Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fzdifsuc2 Structured version   Visualization version   GIF version

Theorem fzdifsuc2 45301
Description: Remove a successor from the end of a finite set of sequential integers. Similar to fzdifsuc 13521, but with a weaker condition. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Assertion
Ref Expression
fzdifsuc2 (𝑁 ∈ (ℤ‘(𝑀 − 1)) → (𝑀...𝑁) = ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}))

Proof of Theorem fzdifsuc2
StepHypRef Expression
1 simpr 484 . . . . . 6 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → 𝑁 = (𝑀 − 1))
2 zre 12509 . . . . . . . 8 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
32ad2antlr 727 . . . . . . 7 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → 𝑀 ∈ ℝ)
43ltm1d 12091 . . . . . 6 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → (𝑀 − 1) < 𝑀)
51, 4eqbrtrd 5124 . . . . 5 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → 𝑁 < 𝑀)
6 simplr 768 . . . . . 6 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → 𝑀 ∈ ℤ)
7 eluzelz 12779 . . . . . . 7 (𝑁 ∈ (ℤ‘(𝑀 − 1)) → 𝑁 ∈ ℤ)
87ad2antrr 726 . . . . . 6 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → 𝑁 ∈ ℤ)
9 fzn 13477 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝑀 ↔ (𝑀...𝑁) = ∅))
106, 8, 9syl2anc 584 . . . . 5 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → (𝑁 < 𝑀 ↔ (𝑀...𝑁) = ∅))
115, 10mpbid 232 . . . 4 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → (𝑀...𝑁) = ∅)
12 difid 4335 . . . . . 6 ({𝑀} ∖ {𝑀}) = ∅
1312a1i 11 . . . . 5 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → ({𝑀} ∖ {𝑀}) = ∅)
1413eqcomd 2735 . . . 4 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → ∅ = ({𝑀} ∖ {𝑀}))
15 oveq1 7376 . . . . . . . . 9 (𝑁 = (𝑀 − 1) → (𝑁 + 1) = ((𝑀 − 1) + 1))
1615adantl 481 . . . . . . . 8 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → (𝑁 + 1) = ((𝑀 − 1) + 1))
172recnd 11178 . . . . . . . . . 10 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
1817ad2antlr 727 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → 𝑀 ∈ ℂ)
19 1cnd 11145 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → 1 ∈ ℂ)
2018, 19npcand 11513 . . . . . . . 8 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → ((𝑀 − 1) + 1) = 𝑀)
2116, 20eqtrd 2764 . . . . . . 7 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → (𝑁 + 1) = 𝑀)
2221oveq2d 7385 . . . . . 6 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → (𝑀...(𝑁 + 1)) = (𝑀...𝑀))
23 fzsn 13503 . . . . . . 7 (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀})
2423ad2antlr 727 . . . . . 6 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → (𝑀...𝑀) = {𝑀})
2522, 24eqtr2d 2765 . . . . 5 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → {𝑀} = (𝑀...(𝑁 + 1)))
2621eqcomd 2735 . . . . . 6 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → 𝑀 = (𝑁 + 1))
2726sneqd 4597 . . . . 5 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → {𝑀} = {(𝑁 + 1)})
2825, 27difeq12d 4086 . . . 4 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → ({𝑀} ∖ {𝑀}) = ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}))
2911, 14, 283eqtrd 2768 . . 3 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → (𝑀...𝑁) = ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}))
30 simplr 768 . . . . . 6 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ ¬ 𝑁 = (𝑀 − 1)) → 𝑀 ∈ ℤ)
317ad2antrr 726 . . . . . 6 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ ¬ 𝑁 = (𝑀 − 1)) → 𝑁 ∈ ℤ)
322ad2antlr 727 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ ¬ 𝑁 = (𝑀 − 1)) → 𝑀 ∈ ℝ)
33 1red 11151 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ ¬ 𝑁 = (𝑀 − 1)) → 1 ∈ ℝ)
