Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fzdifsuc2 Structured version   Visualization version   GIF version

Theorem fzdifsuc2 45308
Description: Remove a successor from the end of a finite set of sequential integers. Similar to fzdifsuc 13545, but with a weaker condition. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Assertion
Ref Expression
fzdifsuc2 (𝑁 ∈ (ℤ‘(𝑀 − 1)) → (𝑀...𝑁) = ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}))

Proof of Theorem fzdifsuc2
StepHypRef Expression
1 simpr 484 . . . . . 6 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → 𝑁 = (𝑀 − 1))
2 zre 12533 . . . . . . . 8 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
32ad2antlr 727 . . . . . . 7 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → 𝑀 ∈ ℝ)
43ltm1d 12115 . . . . . 6 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → (𝑀 − 1) < 𝑀)
51, 4eqbrtrd 5129 . . . . 5 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → 𝑁 < 𝑀)
6 simplr 768 . . . . . 6 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → 𝑀 ∈ ℤ)
7 eluzelz 12803 . . . . . . 7 (𝑁 ∈ (ℤ‘(𝑀 − 1)) → 𝑁 ∈ ℤ)
87ad2antrr 726 . . . . . 6 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → 𝑁 ∈ ℤ)
9 fzn 13501 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝑀 ↔ (𝑀...𝑁) = ∅))
106, 8, 9syl2anc 584 . . . . 5 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → (𝑁 < 𝑀 ↔ (𝑀...𝑁) = ∅))
115, 10mpbid 232 . . . 4 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → (𝑀...𝑁) = ∅)
12 difid 4339 . . . . . 6 ({𝑀} ∖ {𝑀}) = ∅
1312a1i 11 . . . . 5 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → ({𝑀} ∖ {𝑀}) = ∅)
1413eqcomd 2735 . . . 4 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → ∅ = ({𝑀} ∖ {𝑀}))
15 oveq1 7394 . . . . . . . . 9 (𝑁 = (𝑀 − 1) → (𝑁 + 1) = ((𝑀 − 1) + 1))
1615adantl 481 . . . . . . . 8 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → (𝑁 + 1) = ((𝑀 − 1) + 1))
172recnd 11202 . . . . . . . . . 10 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
1817ad2antlr 727 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → 𝑀 ∈ ℂ)
19 1cnd 11169 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → 1 ∈ ℂ)
2018, 19npcand 11537 . . . . . . . 8 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → ((𝑀 − 1) + 1) = 𝑀)
2116, 20eqtrd 2764 . . . . . . 7 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → (𝑁 + 1) = 𝑀)
2221oveq2d 7403 . . . . . 6 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → (𝑀...(𝑁 + 1)) = (𝑀...𝑀))
23 fzsn 13527 . . . . . . 7 (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀})
2423ad2antlr 727 . . . . . 6 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → (𝑀...𝑀) = {𝑀})
2522, 24eqtr2d 2765 . . . . 5 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → {𝑀} = (𝑀...(𝑁 + 1)))
2621eqcomd 2735 . . . . . 6 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → 𝑀 = (𝑁 + 1))
2726sneqd 4601 . . . . 5 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → {𝑀} = {(𝑁 + 1)})
2825, 27difeq12d 4090 . . . 4 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → ({𝑀} ∖ {𝑀}) = ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}))
2911, 14, 283eqtrd 2768 . . 3 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → (𝑀...𝑁) = ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}))
30 simplr 768 . . . . . 6 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ ¬ 𝑁 = (𝑀 − 1)) → 𝑀 ∈ ℤ)
317ad2antrr 726 . . . . . 6 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ ¬ 𝑁 = (𝑀 − 1)) → 𝑁 ∈ ℤ)
322ad2antlr 727 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ ¬ 𝑁 = (𝑀 − 1)) → 𝑀 ∈ ℝ)
33 1red 11175 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ ¬ 𝑁 = (𝑀 − 1)) → 1 ∈ ℝ)
