Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  newval Structured version   Visualization version   GIF version

Theorem newval 34067
Description: The value of the new options function. (Contributed by Scott Fenton, 9-Oct-2024.)
Assertion
Ref Expression
newval ( N ‘𝐴) = (( M ‘𝐴) ∖ ( O ‘𝐴))

Proof of Theorem newval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6792 . . . 4 (𝑥 = 𝐴 → ( M ‘𝑥) = ( M ‘𝐴))
2 fveq2 6792 . . . 4 (𝑥 = 𝐴 → ( O ‘𝑥) = ( O ‘𝐴))
31, 2difeq12d 4061 . . 3 (𝑥 = 𝐴 → (( M ‘𝑥) ∖ ( O ‘𝑥)) = (( M ‘𝐴) ∖ ( O ‘𝐴)))
4 df-new 34061 . . 3 N = (𝑥 ∈ On ↦ (( M ‘𝑥) ∖ ( O ‘𝑥)))
5 fvex 6805 . . . 4 ( M ‘𝐴) ∈ V
65difexi 5255 . . 3 (( M ‘𝐴) ∖ ( O ‘𝐴)) ∈ V
73, 4, 6fvmpt 6895 . 2 (𝐴 ∈ On → ( N ‘𝐴) = (( M ‘𝐴) ∖ ( O ‘𝐴)))
84fvmptndm 6925 . . 3 𝐴 ∈ On → ( N ‘𝐴) = ∅)
9 df-made 34059 . . . . . . . . 9 M = recs((𝑓 ∈ V ↦ ( |s “ (𝒫 ran 𝑓 × 𝒫 ran 𝑓))))
109tfr1 8248 . . . . . . . 8 M Fn On
1110fndmi 6556 . . . . . . 7 dom M = On
1211eleq2i 2825 . . . . . 6 (𝐴 ∈ dom M ↔ 𝐴 ∈ On)
13 ndmfv 6824 . . . . . 6 𝐴 ∈ dom M → ( M ‘𝐴) = ∅)
1412, 13sylnbir 330 . . . . 5 𝐴 ∈ On → ( M ‘𝐴) = ∅)
1514difeq1d 4059 . . . 4 𝐴 ∈ On → (( M ‘𝐴) ∖ ( O ‘𝐴)) = (∅ ∖ ( O ‘𝐴)))
16 0dif 4338 . . . 4 (∅ ∖ ( O ‘𝐴)) = ∅
1715, 16eqtrdi 2789 . . 3 𝐴 ∈ On → (( M ‘𝐴) ∖ ( O ‘𝐴)) = ∅)
188, 17eqtr4d 2776 . 2 𝐴 ∈ On → ( N ‘𝐴) = (( M ‘𝐴) ∖ ( O ‘𝐴)))
197, 18pm2.61i 182 1 ( N ‘𝐴) = (( M ‘𝐴) ∖ ( O ‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1537  wcel 2101  Vcvv 3434  cdif 3886  c0 4259  𝒫 cpw 4536   cuni 4841  cmpt 5160   × cxp 5589  dom cdm 5591  ran crn 5592  cima 5594  Oncon0 6270  cfv 6447   |s cscut 34005   M cmade 34054   O cold 34055   N cnew 34056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-10 2132  ax-11 2149  ax-12 2166  ax-ext 2704  ax-rep 5212  ax-sep 5226  ax-nul 5233  ax-pr 5355  ax-un 7608
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2063  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2884  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3223  df-rab 3224  df-v 3436  df-sbc 3719  df-csb 3835  df-dif 3892  df-un 3894  df-in 3896  df-ss 3906  df-pss 3908  df-nul 4260  df-if 4463  df-pw 4538  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4842  df-iun 4929  df-br 5078  df-opab 5140  df-mpt 5161  df-tr 5195  df-id 5491  df-eprel 5497  df-po 5505  df-so 5506  df-fr 5546  df-we 5548  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-pred 6206  df-ord 6273  df-on 6274  df-suc 6276  df-iota 6399  df-fun 6449  df-fn 6450  df-f 6451  df-f1 6452  df-fo 6453  df-f1o 6454  df-fv 6455  df-ov 7298  df-2nd 7852  df-frecs 8117  df-wrecs 8148  df-recs 8222  df-made 34059  df-new 34061
This theorem is referenced by:  new0  34086  madeun  34094  newbday  34110
  Copyright terms: Public domain W3C validator