| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > newval | Structured version Visualization version GIF version | ||
| Description: The value of the new options function. (Contributed by Scott Fenton, 9-Oct-2024.) |
| Ref | Expression |
|---|---|
| newval | ⊢ ( N ‘𝐴) = (( M ‘𝐴) ∖ ( O ‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6830 | . . . 4 ⊢ (𝑥 = 𝐴 → ( M ‘𝑥) = ( M ‘𝐴)) | |
| 2 | fveq2 6830 | . . . 4 ⊢ (𝑥 = 𝐴 → ( O ‘𝑥) = ( O ‘𝐴)) | |
| 3 | 1, 2 | difeq12d 4076 | . . 3 ⊢ (𝑥 = 𝐴 → (( M ‘𝑥) ∖ ( O ‘𝑥)) = (( M ‘𝐴) ∖ ( O ‘𝐴))) |
| 4 | df-new 27793 | . . 3 ⊢ N = (𝑥 ∈ On ↦ (( M ‘𝑥) ∖ ( O ‘𝑥))) | |
| 5 | fvex 6843 | . . . 4 ⊢ ( M ‘𝐴) ∈ V | |
| 6 | 5 | difexi 5272 | . . 3 ⊢ (( M ‘𝐴) ∖ ( O ‘𝐴)) ∈ V |
| 7 | 3, 4, 6 | fvmpt 6937 | . 2 ⊢ (𝐴 ∈ On → ( N ‘𝐴) = (( M ‘𝐴) ∖ ( O ‘𝐴))) |
| 8 | 4 | fvmptndm 6968 | . . 3 ⊢ (¬ 𝐴 ∈ On → ( N ‘𝐴) = ∅) |
| 9 | df-made 27791 | . . . . . . . . 9 ⊢ M = recs((𝑓 ∈ V ↦ ( |s “ (𝒫 ∪ ran 𝑓 × 𝒫 ∪ ran 𝑓)))) | |
| 10 | 9 | tfr1 8324 | . . . . . . . 8 ⊢ M Fn On |
| 11 | 10 | fndmi 6592 | . . . . . . 7 ⊢ dom M = On |
| 12 | 11 | eleq2i 2825 | . . . . . 6 ⊢ (𝐴 ∈ dom M ↔ 𝐴 ∈ On) |
| 13 | ndmfv 6862 | . . . . . 6 ⊢ (¬ 𝐴 ∈ dom M → ( M ‘𝐴) = ∅) | |
| 14 | 12, 13 | sylnbir 331 | . . . . 5 ⊢ (¬ 𝐴 ∈ On → ( M ‘𝐴) = ∅) |
| 15 | 14 | difeq1d 4074 | . . . 4 ⊢ (¬ 𝐴 ∈ On → (( M ‘𝐴) ∖ ( O ‘𝐴)) = (∅ ∖ ( O ‘𝐴))) |
| 16 | 0dif 4354 | . . . 4 ⊢ (∅ ∖ ( O ‘𝐴)) = ∅ | |
| 17 | 15, 16 | eqtrdi 2784 | . . 3 ⊢ (¬ 𝐴 ∈ On → (( M ‘𝐴) ∖ ( O ‘𝐴)) = ∅) |
| 18 | 8, 17 | eqtr4d 2771 | . 2 ⊢ (¬ 𝐴 ∈ On → ( N ‘𝐴) = (( M ‘𝐴) ∖ ( O ‘𝐴))) |
| 19 | 7, 18 | pm2.61i 182 | 1 ⊢ ( N ‘𝐴) = (( M ‘𝐴) ∖ ( O ‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ∖ cdif 3895 ∅c0 4282 𝒫 cpw 4551 ∪ cuni 4860 ↦ cmpt 5176 × cxp 5619 dom cdm 5621 ran crn 5622 “ cima 5624 Oncon0 6313 ‘cfv 6488 |s cscut 27725 M cmade 27786 O cold 27787 N cnew 27788 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7676 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-ov 7357 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-made 27791 df-new 27793 |
| This theorem is referenced by: new0 27822 madeun 27832 newbday 27850 |
| Copyright terms: Public domain | W3C validator |