Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sibf0 Structured version   Visualization version   GIF version

Theorem sibf0 34336
Description: The constant zero function is a simple function. (Contributed by Thierry Arnoux, 4-Mar-2018.)
Hypotheses
Ref Expression
sitgval.b 𝐵 = (Base‘𝑊)
sitgval.j 𝐽 = (TopOpen‘𝑊)
sitgval.s 𝑆 = (sigaGen‘𝐽)
sitgval.0 0 = (0g𝑊)
sitgval.x · = ( ·𝑠𝑊)
sitgval.h 𝐻 = (ℝHom‘(Scalar‘𝑊))
sitgval.1 (𝜑𝑊𝑉)
sitgval.2 (𝜑𝑀 ran measures)
sibf0.1 (𝜑𝑊 ∈ TopSp)
sibf0.2 (𝜑𝑊 ∈ Mnd)
Assertion
Ref Expression
sibf0 (𝜑 → ( dom 𝑀 × { 0 }) ∈ dom (𝑊sitg𝑀))

Proof of Theorem sibf0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sitgval.2 . . . 4 (𝜑𝑀 ran measures)
2 dmmeas 34202 . . . 4 (𝑀 ran measures → dom 𝑀 ran sigAlgebra)
31, 2syl 17 . . 3 (𝜑 → dom 𝑀 ran sigAlgebra)
4 sitgval.s . . . 4 𝑆 = (sigaGen‘𝐽)
5 sitgval.j . . . . . . 7 𝐽 = (TopOpen‘𝑊)
65fvexi 6920 . . . . . 6 𝐽 ∈ V
76a1i 11 . . . . 5 (𝜑𝐽 ∈ V)
87sgsiga 34143 . . . 4 (𝜑 → (sigaGen‘𝐽) ∈ ran sigAlgebra)
94, 8eqeltrid 2845 . . 3 (𝜑𝑆 ran sigAlgebra)
10 fconstmpt 5747 . . . 4 ( dom 𝑀 × { 0 }) = (𝑥 dom 𝑀0 )
1110a1i 11 . . 3 (𝜑 → ( dom 𝑀 × { 0 }) = (𝑥 dom 𝑀0 ))
12 sibf0.2 . . . . 5 (𝜑𝑊 ∈ Mnd)
13 sitgval.b . . . . . 6 𝐵 = (Base‘𝑊)
14 sitgval.0 . . . . . 6 0 = (0g𝑊)
1513, 14mndidcl 18762 . . . . 5 (𝑊 ∈ Mnd → 0𝐵)
1612, 15syl 17 . . . 4 (𝜑0𝐵)
17 sibf0.1 . . . . . 6 (𝜑𝑊 ∈ TopSp)
1813, 5tpsuni 22942 . . . . . 6 (𝑊 ∈ TopSp → 𝐵 = 𝐽)
1917, 18syl 17 . . . . 5 (𝜑𝐵 = 𝐽)
204unieqi 4919 . . . . . 6 𝑆 = (sigaGen‘𝐽)
21 unisg 34144 . . . . . . 7 (𝐽 ∈ V → (sigaGen‘𝐽) = 𝐽)
226, 21mp1i 13 . . . . . 6 (𝜑 (sigaGen‘𝐽) = 𝐽)
2320, 22eqtrid 2789 . . . . 5 (𝜑 𝑆 = 𝐽)
2419, 23eqtr4d 2780 . . . 4 (𝜑𝐵 = 𝑆)
2516, 24eleqtrd 2843 . . 3 (𝜑0 𝑆)
263, 9, 11, 25mbfmcst 34261 . 2 (𝜑 → ( dom 𝑀 × { 0 }) ∈ (dom 𝑀MblFnM𝑆))
27 xpeq1 5699 . . . . . . . 8 ( dom 𝑀 = ∅ → ( dom 𝑀 × { 0 }) = (∅ × { 0 }))
28 0xp 5784 . . . . . . . 8 (∅ × { 0 }) = ∅
2927, 28eqtrdi 2793 . . . . . . 7 ( dom 𝑀 = ∅ → ( dom 𝑀 × { 0 }) = ∅)
3029rneqd 5949 . . . . . 6 ( dom 𝑀 = ∅ → ran ( dom 𝑀 × { 0 }) = ran ∅)
31 rn0 5936 . . . . . 6 ran ∅ = ∅
3230, 31eqtrdi 2793 . . . . 5 ( dom 𝑀 = ∅ → ran ( dom 𝑀 × { 0 }) = ∅)
33 0fi 9082 . . . . 5 ∅ ∈ Fin
3432, 33eqeltrdi 2849 . . . 4 ( dom 𝑀 = ∅ → ran ( dom 𝑀 × { 0 }) ∈ Fin)
35 rnxp 6190 . . . . 5 ( dom 𝑀 ≠ ∅ → ran ( dom 𝑀 × { 0 }) = { 0 })
36 snfi 9083 . . . . 5 { 0 } ∈ Fin
3735, 36eqeltrdi 2849 . . . 4 ( dom 𝑀 ≠ ∅ → ran ( dom 𝑀 × { 0 }) ∈ Fin)
