MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  newval Structured version   Visualization version   GIF version

Theorem newval 27799
Description: The value of the new options function. (Contributed by Scott Fenton, 9-Oct-2024.)
Assertion
Ref Expression
newval ( N ‘𝐴) = (( M ‘𝐴) ∖ ( O ‘𝐴))

Proof of Theorem newval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6830 . . . 4 (𝑥 = 𝐴 → ( M ‘𝑥) = ( M ‘𝐴))
2 fveq2 6830 . . . 4 (𝑥 = 𝐴 → ( O ‘𝑥) = ( O ‘𝐴))
31, 2difeq12d 4076 . . 3 (𝑥 = 𝐴 → (( M ‘𝑥) ∖ ( O ‘𝑥)) = (( M ‘𝐴) ∖ ( O ‘𝐴)))
4 df-new 27793 . . 3 N = (𝑥 ∈ On ↦ (( M ‘𝑥) ∖ ( O ‘𝑥)))
5 fvex 6843 . . . 4 ( M ‘𝐴) ∈ V
65difexi 5272 . . 3 (( M ‘𝐴) ∖ ( O ‘𝐴)) ∈ V
73, 4, 6fvmpt 6937 . 2 (𝐴 ∈ On → ( N ‘𝐴) = (( M ‘𝐴) ∖ ( O ‘𝐴)))
84fvmptndm 6968 . . 3 𝐴 ∈ On → ( N ‘𝐴) = ∅)
9 df-made 27791 . . . . . . . . 9 M = recs((𝑓 ∈ V ↦ ( |s “ (𝒫 ran 𝑓 × 𝒫 ran 𝑓))))
109tfr1 8324 . . . . . . . 8 M Fn On
1110fndmi 6592 . . . . . . 7 dom M = On
1211eleq2i 2825 . . . . . 6 (𝐴 ∈ dom M ↔ 𝐴 ∈ On)
13 ndmfv 6862 . . . . . 6 𝐴 ∈ dom M → ( M ‘𝐴) = ∅)
1412, 13sylnbir 331 . . . . 5 𝐴 ∈ On → ( M ‘𝐴) = ∅)
1514difeq1d 4074 . . . 4 𝐴 ∈ On → (( M ‘𝐴) ∖ ( O ‘𝐴)) = (∅ ∖ ( O ‘𝐴)))
16 0dif 4354 . . . 4 (∅ ∖ ( O ‘𝐴)) = ∅
1715, 16eqtrdi 2784 . . 3 𝐴 ∈ On → (( M ‘𝐴) ∖ ( O ‘𝐴)) = ∅)
188, 17eqtr4d 2771 . 2 𝐴 ∈ On → ( N ‘𝐴) = (( M ‘𝐴) ∖ ( O ‘𝐴)))
197, 18pm2.61i 182 1 ( N ‘𝐴) = (( M ‘𝐴) ∖ ( O ‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1541  wcel 2113  Vcvv 3437  cdif 3895  c0 4282  𝒫 cpw 4551   cuni 4860  cmpt 5176   × cxp 5619  dom cdm 5621  ran crn 5622  cima 5624  Oncon0 6313  cfv 6488   |s cscut 27725   M cmade 27786   O cold 27787   N cnew 27788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7676
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-ov 7357  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-made 27791  df-new 27793
This theorem is referenced by:  new0  27822  madeun  27832  newbday  27850
  Copyright terms: Public domain W3C validator