MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgioo Structured version   Visualization version   GIF version

Theorem itgioo 25754
Description: Equality of integrals on open and closed intervals. (Contributed by Mario Carneiro, 2-Sep-2014.)
Hypotheses
Ref Expression
itgioo.1 (𝜑𝐴 ∈ ℝ)
itgioo.2 (𝜑𝐵 ∈ ℝ)
itgioo.3 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐶 ∈ ℂ)
Assertion
Ref Expression
itgioo (𝜑 → ∫(𝐴(,)𝐵)𝐶 d𝑥 = ∫(𝐴[,]𝐵)𝐶 d𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem itgioo
StepHypRef Expression
1 ioossicc 13343 . . . 4 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
21a1i 11 . . 3 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵))
3 itgioo.1 . . . 4 (𝜑𝐴 ∈ ℝ)
4 itgioo.2 . . . 4 (𝜑𝐵 ∈ ℝ)
5 iccssre 13339 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
63, 4, 5syl2anc 584 . . 3 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
73rexrd 11172 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ*)
84rexrd 11172 . . . . . . . . 9 (𝜑𝐵 ∈ ℝ*)
9 icc0 13303 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴))
107, 8, 9syl2anc 584 . . . . . . . 8 (𝜑 → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴))
1110biimpar 477 . . . . . . 7 ((𝜑𝐵 < 𝐴) → (𝐴[,]𝐵) = ∅)
1211difeq1d 4076 . . . . . 6 ((𝜑𝐵 < 𝐴) → ((𝐴[,]𝐵) ∖ (𝐴(,)𝐵)) = (∅ ∖ (𝐴(,)𝐵)))
13 0dif 4356 . . . . . . 7 (∅ ∖ (𝐴(,)𝐵)) = ∅
14 0ss 4351 . . . . . . 7 ∅ ⊆ {𝐴, 𝐵}
1513, 14eqsstri 3978 . . . . . 6 (∅ ∖ (𝐴(,)𝐵)) ⊆ {𝐴, 𝐵}
1612, 15eqsstrdi 3976 . . . . 5 ((𝜑𝐵 < 𝐴) → ((𝐴[,]𝐵) ∖ (𝐴(,)𝐵)) ⊆ {𝐴, 𝐵})
17 uncom 4109 . . . . . . . . 9 ({𝐴, 𝐵} ∪ (𝐴(,)𝐵)) = ((𝐴(,)𝐵) ∪ {𝐴, 𝐵})
187adantr 480 . . . . . . . . . 10 ((𝜑𝐴𝐵) → 𝐴 ∈ ℝ*)
198adantr 480 . . . . . . . . . 10 ((𝜑𝐴𝐵) → 𝐵 ∈ ℝ*)
20 simpr 484 . . . . . . . . . 10 ((𝜑𝐴𝐵) → 𝐴𝐵)
21 prunioo 13391 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (𝐴[,]𝐵))
2218, 19, 20, 21syl3anc 1373 . . . . . . . . 9 ((𝜑𝐴𝐵) → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (𝐴[,]𝐵))
2317, 22eqtr2id 2781 . . . . . . . 8 ((𝜑𝐴𝐵) → (𝐴[,]𝐵) = ({𝐴, 𝐵} ∪ (𝐴(,)𝐵)))
2423difeq1d 4076 . . . . . . 7 ((𝜑𝐴𝐵) → ((𝐴[,]𝐵) ∖ (𝐴(,)𝐵)) = (({𝐴, 𝐵} ∪ (𝐴(,)𝐵)) ∖ (𝐴(,)𝐵)))
25 difun2 4432 . . . . . . 7 (({𝐴, 𝐵} ∪ (𝐴(,)𝐵)) ∖ (𝐴(,)𝐵)) = ({𝐴, 𝐵} ∖ (𝐴(,)𝐵))
2624, 25eqtrdi 2784 . . . . . 6 ((𝜑𝐴𝐵) → ((𝐴[,]𝐵) ∖ (𝐴(,)𝐵)) = ({𝐴, 𝐵} ∖ (𝐴(,)𝐵)))
27 difss 4087 . . . . . 6 ({𝐴, 𝐵} ∖ (𝐴(,)𝐵)) ⊆ {𝐴, 𝐵}
2826, 27eqsstrdi 3976 . . . . 5 ((𝜑𝐴𝐵) → ((𝐴[,]𝐵) ∖ (𝐴(,)𝐵)) ⊆ {𝐴, 𝐵})
2916, 28, 4, 3ltlecasei 11231 . . . 4 (𝜑 → ((𝐴[,]𝐵) ∖ (𝐴(,)𝐵)) ⊆ {𝐴, 𝐵})
303, 4prssd 4775 . . . 4 (𝜑 → {𝐴, 𝐵} ⊆ ℝ)
31 prfi 9218 . . . . 5 {𝐴, 𝐵} ∈ Fin
