MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  newval Structured version   Visualization version   GIF version

Theorem newval 27912
Description: The value of the new options function. (Contributed by Scott Fenton, 9-Oct-2024.)
Assertion
Ref Expression
newval ( N ‘𝐴) = (( M ‘𝐴) ∖ ( O ‘𝐴))

Proof of Theorem newval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6920 . . . 4 (𝑥 = 𝐴 → ( M ‘𝑥) = ( M ‘𝐴))
2 fveq2 6920 . . . 4 (𝑥 = 𝐴 → ( O ‘𝑥) = ( O ‘𝐴))
31, 2difeq12d 4150 . . 3 (𝑥 = 𝐴 → (( M ‘𝑥) ∖ ( O ‘𝑥)) = (( M ‘𝐴) ∖ ( O ‘𝐴)))
4 df-new 27906 . . 3 N = (𝑥 ∈ On ↦ (( M ‘𝑥) ∖ ( O ‘𝑥)))
5 fvex 6933 . . . 4 ( M ‘𝐴) ∈ V
65difexi 5348 . . 3 (( M ‘𝐴) ∖ ( O ‘𝐴)) ∈ V
73, 4, 6fvmpt 7029 . 2 (𝐴 ∈ On → ( N ‘𝐴) = (( M ‘𝐴) ∖ ( O ‘𝐴)))
84fvmptndm 7060 . . 3 𝐴 ∈ On → ( N ‘𝐴) = ∅)
9 df-made 27904 . . . . . . . . 9 M = recs((𝑓 ∈ V ↦ ( |s “ (𝒫 ran 𝑓 × 𝒫 ran 𝑓))))
109tfr1 8453 . . . . . . . 8 M Fn On
1110fndmi 6683 . . . . . . 7 dom M = On
1211eleq2i 2836 . . . . . 6 (𝐴 ∈ dom M ↔ 𝐴 ∈ On)
13 ndmfv 6955 . . . . . 6 𝐴 ∈ dom M → ( M ‘𝐴) = ∅)
1412, 13sylnbir 331 . . . . 5 𝐴 ∈ On → ( M ‘𝐴) = ∅)
1514difeq1d 4148 . . . 4 𝐴 ∈ On → (( M ‘𝐴) ∖ ( O ‘𝐴)) = (∅ ∖ ( O ‘𝐴)))
16 0dif 4428 . . . 4 (∅ ∖ ( O ‘𝐴)) = ∅
1715, 16eqtrdi 2796 . . 3 𝐴 ∈ On → (( M ‘𝐴) ∖ ( O ‘𝐴)) = ∅)
188, 17eqtr4d 2783 . 2 𝐴 ∈ On → ( N ‘𝐴) = (( M ‘𝐴) ∖ ( O ‘𝐴)))
197, 18pm2.61i 182 1 ( N ‘𝐴) = (( M ‘𝐴) ∖ ( O ‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1537  wcel 2108  Vcvv 3488  cdif 3973  c0 4352  𝒫 cpw 4622   cuni 4931  cmpt 5249   × cxp 5698  dom cdm 5700  ran crn 5701  cima 5703  Oncon0 6395  cfv 6573   |s cscut 27845   M cmade 27899   O cold 27900   N cnew 27901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-made 27904  df-new 27906
This theorem is referenced by:  new0  27931  madeun  27940  newbday  27958
  Copyright terms: Public domain W3C validator