![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > newval | Structured version Visualization version GIF version |
Description: The value of the new options function. (Contributed by Scott Fenton, 9-Oct-2024.) |
Ref | Expression |
---|---|
newval | ⊢ ( N ‘𝐴) = (( M ‘𝐴) ∖ ( O ‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6920 | . . . 4 ⊢ (𝑥 = 𝐴 → ( M ‘𝑥) = ( M ‘𝐴)) | |
2 | fveq2 6920 | . . . 4 ⊢ (𝑥 = 𝐴 → ( O ‘𝑥) = ( O ‘𝐴)) | |
3 | 1, 2 | difeq12d 4150 | . . 3 ⊢ (𝑥 = 𝐴 → (( M ‘𝑥) ∖ ( O ‘𝑥)) = (( M ‘𝐴) ∖ ( O ‘𝐴))) |
4 | df-new 27906 | . . 3 ⊢ N = (𝑥 ∈ On ↦ (( M ‘𝑥) ∖ ( O ‘𝑥))) | |
5 | fvex 6933 | . . . 4 ⊢ ( M ‘𝐴) ∈ V | |
6 | 5 | difexi 5348 | . . 3 ⊢ (( M ‘𝐴) ∖ ( O ‘𝐴)) ∈ V |
7 | 3, 4, 6 | fvmpt 7029 | . 2 ⊢ (𝐴 ∈ On → ( N ‘𝐴) = (( M ‘𝐴) ∖ ( O ‘𝐴))) |
8 | 4 | fvmptndm 7060 | . . 3 ⊢ (¬ 𝐴 ∈ On → ( N ‘𝐴) = ∅) |
9 | df-made 27904 | . . . . . . . . 9 ⊢ M = recs((𝑓 ∈ V ↦ ( |s “ (𝒫 ∪ ran 𝑓 × 𝒫 ∪ ran 𝑓)))) | |
10 | 9 | tfr1 8453 | . . . . . . . 8 ⊢ M Fn On |
11 | 10 | fndmi 6683 | . . . . . . 7 ⊢ dom M = On |
12 | 11 | eleq2i 2836 | . . . . . 6 ⊢ (𝐴 ∈ dom M ↔ 𝐴 ∈ On) |
13 | ndmfv 6955 | . . . . . 6 ⊢ (¬ 𝐴 ∈ dom M → ( M ‘𝐴) = ∅) | |
14 | 12, 13 | sylnbir 331 | . . . . 5 ⊢ (¬ 𝐴 ∈ On → ( M ‘𝐴) = ∅) |
15 | 14 | difeq1d 4148 | . . . 4 ⊢ (¬ 𝐴 ∈ On → (( M ‘𝐴) ∖ ( O ‘𝐴)) = (∅ ∖ ( O ‘𝐴))) |
16 | 0dif 4428 | . . . 4 ⊢ (∅ ∖ ( O ‘𝐴)) = ∅ | |
17 | 15, 16 | eqtrdi 2796 | . . 3 ⊢ (¬ 𝐴 ∈ On → (( M ‘𝐴) ∖ ( O ‘𝐴)) = ∅) |
18 | 8, 17 | eqtr4d 2783 | . 2 ⊢ (¬ 𝐴 ∈ On → ( N ‘𝐴) = (( M ‘𝐴) ∖ ( O ‘𝐴))) |
19 | 7, 18 | pm2.61i 182 | 1 ⊢ ( N ‘𝐴) = (( M ‘𝐴) ∖ ( O ‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∖ cdif 3973 ∅c0 4352 𝒫 cpw 4622 ∪ cuni 4931 ↦ cmpt 5249 × cxp 5698 dom cdm 5700 ran crn 5701 “ cima 5703 Oncon0 6395 ‘cfv 6573 |s cscut 27845 M cmade 27899 O cold 27900 N cnew 27901 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-made 27904 df-new 27906 |
This theorem is referenced by: new0 27931 madeun 27940 newbday 27958 |
Copyright terms: Public domain | W3C validator |