Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sibf0 Structured version   Visualization version   GIF version

Theorem sibf0 34325
Description: The constant zero function is a simple function. (Contributed by Thierry Arnoux, 4-Mar-2018.)
Hypotheses
Ref Expression
sitgval.b 𝐵 = (Base‘𝑊)
sitgval.j 𝐽 = (TopOpen‘𝑊)
sitgval.s 𝑆 = (sigaGen‘𝐽)
sitgval.0 0 = (0g𝑊)
sitgval.x · = ( ·𝑠𝑊)
sitgval.h 𝐻 = (ℝHom‘(Scalar‘𝑊))
sitgval.1 (𝜑𝑊𝑉)
sitgval.2 (𝜑𝑀 ran measures)
sibf0.1 (𝜑𝑊 ∈ TopSp)
sibf0.2 (𝜑𝑊 ∈ Mnd)
Assertion
Ref Expression
sibf0 (𝜑 → ( dom 𝑀 × { 0 }) ∈ dom (𝑊sitg𝑀))

Proof of Theorem sibf0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sitgval.2 . . . 4 (𝜑𝑀 ran measures)
2 dmmeas 34191 . . . 4 (𝑀 ran measures → dom 𝑀 ran sigAlgebra)
31, 2syl 17 . . 3 (𝜑 → dom 𝑀 ran sigAlgebra)
4 sitgval.s . . . 4 𝑆 = (sigaGen‘𝐽)
5 sitgval.j . . . . . . 7 𝐽 = (TopOpen‘𝑊)
65fvexi 6872 . . . . . 6 𝐽 ∈ V
76a1i 11 . . . . 5 (𝜑𝐽 ∈ V)
87sgsiga 34132 . . . 4 (𝜑 → (sigaGen‘𝐽) ∈ ran sigAlgebra)
94, 8eqeltrid 2832 . . 3 (𝜑𝑆 ran sigAlgebra)
10 fconstmpt 5700 . . . 4 ( dom 𝑀 × { 0 }) = (𝑥 dom 𝑀0 )
1110a1i 11 . . 3 (𝜑 → ( dom 𝑀 × { 0 }) = (𝑥 dom 𝑀0 ))
12 sibf0.2 . . . . 5 (𝜑𝑊 ∈ Mnd)
13 sitgval.b . . . . . 6 𝐵 = (Base‘𝑊)
14 sitgval.0 . . . . . 6 0 = (0g𝑊)
1513, 14mndidcl 18676 . . . . 5 (𝑊 ∈ Mnd → 0𝐵)
1612, 15syl 17 . . . 4 (𝜑0𝐵)
17 sibf0.1 . . . . . 6 (𝜑𝑊 ∈ TopSp)
1813, 5tpsuni 22823 . . . . . 6 (𝑊 ∈ TopSp → 𝐵 = 𝐽)
1917, 18syl 17 . . . . 5 (𝜑𝐵 = 𝐽)
204unieqi 4883 . . . . . 6 𝑆 = (sigaGen‘𝐽)
21 unisg 34133 . . . . . . 7 (𝐽 ∈ V → (sigaGen‘𝐽) = 𝐽)
226, 21mp1i 13 . . . . . 6 (𝜑 (sigaGen‘𝐽) = 𝐽)
2320, 22eqtrid 2776 . . . . 5 (𝜑 𝑆 = 𝐽)
2419, 23eqtr4d 2767 . . . 4 (𝜑𝐵 = 𝑆)
2516, 24eleqtrd 2830 . . 3 (𝜑0 𝑆)
263, 9, 11, 25mbfmcst 34250 . 2 (𝜑 → ( dom 𝑀 × { 0 }) ∈ (dom 𝑀MblFnM𝑆))
27 xpeq1 5652 . . . . . . . 8 ( dom 𝑀 = ∅ → ( dom 𝑀 × { 0 }) = (∅ × { 0 }))
28 0xp 5737 . . . . . . . 8 (∅ × { 0 }) = ∅
2927, 28eqtrdi 2780 . . . . . . 7 ( dom 𝑀 = ∅ → ( dom 𝑀 × { 0 }) = ∅)
3029rneqd 5902 . . . . . 6 ( dom 𝑀 = ∅ → ran ( dom 𝑀 × { 0 }) = ran ∅)
31 rn0 5889 . . . . . 6 ran ∅ = ∅
3230, 31eqtrdi 2780 . . . . 5 ( dom 𝑀 = ∅ → ran ( dom 𝑀 × { 0 }) = ∅)
33 0fi 9013 . . . . 5 ∅ ∈ Fin
3432, 33eqeltrdi 2836 . . . 4 ( dom 𝑀 = ∅ → ran ( dom 𝑀 × { 0 }) ∈ Fin)
35 rnxp 6143 . . . . 5 ( dom 𝑀 ≠ ∅ → ran ( dom 𝑀 × { 0 }) = { 0 })
36 snfi 9014 . . . . 5 { 0 } ∈ Fin
3735, 36eqeltrdi 2836 . . . 4 ( dom 𝑀 ≠ ∅ → ran ( dom 𝑀 × { 0 }) ∈ Fin)
