Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fzdifsuc2 Structured version   Visualization version   GIF version

Theorem fzdifsuc2 41597
Description: Remove a successor from the end of a finite set of sequential integers. Similar to fzdifsuc 12968, but with a weaker condition. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Assertion
Ref Expression
fzdifsuc2 (𝑁 ∈ (ℤ‘(𝑀 − 1)) → (𝑀...𝑁) = ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}))

Proof of Theorem fzdifsuc2
StepHypRef Expression
1 simpr 487 . . . . . 6 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → 𝑁 = (𝑀 − 1))
2 zre 11986 . . . . . . . 8 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
32ad2antlr 725 . . . . . . 7 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → 𝑀 ∈ ℝ)
43ltm1d 11572 . . . . . 6 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → (𝑀 − 1) < 𝑀)
51, 4eqbrtrd 5088 . . . . 5 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → 𝑁 < 𝑀)
6 simplr 767 . . . . . 6 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → 𝑀 ∈ ℤ)
7 eluzelz 12254 . . . . . . 7 (𝑁 ∈ (ℤ‘(𝑀 − 1)) → 𝑁 ∈ ℤ)
87ad2antrr 724 . . . . . 6 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → 𝑁 ∈ ℤ)
9 fzn 12924 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝑀 ↔ (𝑀...𝑁) = ∅))
106, 8, 9syl2anc 586 . . . . 5 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → (𝑁 < 𝑀 ↔ (𝑀...𝑁) = ∅))
115, 10mpbid 234 . . . 4 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → (𝑀...𝑁) = ∅)
12 difid 4330 . . . . . 6 ({𝑀} ∖ {𝑀}) = ∅
1312a1i 11 . . . . 5 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → ({𝑀} ∖ {𝑀}) = ∅)
1413eqcomd 2827 . . . 4 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → ∅ = ({𝑀} ∖ {𝑀}))
15 oveq1 7163 . . . . . . . . 9 (𝑁 = (𝑀 − 1) → (𝑁 + 1) = ((𝑀 − 1) + 1))
1615adantl 484 . . . . . . . 8 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → (𝑁 + 1) = ((𝑀 − 1) + 1))
172recnd 10669 . . . . . . . . . 10 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
1817ad2antlr 725 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → 𝑀 ∈ ℂ)
19 1cnd 10636 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → 1 ∈ ℂ)
2018, 19npcand 11001 . . . . . . . 8 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → ((𝑀 − 1) + 1) = 𝑀)
2116, 20eqtrd 2856 . . . . . . 7 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → (𝑁 + 1) = 𝑀)
2221oveq2d 7172 . . . . . 6 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → (𝑀...(𝑁 + 1)) = (𝑀...𝑀))
23 fzsn 12950 . . . . . . 7 (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀})
2423ad2antlr 725 . . . . . 6 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → (𝑀...𝑀) = {𝑀})
2522, 24eqtr2d 2857 . . . . 5 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → {𝑀} = (𝑀...(𝑁 + 1)))
2621eqcomd 2827 . . . . . 6 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → 𝑀 = (𝑁 + 1))
2726sneqd 4579 . . . . 5 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → {𝑀} = {(𝑁 + 1)})
2825, 27difeq12d 4100 . . . 4 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → ({𝑀} ∖ {𝑀}) = ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}))
2911, 14, 283eqtrd 2860 . . 3 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → (𝑀...𝑁) = ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}))
30 simplr 767 . . . . . 6 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ ¬ 𝑁 = (𝑀 − 1)) → 𝑀 ∈ ℤ)
317ad2antrr 724 . . . . . 6 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ ¬ 𝑁 = (𝑀 − 1)) → 𝑁 ∈ ℤ)
322ad2antlr 725 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ ¬ 𝑁 = (𝑀 − 1)) → 𝑀 ∈ ℝ)
33 1red 10642 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ ¬ 𝑁 = (𝑀 − 1)) → 1 ∈ ℝ)
