ∅) | |
| 14 | 12, 13 | sylnbir 331 | . . . . 5 ⊢ (¬ 𝐴 ∈ On → ( M ‘𝐴) = ∅) |
| 15 | 14 | difeq1d 4100 | . . . 4 ⊢ (¬ 𝐴 ∈ On → (( M ‘𝐴) ∖ ( O ‘𝐴)) = (∅ ∖ ( O ‘𝐴))) |
| 16 | 0dif 4380 | . . . 4 ⊢ (∅ ∖ ( O ‘𝐴)) = ∅ | |
| 17 | 15, 16 | eqtrdi 2786 | . . 3 ⊢ (¬ 𝐴 ∈ On → (( M ‘𝐴) ∖ ( O ‘𝐴)) = ∅) |
| 18 | 8, 17 | eqtr4d 2773 | . 2 ⊢ (¬ 𝐴 ∈ On → ( N ‘𝐴) = (( M ‘𝐴) ∖ ( O ‘𝐴))) |
| 19 | 7, 18 | pm2.61i 182 | 1 ⊢ ( N ‘𝐴) = (( M ‘𝐴) ∖ ( O ‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ∖ cdif 3923 ∅c0 4308 𝒫 cpw 4575 ∪ cuni 4883 ↦ cmpt 5201 × cxp 5652 dom cdm 5654 ran crn 5655 “ cima 5657 Oncon0 6352 ‘cfv 6531 |s cscut 27746 M cmade 27802 O cold 27803 N cnew 27804 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-made 27807 df-new 27809 |
| This theorem is referenced by: new0 27838 madeun 27847 newbday 27865 |
| Copyright terms: Public domain | W3C validator |