Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fzdifsuc2 Structured version   Visualization version   GIF version

Theorem fzdifsuc2 44318
Description: Remove a successor from the end of a finite set of sequential integers. Similar to fzdifsuc 13565, but with a weaker condition. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Assertion
Ref Expression
fzdifsuc2 (𝑁 ∈ (ℤ‘(𝑀 − 1)) → (𝑀...𝑁) = ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}))

Proof of Theorem fzdifsuc2
StepHypRef Expression
1 simpr 483 . . . . . 6 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → 𝑁 = (𝑀 − 1))
2 zre 12566 . . . . . . . 8 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
32ad2antlr 723 . . . . . . 7 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → 𝑀 ∈ ℝ)
43ltm1d 12150 . . . . . 6 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → (𝑀 − 1) < 𝑀)
51, 4eqbrtrd 5169 . . . . 5 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → 𝑁 < 𝑀)
6 simplr 765 . . . . . 6 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → 𝑀 ∈ ℤ)
7 eluzelz 12836 . . . . . . 7 (𝑁 ∈ (ℤ‘(𝑀 − 1)) → 𝑁 ∈ ℤ)
87ad2antrr 722 . . . . . 6 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → 𝑁 ∈ ℤ)
9 fzn 13521 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝑀 ↔ (𝑀...𝑁) = ∅))
106, 8, 9syl2anc 582 . . . . 5 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → (𝑁 < 𝑀 ↔ (𝑀...𝑁) = ∅))
115, 10mpbid 231 . . . 4 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → (𝑀...𝑁) = ∅)
12 difid 4369 . . . . . 6 ({𝑀} ∖ {𝑀}) = ∅
1312a1i 11 . . . . 5 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → ({𝑀} ∖ {𝑀}) = ∅)
1413eqcomd 2736 . . . 4 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → ∅ = ({𝑀} ∖ {𝑀}))
15 oveq1 7418 . . . . . . . . 9 (𝑁 = (𝑀 − 1) → (𝑁 + 1) = ((𝑀 − 1) + 1))
1615adantl 480 . . . . . . . 8 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → (𝑁 + 1) = ((𝑀 − 1) + 1))
172recnd 11246 . . . . . . . . . 10 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
1817ad2antlr 723 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → 𝑀 ∈ ℂ)
19 1cnd 11213 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → 1 ∈ ℂ)
2018, 19npcand 11579 . . . . . . . 8 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → ((𝑀 − 1) + 1) = 𝑀)
2116, 20eqtrd 2770 . . . . . . 7 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → (𝑁 + 1) = 𝑀)
2221oveq2d 7427 . . . . . 6 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → (𝑀...(𝑁 + 1)) = (𝑀...𝑀))
23 fzsn 13547 . . . . . . 7 (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀})
2423ad2antlr 723 . . . . . 6 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → (𝑀...𝑀) = {𝑀})
2522, 24eqtr2d 2771 . . . . 5 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → {𝑀} = (𝑀...(𝑁 + 1)))
2621eqcomd 2736 . . . . . 6 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → 𝑀 = (𝑁 + 1))
2726sneqd 4639 . . . . 5 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → {𝑀} = {(𝑁 + 1)})
2825, 27difeq12d 4122 . . . 4 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → ({𝑀} ∖ {𝑀}) = ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}))
2911, 14, 283eqtrd 2774 . . 3 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → (𝑀...𝑁) = ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}))
30 simplr 765 . . . . . 6 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ ¬ 𝑁 = (𝑀 − 1)) → 𝑀 ∈ ℤ)
317ad2antrr 722 . . . . . 6 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ ¬ 𝑁 = (𝑀 − 1)) → 𝑁 ∈ ℤ)
322ad2antlr 723 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ ¬ 𝑁 = (𝑀 − 1)) → 𝑀 ∈ ℝ)
33 1red 11219 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ ¬ 𝑁 = (𝑀 − 1)) → 1 ∈ ℝ)