3834, 37pm2.61ine 3025 . . 3 ran ( dom 𝑀 × { 0 }) ∈ Fin
3938a1i 11 . 2 (𝜑 → ran ( dom 𝑀 × { 0 }) ∈ Fin)
40 noel 4338 . . . . . 6 ¬ 𝑥 ∈ ∅
4132difeq1d 4125 . . . . . . . . 9 ( dom 𝑀 = ∅ → (ran ( dom 𝑀 × { 0 }) ∖ { 0 }) = (∅ ∖ { 0 }))
42 0dif 4405 . . . . . . . . 9 (∅ ∖ { 0 }) = ∅
4341, 42eqtrdi 2793 . . . . . . . 8 ( dom 𝑀 = ∅ → (ran ( dom 𝑀 × { 0 }) ∖ { 0 }) = ∅)
4435difeq1d 4125 . . . . . . . . 9 ( dom 𝑀 ≠ ∅ → (ran ( dom 𝑀 × { 0 }) ∖ { 0 }) = ({ 0 } ∖ { 0 }))
45 difid 4376 . . . . . . . . 9 ({ 0 } ∖ { 0 }) = ∅
4644, 45eqtrdi 2793 . . . . . . . 8 ( dom 𝑀 ≠ ∅ → (ran ( dom 𝑀 × { 0 }) ∖ { 0 }) = ∅)
4743, 46pm2.61ine 3025 . . . . . . 7 (ran ( dom 𝑀 × { 0 }) ∖ { 0 }) = ∅
4847eleq2i 2833 . . . . . 6 (𝑥 ∈ (ran ( dom 𝑀 × { 0 }) ∖ { 0 }) ↔ 𝑥 ∈ ∅)
4940, 48mtbir 323 . . . . 5 ¬ 𝑥 ∈ (ran ( dom 𝑀 × { 0 }) ∖ { 0 })
5049pm2.21i 119 . . . 4 (𝑥 ∈ (ran ( dom 𝑀 × { 0 }) ∖ { 0 }) → (𝑀‘(( dom 𝑀 × { 0 }) “ {𝑥})) ∈ (0[,)+∞))
5150adantl 481 . . 3 ((𝜑𝑥 ∈ (ran ( dom 𝑀 × { 0 }) ∖ { 0 })) → (𝑀‘(( dom 𝑀 × { 0 }) “ {𝑥})) ∈ (0[,)+∞))
5251ralrimiva 3146 . 2 (𝜑 → ∀𝑥 ∈ (ran ( dom 𝑀 × { 0 }) ∖ { 0 })(𝑀‘(( dom 𝑀 × { 0 }) “ {𝑥})) ∈ (0[,)+∞))
53 sitgval.x . . 3 · = ( ·𝑠𝑊)
54 sitgval.h . . 3 𝐻 = (ℝHom‘(Scalar‘𝑊))
55 sitgval.1 . . 3 (𝜑𝑊𝑉)
5613, 5, 4, 14, 53, 54, 55, 1issibf 34335 . 2 (𝜑 → (( dom 𝑀 × { 0 }) ∈ dom (𝑊sitg𝑀) ↔ (( dom 𝑀 × { 0 }) ∈ (dom 𝑀MblFnM𝑆) ∧ ran ( dom 𝑀 × { 0 }) ∈ Fin ∧ ∀𝑥 ∈ (ran ( dom 𝑀 × { 0 }) ∖ { 0 })(𝑀‘(( dom 𝑀 × { 0 }) “ {𝑥})) ∈ (0[,)+∞))))
5726, 39, 52, 56mpbir3and 1343 1 (𝜑 → ( dom 𝑀 × { 0 }) ∈ dom (𝑊sitg𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  wne 2940  wral 3061  Vcvv 3480  cdif 3948  c0 4333  {csn 4626   cuni 4907  cmpt 5225   × cxp 5683  ccnv 5684  dom cdm 5685  ran crn 5686  cima 5688  cfv 6561  (class class class)co 7431  Fincfn 8985  0cc0 11155  +∞cpnf 11292  [,)cico 13389  Basecbs 17247  Scalarcsca 17300   ·𝑠 cvsca 17301  TopOpenctopn 17466  0gc0g 17484  Mndcmnd 18747  TopSpctps 22938  ℝHomcrrh 33994  sigAlgebracsiga 34109  sigaGencsigagen 34139  measurescmeas 34196  MblFnMcmbfm 34250  sitgcsitg 34331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1o 8506  df-map 8868  df-en 8986  df-fin 8989  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-top 22900  df-topon 22917  df-topsp 22939  df-esum 34029  df-siga 34110  df-sigagen 34140  df-meas 34197  df-mbfm 34251  df-sitg 34332
This theorem is referenced by:  sitg0  34348
  Copyright terms: Public domain W3C validator