Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sibf0 Structured version   Visualization version   GIF version

Theorem sibf0 32201
Description: The constant zero function is a simple function. (Contributed by Thierry Arnoux, 4-Mar-2018.)
Hypotheses
Ref Expression
sitgval.b 𝐵 = (Base‘𝑊)
sitgval.j 𝐽 = (TopOpen‘𝑊)
sitgval.s 𝑆 = (sigaGen‘𝐽)
sitgval.0 0 = (0g𝑊)
sitgval.x · = ( ·𝑠𝑊)
sitgval.h 𝐻 = (ℝHom‘(Scalar‘𝑊))
sitgval.1 (𝜑𝑊𝑉)
sitgval.2 (𝜑𝑀 ran measures)
sibf0.1 (𝜑𝑊 ∈ TopSp)
sibf0.2 (𝜑𝑊 ∈ Mnd)
Assertion
Ref Expression
sibf0 (𝜑 → ( dom 𝑀 × { 0 }) ∈ dom (𝑊sitg𝑀))

Proof of Theorem sibf0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sitgval.2 . . . 4 (𝜑𝑀 ran measures)
2 dmmeas 32069 . . . 4 (𝑀 ran measures → dom 𝑀 ran sigAlgebra)
31, 2syl 17 . . 3 (𝜑 → dom 𝑀 ran sigAlgebra)
4 sitgval.s . . . 4 𝑆 = (sigaGen‘𝐽)
5 sitgval.j . . . . . . 7 𝐽 = (TopOpen‘𝑊)
65fvexi 6770 . . . . . 6 𝐽 ∈ V
76a1i 11 . . . . 5 (𝜑𝐽 ∈ V)
87sgsiga 32010 . . . 4 (𝜑 → (sigaGen‘𝐽) ∈ ran sigAlgebra)
94, 8eqeltrid 2843 . . 3 (𝜑𝑆 ran sigAlgebra)
10 fconstmpt 5640 . . . 4 ( dom 𝑀 × { 0 }) = (𝑥 dom 𝑀0 )
1110a1i 11 . . 3 (𝜑 → ( dom 𝑀 × { 0 }) = (𝑥 dom 𝑀0 ))
12 sibf0.2 . . . . 5 (𝜑𝑊 ∈ Mnd)
13 sitgval.b . . . . . 6 𝐵 = (Base‘𝑊)
14 sitgval.0 . . . . . 6 0 = (0g𝑊)
1513, 14mndidcl 18315 . . . . 5 (𝑊 ∈ Mnd → 0𝐵)
1612, 15syl 17 . . . 4 (𝜑0𝐵)
17 sibf0.1 . . . . . 6 (𝜑𝑊 ∈ TopSp)
1813, 5tpsuni 21993 . . . . . 6 (𝑊 ∈ TopSp → 𝐵 = 𝐽)
1917, 18syl 17 . . . . 5 (𝜑𝐵 = 𝐽)
204unieqi 4849 . . . . . 6 𝑆 = (sigaGen‘𝐽)
21 unisg 32011 . . . . . . 7 (𝐽 ∈ V → (sigaGen‘𝐽) = 𝐽)
226, 21mp1i 13 . . . . . 6 (𝜑 (sigaGen‘𝐽) = 𝐽)
2320, 22syl5eq 2791 . . . . 5 (𝜑 𝑆 = 𝐽)
2419, 23eqtr4d 2781 . . . 4 (𝜑𝐵 = 𝑆)
2516, 24eleqtrd 2841 . . 3 (𝜑0 𝑆)
263, 9, 11, 25mbfmcst 32126 . 2 (𝜑 → ( dom 𝑀 × { 0 }) ∈ (dom 𝑀MblFnM𝑆))
27 xpeq1 5594 . . . . . . . 8 ( dom 𝑀 = ∅ → ( dom 𝑀 × { 0 }) = (∅ × { 0 }))
28 0xp 5675 . . . . . . . 8 (∅ × { 0 }) = ∅
2927, 28eqtrdi 2795 . . . . . . 7 ( dom 𝑀 = ∅ → ( dom 𝑀 × { 0 }) = ∅)
3029rneqd 5836 . . . . . 6 ( dom 𝑀 = ∅ → ran ( dom 𝑀 × { 0 }) = ran ∅)
31 rn0 5824 . . . . . 6 ran ∅ = ∅
3230, 31eqtrdi 2795 . . . . 5 ( dom 𝑀 = ∅ → ran ( dom 𝑀 × { 0 }) = ∅)
33 0fin 8916 . . . . 5 ∅ ∈ Fin
3432, 33eqeltrdi 2847 . . . 4 ( dom 𝑀 = ∅ → ran ( dom 𝑀 × { 0 }) ∈ Fin)
35 rnxp 6062 . . . . 5 ( dom 𝑀 ≠ ∅ → ran ( dom 𝑀 × { 0 }) = { 0 })
36 snfi 8788 . . . . 5 { 0 } ∈ Fin
3735, 36eqeltrdi 2847 . . . 4 ( dom 𝑀 ≠ ∅ → ran ( dom 𝑀 × { 0 }) ∈ Fin)