3432, 33resubcld 11606 . . . . . . . 8 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ ¬ 𝑁 = (𝑀 − 1)) → (𝑀 − 1) ∈ ℝ)
3531zred 12638 . . . . . . . 8 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ ¬ 𝑁 = (𝑀 − 1)) → 𝑁 ∈ ℝ)
36 eluzle 12806 . . . . . . . . 9 (𝑁 ∈ (ℤ‘(𝑀 − 1)) → (𝑀 − 1) ≤ 𝑁)
3736ad2antrr 726 . . . . . . . 8 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ ¬ 𝑁 = (𝑀 − 1)) → (𝑀 − 1) ≤ 𝑁)
38 neqne 2933 . . . . . . . . 9 𝑁 = (𝑀 − 1) → 𝑁 ≠ (𝑀 − 1))
3938adantl 481 . . . . . . . 8 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ ¬ 𝑁 = (𝑀 − 1)) → 𝑁 ≠ (𝑀 − 1))
4034, 35, 37, 39leneltd 11328 . . . . . . 7 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ ¬ 𝑁 = (𝑀 − 1)) → (𝑀 − 1) < 𝑁)
41 zlem1lt 12585 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (𝑀 − 1) < 𝑁))
4230, 31, 41syl2anc 584 . . . . . . 7 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ ¬ 𝑁 = (𝑀 − 1)) → (𝑀𝑁 ↔ (𝑀 − 1) < 𝑁))
4340, 42mpbird 257 . . . . . 6 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ ¬ 𝑁 = (𝑀 − 1)) → 𝑀𝑁)
4430, 31, 433jca 1128 . . . . 5 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ ¬ 𝑁 = (𝑀 − 1)) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁))
45 eluz2 12799 . . . . 5 (𝑁 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁))
4644, 45sylibr 234 . . . 4 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ ¬ 𝑁 = (𝑀 − 1)) → 𝑁 ∈ (ℤ𝑀))
47 fzdifsuc 13545 . . . 4 (𝑁 ∈ (ℤ𝑀) → (𝑀...𝑁) = ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}))
4846, 47syl 17 . . 3 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ ¬ 𝑁 = (𝑀 − 1)) → (𝑀...𝑁) = ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}))
4929, 48pm2.61dan 812 . 2 ((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) → (𝑀...𝑁) = ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}))
50 eluzel2 12798 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
5150con3i 154 . . . . . 6 𝑀 ∈ ℤ → ¬ 𝑁 ∈ (ℤ𝑀))
52 fzn0 13499 . . . . . 6 ((𝑀...𝑁) ≠ ∅ ↔ 𝑁 ∈ (ℤ𝑀))
5351, 52sylnibr 329 . . . . 5 𝑀 ∈ ℤ → ¬ (𝑀...𝑁) ≠ ∅)
54 nne 2929 . . . . 5 (¬ (𝑀...𝑁) ≠ ∅ ↔ (𝑀...𝑁) = ∅)
5553, 54sylib 218 . . . 4 𝑀 ∈ ℤ → (𝑀...𝑁) = ∅)
56 eluzel2 12798 . . . . . . . . 9 ((𝑁 + 1) ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
5756con3i 154 . . . . . . . 8 𝑀 ∈ ℤ → ¬ (𝑁 + 1) ∈ (ℤ𝑀))
58 fzn0 13499 . . . . . . . 8 ((𝑀...(𝑁 + 1)) ≠ ∅ ↔ (𝑁 + 1) ∈ (ℤ𝑀))
5957, 58sylnibr 329 . . . . . . 7 𝑀 ∈ ℤ → ¬ (𝑀...(𝑁 + 1)) ≠ ∅)
60 nne 2929 . . . . . . 7 (¬ (𝑀...(𝑁 + 1)) ≠ ∅ ↔ (𝑀...(𝑁 + 1)) = ∅)
6159, 60sylib 218 . . . . . 6 𝑀 ∈ ℤ → (𝑀...(𝑁 + 1)) = ∅)
6261difeq1d 4088 . . . . 5 𝑀 ∈ ℤ → ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}) = (∅ ∖ {(𝑁 + 1)}))
63 0dif 4368 . . . . . 6 (∅ ∖ {(𝑁 + 1)}) = ∅
6463a1i 11 . . . . 5 𝑀 ∈ ℤ → (∅ ∖ {(𝑁 + 1)}) = ∅)
6562, 64eqtr2d 2765 . . . 4 𝑀 ∈ ℤ → ∅ = ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}))
6655, 65eqtrd 2764 . . 3 𝑀 ∈ ℤ → (𝑀...𝑁) = ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}))
6766adantl 481 . 2 ((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ ¬ 𝑀 ∈ ℤ) → (𝑀...𝑁) = ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}))
6849, 67pm2.61dan 812 1 (𝑁 ∈ (ℤ‘(𝑀 − 1)) → (𝑀...𝑁) = ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  cdif 3911  c0 4296  {csn 4589   class class class wbr 5107  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  1c1 11069   + caddc 11071   < clt 11208  cle 11209  cmin 11405  cz 12529  cuz 12793  ...cfz 13468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469
This theorem is referenced by:  dvnmul  45941
  Copyright terms: Public domain W3C validator