3432, 33resubcld 11068 . . . . . . . 8 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ ¬ 𝑁 = (𝑀 − 1)) → (𝑀 − 1) ∈ ℝ)
3531zred 12088 . . . . . . . 8 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ ¬ 𝑁 = (𝑀 − 1)) → 𝑁 ∈ ℝ)
36 eluzle 12257 . . . . . . . . 9 (𝑁 ∈ (ℤ‘(𝑀 − 1)) → (𝑀 − 1) ≤ 𝑁)
3736ad2antrr 724 . . . . . . . 8 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ ¬ 𝑁 = (𝑀 − 1)) → (𝑀 − 1) ≤ 𝑁)
38 neqne 3024 . . . . . . . . 9 𝑁 = (𝑀 − 1) → 𝑁 ≠ (𝑀 − 1))
3938adantl 484 . . . . . . . 8 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ ¬ 𝑁 = (𝑀 − 1)) → 𝑁 ≠ (𝑀 − 1))
4034, 35, 37, 39leneltd 10794 . . . . . . 7 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ ¬ 𝑁 = (𝑀 − 1)) → (𝑀 − 1) < 𝑁)
41 zlem1lt 12035 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (𝑀 − 1) < 𝑁))
4230, 31, 41syl2anc 586 . . . . . . 7 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ ¬ 𝑁 = (𝑀 − 1)) → (𝑀𝑁 ↔ (𝑀 − 1) < 𝑁))
4340, 42mpbird 259 . . . . . 6 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ ¬ 𝑁 = (𝑀 − 1)) → 𝑀𝑁)
4430, 31, 433jca 1124 . . . . 5 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ ¬ 𝑁 = (𝑀 − 1)) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁))
45 eluz2 12250 . . . . 5 (𝑁 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁))
4644, 45sylibr 236 . . . 4 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ ¬ 𝑁 = (𝑀 − 1)) → 𝑁 ∈ (ℤ𝑀))
47 fzdifsuc 12968 . . . 4 (𝑁 ∈ (ℤ𝑀) → (𝑀...𝑁) = ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}))
4846, 47syl 17 . . 3 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ ¬ 𝑁 = (𝑀 − 1)) → (𝑀...𝑁) = ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}))
4929, 48pm2.61dan 811 . 2 ((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) → (𝑀...𝑁) = ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}))
50 eluzel2 12249 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
5150con3i 157 . . . . . 6 𝑀 ∈ ℤ → ¬ 𝑁 ∈ (ℤ𝑀))
52 fzn0 12922 . . . . . 6 ((𝑀...𝑁) ≠ ∅ ↔ 𝑁 ∈ (ℤ𝑀))
5351, 52sylnibr 331 . . . . 5 𝑀 ∈ ℤ → ¬ (𝑀...𝑁) ≠ ∅)
54 nne 3020 . . . . 5 (¬ (𝑀...𝑁) ≠ ∅ ↔ (𝑀...𝑁) = ∅)
5553, 54sylib 220 . . . 4 𝑀 ∈ ℤ → (𝑀...𝑁) = ∅)
56 eluzel2 12249 . . . . . . . . 9 ((𝑁 + 1) ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
5756con3i 157 . . . . . . . 8 𝑀 ∈ ℤ → ¬ (𝑁 + 1) ∈ (ℤ𝑀))
58 fzn0 12922 . . . . . . . 8 ((𝑀...(𝑁 + 1)) ≠ ∅ ↔ (𝑁 + 1) ∈ (ℤ𝑀))
5957, 58sylnibr 331 . . . . . . 7 𝑀 ∈ ℤ → ¬ (𝑀...(𝑁 + 1)) ≠ ∅)
60 nne 3020 . . . . . . 7 (¬ (𝑀...(𝑁 + 1)) ≠ ∅ ↔ (𝑀...(𝑁 + 1)) = ∅)
6159, 60sylib 220 . . . . . 6 𝑀 ∈ ℤ → (𝑀...(𝑁 + 1)) = ∅)
6261difeq1d 4098 . . . . 5 𝑀 ∈ ℤ → ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}) = (∅ ∖ {(𝑁 + 1)}))
63 0dif 4355 . . . . . 6 (∅ ∖ {(𝑁 + 1)}) = ∅
6463a1i 11 . . . . 5 𝑀 ∈ ℤ → (∅ ∖ {(𝑁 + 1)}) = ∅)
6562, 64eqtr2d 2857 . . . 4 𝑀 ∈ ℤ → ∅ = ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}))
6655, 65eqtrd 2856 . . 3 𝑀 ∈ ℤ → (𝑀...𝑁) = ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}))
6766adantl 484 . 2 ((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ ¬ 𝑀 ∈ ℤ) → (𝑀...𝑁) = ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}))
6849, 67pm2.61dan 811 1 (𝑁 ∈ (ℤ‘(𝑀 − 1)) → (𝑀...𝑁) = ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3016  cdif 3933  c0 4291  {csn 4567   class class class wbr 5066  cfv 6355  (class class class)co 7156  cc 10535  cr 10536  1c1 10538   + caddc 10540   < clt 10675  cle 10676  cmin 10870  cz 11982  cuz 12244  ...cfz 12893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-n0 11899  df-z 11983  df-uz 12245  df-fz 12894
This theorem is referenced by:  dvnmul  42248
  Copyright terms: Public domain W3C validator