3834, 37pm2.61ine 3008 . . 3 ran ( dom 𝑀 × { 0 }) ∈ Fin
3938a1i 11 . 2 (𝜑 → ran ( dom 𝑀 × { 0 }) ∈ Fin)
40 noel 4301 . . . . . 6 ¬ 𝑥 ∈ ∅
4132difeq1d 4088 . . . . . . . . 9 ( dom 𝑀 = ∅ → (ran ( dom 𝑀 × { 0 }) ∖ { 0 }) = (∅ ∖ { 0 }))
42 0dif 4368 . . . . . . . . 9 (∅ ∖ { 0 }) = ∅
4341, 42eqtrdi 2780 . . . . . . . 8 ( dom 𝑀 = ∅ → (ran ( dom 𝑀 × { 0 }) ∖ { 0 }) = ∅)
4435difeq1d 4088 . . . . . . . . 9 ( dom 𝑀 ≠ ∅ → (ran ( dom 𝑀 × { 0 }) ∖ { 0 }) = ({ 0 } ∖ { 0 }))
45 difid 4339 . . . . . . . . 9 ({ 0 } ∖ { 0 }) = ∅
4644, 45eqtrdi 2780 . . . . . . . 8 ( dom 𝑀 ≠ ∅ → (ran ( dom 𝑀 × { 0 }) ∖ { 0 }) = ∅)
4743, 46pm2.61ine 3008 . . . . . . 7 (ran ( dom 𝑀 × { 0 }) ∖ { 0 }) = ∅
4847eleq2i 2820 . . . . . 6 (𝑥 ∈ (ran ( dom 𝑀 × { 0 }) ∖ { 0 }) ↔ 𝑥 ∈ ∅)
4940, 48mtbir 323 . . . . 5 ¬ 𝑥 ∈ (ran ( dom 𝑀 × { 0 }) ∖ { 0 })
5049pm2.21i 119 . . . 4 (𝑥 ∈ (ran ( dom 𝑀 × { 0 }) ∖ { 0 }) → (𝑀‘(( dom 𝑀 × { 0 }) “ {𝑥})) ∈ (0[,)+∞))
5150adantl 481 . . 3 ((𝜑𝑥 ∈ (ran ( dom 𝑀 × { 0 }) ∖ { 0 })) → (𝑀‘(( dom 𝑀 × { 0 }) “ {𝑥})) ∈ (0[,)+∞))
5251ralrimiva 3125 . 2 (𝜑 → ∀𝑥 ∈ (ran ( dom 𝑀 × { 0 }) ∖ { 0 })(𝑀‘(( dom 𝑀 × { 0 }) “ {𝑥})) ∈ (0[,)+∞))
53 sitgval.x . . 3 · = ( ·𝑠𝑊)
54 sitgval.h . . 3 𝐻 = (ℝHom‘(Scalar‘𝑊))
55 sitgval.1 . . 3 (𝜑𝑊𝑉)
5613, 5, 4, 14, 53, 54, 55, 1issibf 34324 . 2 (𝜑 → (( dom 𝑀 × { 0 }) ∈ dom (𝑊sitg𝑀) ↔ (( dom 𝑀 × { 0 }) ∈ (dom 𝑀MblFnM𝑆) ∧ ran ( dom 𝑀 × { 0 }) ∈ Fin ∧ ∀𝑥 ∈ (ran ( dom 𝑀 × { 0 }) ∖ { 0 })(𝑀‘(( dom 𝑀 × { 0 }) “ {𝑥})) ∈ (0[,)+∞))))
5726, 39, 52, 56mpbir3and 1343 1 (𝜑 → ( dom 𝑀 × { 0 }) ∈ dom (𝑊sitg𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wne 2925  wral 3044  Vcvv 3447  cdif 3911  c0 4296  {csn 4589   cuni 4871  cmpt 5188   × cxp 5636  ccnv 5637  dom cdm 5638  ran crn 5639  cima 5641  cfv 6511  (class class class)co 7387  Fincfn 8918  0cc0 11068  +∞cpnf 11205  [,)cico 13308  Basecbs 17179  Scalarcsca 17223   ·𝑠 cvsca 17224  TopOpenctopn 17384  0gc0g 17402  Mndcmnd 18661  TopSpctps 22819  ℝHomcrrh 33983  sigAlgebracsiga 34098  sigaGencsigagen 34128  measurescmeas 34185  MblFnMcmbfm 34239  sitgcsitg 34320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1o 8434  df-map 8801  df-en 8919  df-fin 8922  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-top 22781  df-topon 22798  df-topsp 22820  df-esum 34018  df-siga 34099  df-sigagen 34129  df-meas 34186  df-mbfm 34240  df-sitg 34321
This theorem is referenced by:  sitg0  34337
  Copyright terms: Public domain W3C validator