3432, 33resubcld 11646 . . . . . . . 8 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ ¬ 𝑁 = (𝑀 − 1)) → (𝑀 − 1) ∈ ℝ)
3531zred 12670 . . . . . . . 8 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ ¬ 𝑁 = (𝑀 − 1)) → 𝑁 ∈ ℝ)
36 eluzle 12839 . . . . . . . . 9 (𝑁 ∈ (ℤ‘(𝑀 − 1)) → (𝑀 − 1) ≤ 𝑁)
3736ad2antrr 722 . . . . . . . 8 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ ¬ 𝑁 = (𝑀 − 1)) → (𝑀 − 1) ≤ 𝑁)
38 neqne 2946 . . . . . . . . 9 𝑁 = (𝑀 − 1) → 𝑁 ≠ (𝑀 − 1))
3938adantl 480 . . . . . . . 8 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ ¬ 𝑁 = (𝑀 − 1)) → 𝑁 ≠ (𝑀 − 1))
4034, 35, 37, 39leneltd 11372 . . . . . . 7 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ ¬ 𝑁 = (𝑀 − 1)) → (𝑀 − 1) < 𝑁)
41 zlem1lt 12618 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (𝑀 − 1) < 𝑁))
4230, 31, 41syl2anc 582 . . . . . . 7 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ ¬ 𝑁 = (𝑀 − 1)) → (𝑀𝑁 ↔ (𝑀 − 1) < 𝑁))
4340, 42mpbird 256 . . . . . 6 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ ¬ 𝑁 = (𝑀 − 1)) → 𝑀𝑁)
4430, 31, 433jca 1126 . . . . 5 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ ¬ 𝑁 = (𝑀 − 1)) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁))
45 eluz2 12832 . . . . 5 (𝑁 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁))
4644, 45sylibr 233 . . . 4 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ ¬ 𝑁 = (𝑀 − 1)) → 𝑁 ∈ (ℤ𝑀))
47 fzdifsuc 13565 . . . 4 (𝑁 ∈ (ℤ𝑀) → (𝑀...𝑁) = ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}))
4846, 47syl 17 . . 3 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ ¬ 𝑁 = (𝑀 − 1)) → (𝑀...𝑁) = ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}))
4929, 48pm2.61dan 809 . 2 ((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) → (𝑀...𝑁) = ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}))
50 eluzel2 12831 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
5150con3i 154 . . . . . 6 𝑀 ∈ ℤ → ¬ 𝑁 ∈ (ℤ𝑀))
52 fzn0 13519 . . . . . 6 ((𝑀...𝑁) ≠ ∅ ↔ 𝑁 ∈ (ℤ𝑀))
5351, 52sylnibr 328 . . . . 5 𝑀 ∈ ℤ → ¬ (𝑀...𝑁) ≠ ∅)
54 nne 2942 . . . . 5 (¬ (𝑀...𝑁) ≠ ∅ ↔ (𝑀...𝑁) = ∅)
5553, 54sylib 217 . . . 4 𝑀 ∈ ℤ → (𝑀...𝑁) = ∅)
56 eluzel2 12831 . . . . . . . . 9 ((𝑁 + 1) ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
5756con3i 154 . . . . . . . 8 𝑀 ∈ ℤ → ¬ (𝑁 + 1) ∈ (ℤ𝑀))
58 fzn0 13519 . . . . . . . 8 ((𝑀...(𝑁 + 1)) ≠ ∅ ↔ (𝑁 + 1) ∈ (ℤ𝑀))
5957, 58sylnibr 328 . . . . . . 7 𝑀 ∈ ℤ → ¬ (𝑀...(𝑁 + 1)) ≠ ∅)
60 nne 2942 . . . . . . 7 (¬ (𝑀...(𝑁 + 1)) ≠ ∅ ↔ (𝑀...(𝑁 + 1)) = ∅)
6159, 60sylib 217 . . . . . 6 𝑀 ∈ ℤ → (𝑀...(𝑁 + 1)) = ∅)
6261difeq1d 4120 . . . . 5 𝑀 ∈ ℤ → ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}) = (∅ ∖ {(𝑁 + 1)}))
63 0dif 4400 . . . . . 6 (∅ ∖ {(𝑁 + 1)}) = ∅
6463a1i 11 . . . . 5 𝑀 ∈ ℤ → (∅ ∖ {(𝑁 + 1)}) = ∅)
6562, 64eqtr2d 2771 . . . 4 𝑀 ∈ ℤ → ∅ = ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}))
6655, 65eqtrd 2770 . . 3 𝑀 ∈ ℤ → (𝑀...𝑁) = ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}))
6766adantl 480 . 2 ((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ ¬ 𝑀 ∈ ℤ) → (𝑀...𝑁) = ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}))
6849, 67pm2.61dan 809 1 (𝑁 ∈ (ℤ‘(𝑀 − 1)) → (𝑀...𝑁) = ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  w3a 1085   = wceq 1539  wcel 2104  wne 2938  cdif 3944  c0 4321  {csn 4627   class class class wbr 5147  cfv 6542  (class class class)co 7411  cc 11110  cr 11111  1c1 11113   + caddc 11115   < clt 11252  cle 11253  cmin 11448  cz 12562  cuz 12826  ...cfz 13488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-n0 12477  df-z 12563  df-uz 12827  df-fz 13489
This theorem is referenced by:  dvnmul  44957
  Copyright terms: Public domain W3C validator