3834, 37pm2.61ine 3027 . . 3 ran ( dom 𝑀 × { 0 }) ∈ Fin
3938a1i 11 . 2 (𝜑 → ran ( dom 𝑀 × { 0 }) ∈ Fin)
40 noel 4261 . . . . . 6 ¬ 𝑥 ∈ ∅
4132difeq1d 4052 . . . . . . . . 9 ( dom 𝑀 = ∅ → (ran ( dom 𝑀 × { 0 }) ∖ { 0 }) = (∅ ∖ { 0 }))
42 0dif 4332 . . . . . . . . 9 (∅ ∖ { 0 }) = ∅
4341, 42eqtrdi 2795 . . . . . . . 8 ( dom 𝑀 = ∅ → (ran ( dom 𝑀 × { 0 }) ∖ { 0 }) = ∅)
4435difeq1d 4052 . . . . . . . . 9 ( dom 𝑀 ≠ ∅ → (ran ( dom 𝑀 × { 0 }) ∖ { 0 }) = ({ 0 } ∖ { 0 }))
45 difid 4301 . . . . . . . . 9 ({ 0 } ∖ { 0 }) = ∅
4644, 45eqtrdi 2795 . . . . . . . 8 ( dom 𝑀 ≠ ∅ → (ran ( dom 𝑀 × { 0 }) ∖ { 0 }) = ∅)
4743, 46pm2.61ine 3027 . . . . . . 7 (ran ( dom 𝑀 × { 0 }) ∖ { 0 }) = ∅
4847eleq2i 2830 . . . . . 6 (𝑥 ∈ (ran ( dom 𝑀 × { 0 }) ∖ { 0 }) ↔ 𝑥 ∈ ∅)
4940, 48mtbir 322 . . . . 5 ¬ 𝑥 ∈ (ran ( dom 𝑀 × { 0 }) ∖ { 0 })
5049pm2.21i 119 . . . 4 (𝑥 ∈ (ran ( dom 𝑀 × { 0 }) ∖ { 0 }) → (𝑀‘(( dom 𝑀 × { 0 }) “ {𝑥})) ∈ (0[,)+∞))
5150adantl 481 . . 3 ((𝜑𝑥 ∈ (ran ( dom 𝑀 × { 0 }) ∖ { 0 })) → (𝑀‘(( dom 𝑀 × { 0 }) “ {𝑥})) ∈ (0[,)+∞))
5251ralrimiva 3107 . 2 (𝜑 → ∀𝑥 ∈ (ran ( dom 𝑀 × { 0 }) ∖ { 0 })(𝑀‘(( dom 𝑀 × { 0 }) “ {𝑥})) ∈ (0[,)+∞))
53 sitgval.x . . 3 · = ( ·𝑠𝑊)
54 sitgval.h . . 3 𝐻 = (ℝHom‘(Scalar‘𝑊))
55 sitgval.1 . . 3 (𝜑𝑊𝑉)
5613, 5, 4, 14, 53, 54, 55, 1issibf 32200 . 2 (𝜑 → (( dom 𝑀 × { 0 }) ∈ dom (𝑊sitg𝑀) ↔ (( dom 𝑀 × { 0 }) ∈ (dom 𝑀MblFnM𝑆) ∧ ran ( dom 𝑀 × { 0 }) ∈ Fin ∧ ∀𝑥 ∈ (ran ( dom 𝑀 × { 0 }) ∖ { 0 })(𝑀‘(( dom 𝑀 × { 0 }) “ {𝑥})) ∈ (0[,)+∞))))
5726, 39, 52, 56mpbir3and 1340 1 (𝜑 → ( dom 𝑀 × { 0 }) ∈ dom (𝑊sitg𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  wne 2942  wral 3063  Vcvv 3422  cdif 3880  c0 4253  {csn 4558   cuni 4836  cmpt 5153   × cxp 5578  ccnv 5579  dom cdm 5580  ran crn 5581  cima 5583  cfv 6418  (class class class)co 7255  Fincfn 8691  0cc0 10802  +∞cpnf 10937  [,)cico 13010  Basecbs 16840  Scalarcsca 16891   ·𝑠 cvsca 16892  TopOpenctopn 17049  0gc0g 17067  Mndcmnd 18300  TopSpctps 21989  ℝHomcrrh 31843  sigAlgebracsiga 31976  sigaGencsigagen 32006  measurescmeas 32063  MblFnMcmbfm 32117  sitgcsitg 32196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1o 8267  df-map 8575  df-en 8692  df-fin 8695  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-top 21951  df-topon 21968  df-topsp 21990  df-esum 31896  df-siga 31977  df-sigagen 32007  df-meas 32064  df-mbfm 32118  df-sitg 32197
This theorem is referenced by:  sitg0  32213
  Copyright terms: Public domain W3C validator