32 ovolfi 25432 . . . . 5 (({𝐴, 𝐵} ∈ Fin ∧ {𝐴, 𝐵} ⊆ ℝ) → (vol*‘{𝐴, 𝐵}) = 0)
3331, 30, 32sylancr 587 . . . 4 (𝜑 → (vol*‘{𝐴, 𝐵}) = 0)
34 ovolssnul 25425 . . . 4 ((((𝐴[,]𝐵) ∖ (𝐴(,)𝐵)) ⊆ {𝐴, 𝐵} ∧ {𝐴, 𝐵} ⊆ ℝ ∧ (vol*‘{𝐴, 𝐵}) = 0) → (vol*‘((𝐴[,]𝐵) ∖ (𝐴(,)𝐵))) = 0)
3529, 30, 33, 34syl3anc 1373 . . 3 (𝜑 → (vol*‘((𝐴[,]𝐵) ∖ (𝐴(,)𝐵))) = 0)
36 itgioo.3 . . 3 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐶 ∈ ℂ)
372, 6, 35, 36itgss3 25753 . 2 (𝜑 → (((𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐶) ∈ 𝐿1 ↔ (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐶) ∈ 𝐿1) ∧ ∫(𝐴(,)𝐵)𝐶 d𝑥 = ∫(𝐴[,]𝐵)𝐶 d𝑥))
3837simprd 495 1 (𝜑 → ∫(𝐴(,)𝐵)𝐶 d𝑥 = ∫(𝐴[,]𝐵)𝐶 d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  cdif 3896  cun 3897  wss 3899  c0 4284  {cpr 4579   class class class wbr 5095  cmpt 5176  cfv 6489  (class class class)co 7355  Fincfn 8878  cc 11014  cr 11015  0cc0 11016  *cxr 11155   < clt 11156  cle 11157  (,)cioo 13255  [,]cicc 13258  vol*covol 25400  𝐿1cibl 25555  citg 25556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-inf2 9541  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093  ax-pre-sup 11094  ax-addf 11095
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-symdif 4204  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-disj 5063  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-of 7619  df-ofr 7620  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-er 8631  df-map 8761  df-pm 8762  df-en 8879  df-dom 8880  df-sdom 8881  df-fin 8882  df-fi 9305  df-sup 9336  df-inf 9337  df-oi 9406  df-dju 9804  df-card 9842  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-div 11785  df-nn 12136  df-2 12198  df-3 12199  df-4 12200  df-n0 12392  df-z 12479  df-uz 12743  df-q 12857  df-rp 12901  df-xneg 13021  df-xadd 13022  df-xmul 13023  df-ioo 13259  df-ico 13261  df-icc 13262  df-fz 13418  df-fzo 13565  df-fl 13706  df-mod 13784  df-seq 13919  df-exp 13979  df-hash 14248  df-cj 15016  df-re 15017  df-im 15018  df-sqrt 15152  df-abs 15153  df-clim 15405  df-sum 15604  df-rest 17336  df-topgen 17357  df-psmet 21293  df-xmet 21294  df-met 21295  df-bl 21296  df-mopn 21297  df-top 22819  df-topon 22836  df-bases 22871  df-cmp 23312  df-ovol 25402  df-vol 25403  df-mbf 25557  df-itg1 25558  df-itg2 25559  df-ibl 25560  df-itg 25561
This theorem is referenced by:  itgpowd  25994  lcmineqlem10  42141  lcmineqlem12  42143  itgioocnicc  46089  itgiccshift  46092  itgperiod  46093  fourierdlem73  46291  fourierdlem81  46299  fourierdlem82  46300  fourierdlem111  46329
  Copyright terms: Public domain W3C validator