![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > newval | Structured version Visualization version GIF version |
Description: The value of the new options function. (Contributed by Scott Fenton, 9-Oct-2024.) |
Ref | Expression |
---|---|
newval | ⊢ ( N ‘𝐴) = (( M ‘𝐴) ∖ ( O ‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6891 | . . . 4 ⊢ (𝑥 = 𝐴 → ( M ‘𝑥) = ( M ‘𝐴)) | |
2 | fveq2 6891 | . . . 4 ⊢ (𝑥 = 𝐴 → ( O ‘𝑥) = ( O ‘𝐴)) | |
3 | 1, 2 | difeq12d 4123 | . . 3 ⊢ (𝑥 = 𝐴 → (( M ‘𝑥) ∖ ( O ‘𝑥)) = (( M ‘𝐴) ∖ ( O ‘𝐴))) |
4 | df-new 27569 | . . 3 ⊢ N = (𝑥 ∈ On ↦ (( M ‘𝑥) ∖ ( O ‘𝑥))) | |
5 | fvex 6904 | . . . 4 ⊢ ( M ‘𝐴) ∈ V | |
6 | 5 | difexi 5328 | . . 3 ⊢ (( M ‘𝐴) ∖ ( O ‘𝐴)) ∈ V |
7 | 3, 4, 6 | fvmpt 6998 | . 2 ⊢ (𝐴 ∈ On → ( N ‘𝐴) = (( M ‘𝐴) ∖ ( O ‘𝐴))) |
8 | 4 | fvmptndm 7028 | . . 3 ⊢ (¬ 𝐴 ∈ On → ( N ‘𝐴) = ∅) |
9 | df-made 27567 | . . . . . . . . 9 ⊢ M = recs((𝑓 ∈ V ↦ ( |s “ (𝒫 ∪ ran 𝑓 × 𝒫 ∪ ran 𝑓)))) | |
10 | 9 | tfr1 8399 | . . . . . . . 8 ⊢ M Fn On |
11 | 10 | fndmi 6653 | . . . . . . 7 ⊢ dom M = On |
12 | 11 | eleq2i 2825 | . . . . . 6 ⊢ (𝐴 ∈ dom M ↔ 𝐴 ∈ On) |
13 | ndmfv 6926 | . . . . . 6 ⊢ (¬ 𝐴 ∈ dom M → ( M ‘𝐴) = ∅) | |
14 | 12, 13 | sylnbir 330 | . . . . 5 ⊢ (¬ 𝐴 ∈ On → ( M ‘𝐴) = ∅) |
15 | 14 | difeq1d 4121 | . . . 4 ⊢ (¬ 𝐴 ∈ On → (( M ‘𝐴) ∖ ( O ‘𝐴)) = (∅ ∖ ( O ‘𝐴))) |
16 | 0dif 4401 | . . . 4 ⊢ (∅ ∖ ( O ‘𝐴)) = ∅ | |
17 | 15, 16 | eqtrdi 2788 | . . 3 ⊢ (¬ 𝐴 ∈ On → (( M ‘𝐴) ∖ ( O ‘𝐴)) = ∅) |
18 | 8, 17 | eqtr4d 2775 | . 2 ⊢ (¬ 𝐴 ∈ On → ( N ‘𝐴) = (( M ‘𝐴) ∖ ( O ‘𝐴))) |
19 | 7, 18 | pm2.61i 182 | 1 ⊢ ( N ‘𝐴) = (( M ‘𝐴) ∖ ( O ‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2106 Vcvv 3474 ∖ cdif 3945 ∅c0 4322 𝒫 cpw 4602 ∪ cuni 4908 ↦ cmpt 5231 × cxp 5674 dom cdm 5676 ran crn 5677 “ cima 5679 Oncon0 6364 ‘cfv 6543 |s cscut 27508 M cmade 27562 O cold 27563 N cnew 27564 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7414 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-made 27567 df-new 27569 |
This theorem is referenced by: new0 27594 madeun 27603 newbday 27621 |
Copyright terms: Public domain | W3C validator |