3432, 33resubcld 11582 . . . . . . . 8 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ ¬ 𝑁 = (𝑀 − 1)) → (𝑀 − 1) ∈ ℝ)
3531zred 12614 . . . . . . . 8 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ ¬ 𝑁 = (𝑀 − 1)) → 𝑁 ∈ ℝ)
36 eluzle 12782 . . . . . . . . 9 (𝑁 ∈ (ℤ‘(𝑀 − 1)) → (𝑀 − 1) ≤ 𝑁)
3736ad2antrr 726 . . . . . . . 8 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ ¬ 𝑁 = (𝑀 − 1)) → (𝑀 − 1) ≤ 𝑁)
38 neqne 2933 . . . . . . . . 9 𝑁 = (𝑀 − 1) → 𝑁 ≠ (𝑀 − 1))
3938adantl 481 . . . . . . . 8 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ ¬ 𝑁 = (𝑀 − 1)) → 𝑁 ≠ (𝑀 − 1))
4034, 35, 37, 39leneltd 11304 . . . . . . 7 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ ¬ 𝑁 = (𝑀 − 1)) → (𝑀 − 1) < 𝑁)
41 zlem1lt 12561 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (𝑀 − 1) < 𝑁))
4230, 31, 41syl2anc 584 . . . . . . 7 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ ¬ 𝑁 = (𝑀 − 1)) → (𝑀𝑁 ↔ (𝑀 − 1) < 𝑁))
4340, 42mpbird 257 . . . . . 6 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ ¬ 𝑁 = (𝑀 − 1)) → 𝑀𝑁)
4430, 31, 433jca 1128 . . . . 5 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ ¬ 𝑁 = (𝑀 − 1)) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁))
45 eluz2 12775 . . . . 5 (𝑁 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁))
4644, 45sylibr 234 . . . 4 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ ¬ 𝑁 = (𝑀 − 1)) → 𝑁 ∈ (ℤ𝑀))
47 fzdifsuc 13521 . . . 4 (𝑁 ∈ (ℤ𝑀) → (𝑀...𝑁) = ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}))
4846, 47syl 17 . . 3 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ ¬ 𝑁 = (𝑀 − 1)) → (𝑀...𝑁) = ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}))
4929, 48pm2.61dan 812 . 2 ((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) → (𝑀...𝑁) = ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}))
50 eluzel2 12774 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
5150con3i 154 . . . . . 6 𝑀 ∈ ℤ → ¬ 𝑁 ∈ (ℤ𝑀))
52 fzn0 13475 . . . . . 6 ((𝑀...𝑁) ≠ ∅ ↔ 𝑁 ∈ (ℤ𝑀))
5351, 52sylnibr 329 . . . . 5 𝑀 ∈ ℤ → ¬ (𝑀...𝑁) ≠ ∅)
54 nne 2929 . . . . 5 (¬ (𝑀...𝑁) ≠ ∅ ↔ (𝑀...𝑁) = ∅)
5553, 54sylib 218 . . . 4 𝑀 ∈ ℤ → (𝑀...𝑁) = ∅)
56 eluzel2 12774 . . . . . . . . 9 ((𝑁 + 1) ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
5756con3i 154 . . . . . . . 8 𝑀 ∈ ℤ → ¬ (𝑁 + 1) ∈ (ℤ𝑀))
58 fzn0 13475 . . . . . . . 8 ((𝑀...(𝑁 + 1)) ≠ ∅ ↔ (𝑁 + 1) ∈ (ℤ𝑀))
5957, 58sylnibr 329 . . . . . . 7 𝑀 ∈ ℤ → ¬ (𝑀...(𝑁 + 1)) ≠ ∅)
60 nne 2929 . . . . . . 7 (¬ (𝑀...(𝑁 + 1)) ≠ ∅ ↔ (𝑀...(𝑁 + 1)) = ∅)
6159, 60sylib 218 . . . . . 6 𝑀 ∈ ℤ → (𝑀...(𝑁 + 1)) = ∅)
6261difeq1d 4084 . . . . 5 𝑀 ∈ ℤ → ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}) = (∅ ∖ {(𝑁 + 1)}))
63 0dif 4364 . . . . . 6 (∅ ∖ {(𝑁 + 1)}) = ∅
6463a1i 11 . . . . 5 𝑀 ∈ ℤ → (∅ ∖ {(𝑁 + 1)}) = ∅)
6562, 64eqtr2d 2765 . . . 4 𝑀 ∈ ℤ → ∅ = ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}))
6655, 65eqtrd 2764 . . 3 𝑀 ∈ ℤ → (𝑀...𝑁) = ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}))
6766adantl 481 . 2 ((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ ¬ 𝑀 ∈ ℤ) → (𝑀...𝑁) = ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}))
6849, 67pm2.61dan 812 1 (𝑁 ∈ (ℤ‘(𝑀 − 1)) → (𝑀...𝑁) = ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  cdif 3908  c0 4292  {csn 4585   class class class wbr 5102  cfv 6499  (class class class)co 7369  cc 11042  cr 11043  1c1 11045   + caddc 11047   < clt 11184  cle 11185  cmin 11381  cz 12505  cuz 12769  ...cfz 13444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445
This theorem is referenced by:  dvnmul  45934
  Copyright terms: Public domain W3C validator