MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  newval Structured version   Visualization version   GIF version

Theorem newval 27770
Description: The value of the new options function. (Contributed by Scott Fenton, 9-Oct-2024.)
Assertion
Ref Expression
newval ( N ‘𝐴) = (( M ‘𝐴) ∖ ( O ‘𝐴))

Proof of Theorem newval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6861 . . . 4 (𝑥 = 𝐴 → ( M ‘𝑥) = ( M ‘𝐴))
2 fveq2 6861 . . . 4 (𝑥 = 𝐴 → ( O ‘𝑥) = ( O ‘𝐴))
31, 2difeq12d 4093 . . 3 (𝑥 = 𝐴 → (( M ‘𝑥) ∖ ( O ‘𝑥)) = (( M ‘𝐴) ∖ ( O ‘𝐴)))
4 df-new 27764 . . 3 N = (𝑥 ∈ On ↦ (( M ‘𝑥) ∖ ( O ‘𝑥)))
5 fvex 6874 . . . 4 ( M ‘𝐴) ∈ V
65difexi 5288 . . 3 (( M ‘𝐴) ∖ ( O ‘𝐴)) ∈ V
73, 4, 6fvmpt 6971 . 2 (𝐴 ∈ On → ( N ‘𝐴) = (( M ‘𝐴) ∖ ( O ‘𝐴)))
84fvmptndm 7002 . . 3 𝐴 ∈ On → ( N ‘𝐴) = ∅)
9 df-made 27762 . . . . . . . . 9 M = recs((𝑓 ∈ V ↦ ( |s “ (𝒫 ran 𝑓 × 𝒫 ran 𝑓))))
109tfr1 8368 . . . . . . . 8 M Fn On
1110fndmi 6625 . . . . . . 7 dom M = On
1211eleq2i 2821 . . . . . 6 (𝐴 ∈ dom M ↔ 𝐴 ∈ On)
13 ndmfv 6896 . . . . . 6 𝐴 ∈ dom M → ( M ‘𝐴) = ∅)
1412, 13sylnbir 331 . . . . 5 𝐴 ∈ On → ( M ‘𝐴) = ∅)
1514difeq1d 4091 . . . 4 𝐴 ∈ On → (( M ‘𝐴) ∖ ( O ‘𝐴)) = (∅ ∖ ( O ‘𝐴)))
16 0dif 4371 . . . 4 (∅ ∖ ( O ‘𝐴)) = ∅
1715, 16eqtrdi 2781 . . 3 𝐴 ∈ On → (( M ‘𝐴) ∖ ( O ‘𝐴)) = ∅)
188, 17eqtr4d 2768 . 2 𝐴 ∈ On → ( N ‘𝐴) = (( M ‘𝐴) ∖ ( O ‘𝐴)))
197, 18pm2.61i 182 1 ( N ‘𝐴) = (( M ‘𝐴) ∖ ( O ‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2109  Vcvv 3450  cdif 3914  c0 4299  𝒫 cpw 4566   cuni 4874  cmpt 5191   × cxp 5639  dom cdm 5641  ran crn 5642  cima 5644  Oncon0 6335  cfv 6514   |s cscut 27701   M cmade 27757   O cold 27758   N cnew 27759
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-made 27762  df-new 27764
This theorem is referenced by:  new0  27793  madeun  27802  newbday  27820
  Copyright terms: Public domain W3C validator