MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgioo Structured version   Visualization version   GIF version

Theorem itgioo 25689
Description: Equality of integrals on open and closed intervals. (Contributed by Mario Carneiro, 2-Sep-2014.)
Hypotheses
Ref Expression
itgioo.1 (𝜑𝐴 ∈ ℝ)
itgioo.2 (𝜑𝐵 ∈ ℝ)
itgioo.3 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐶 ∈ ℂ)
Assertion
Ref Expression
itgioo (𝜑 → ∫(𝐴(,)𝐵)𝐶 d𝑥 = ∫(𝐴[,]𝐵)𝐶 d𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem itgioo
StepHypRef Expression
1 ioossicc 13411 . . . 4 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
21a1i 11 . . 3 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵))
3 itgioo.1 . . . 4 (𝜑𝐴 ∈ ℝ)
4 itgioo.2 . . . 4 (𝜑𝐵 ∈ ℝ)
5 iccssre 13407 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
63, 4, 5syl2anc 583 . . 3 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
73rexrd 11263 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ*)
84rexrd 11263 . . . . . . . . 9 (𝜑𝐵 ∈ ℝ*)
9 icc0 13373 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴))
107, 8, 9syl2anc 583 . . . . . . . 8 (𝜑 → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴))
1110biimpar 477 . . . . . . 7 ((𝜑𝐵 < 𝐴) → (𝐴[,]𝐵) = ∅)
1211difeq1d 4114 . . . . . 6 ((𝜑𝐵 < 𝐴) → ((𝐴[,]𝐵) ∖ (𝐴(,)𝐵)) = (∅ ∖ (𝐴(,)𝐵)))
13 0dif 4394 . . . . . . 7 (∅ ∖ (𝐴(,)𝐵)) = ∅
14 0ss 4389 . . . . . . 7 ∅ ⊆ {𝐴, 𝐵}
1513, 14eqsstri 4009 . . . . . 6 (∅ ∖ (𝐴(,)𝐵)) ⊆ {𝐴, 𝐵}
1612, 15eqsstrdi 4029 . . . . 5 ((𝜑𝐵 < 𝐴) → ((𝐴[,]𝐵) ∖ (𝐴(,)𝐵)) ⊆ {𝐴, 𝐵})
17 uncom 4146 . . . . . . . . 9 ({𝐴, 𝐵} ∪ (𝐴(,)𝐵)) = ((𝐴(,)𝐵) ∪ {𝐴, 𝐵})
187adantr 480 . . . . . . . . . 10 ((𝜑𝐴𝐵) → 𝐴 ∈ ℝ*)
198adantr 480 . . . . . . . . . 10 ((𝜑𝐴𝐵) → 𝐵 ∈ ℝ*)
20 simpr 484 . . . . . . . . . 10 ((𝜑𝐴𝐵) → 𝐴𝐵)
21 prunioo 13459 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (𝐴[,]𝐵))
2218, 19, 20, 21syl3anc 1368 . . . . . . . . 9 ((𝜑𝐴𝐵) → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (𝐴[,]𝐵))
2317, 22eqtr2id 2777 . . . . . . . 8 ((𝜑𝐴𝐵) → (𝐴[,]𝐵) = ({𝐴, 𝐵} ∪ (𝐴(,)𝐵)))
2423difeq1d 4114 . . . . . . 7 ((𝜑𝐴𝐵) → ((𝐴[,]𝐵) ∖ (𝐴(,)𝐵)) = (({𝐴, 𝐵} ∪ (𝐴(,)𝐵)) ∖ (𝐴(,)𝐵)))
25 difun2 4473 . . . . . . 7 (({𝐴, 𝐵} ∪ (𝐴(,)𝐵)) ∖ (𝐴(,)𝐵)) = ({𝐴, 𝐵} ∖ (𝐴(,)𝐵))
2624, 25eqtrdi 2780 . . . . . 6 ((𝜑𝐴𝐵) → ((𝐴[,]𝐵) ∖ (𝐴(,)𝐵)) = ({𝐴, 𝐵} ∖ (𝐴(,)𝐵)))
27 difss 4124 . . . . . 6 ({𝐴, 𝐵} ∖ (𝐴(,)𝐵)) ⊆ {𝐴, 𝐵}
2826, 27eqsstrdi 4029 . . . . 5 ((𝜑𝐴𝐵) → ((𝐴[,]𝐵) ∖ (𝐴(,)𝐵)) ⊆ {𝐴, 𝐵})
2916, 28, 4, 3ltlecasei 11321 . . . 4 (𝜑 → ((𝐴[,]𝐵) ∖ (𝐴(,)𝐵)) ⊆ {𝐴, 𝐵})
303, 4prssd 4818 . . . 4 (𝜑 → {𝐴, 𝐵} ⊆ ℝ)
31 prfi 9319 . . . . 5 {𝐴, 𝐵} ∈ Fin
32 ovolfi 25367 . . . . 5 (({𝐴, 𝐵} ∈ Fin ∧ {𝐴, 𝐵} ⊆ ℝ) → (vol*‘{𝐴, 𝐵}) = 0)
3331, 30, 32sylancr 586 . . . 4 (𝜑 → (vol*‘{𝐴, 𝐵}) = 0)
34 ovolssnul 25360 . . . 4 ((((𝐴[,]𝐵) ∖ (𝐴(,)𝐵)) ⊆ {𝐴, 𝐵} ∧ {𝐴, 𝐵} ⊆ ℝ ∧ (vol*‘{𝐴, 𝐵}) = 0) → (vol*‘((𝐴[,]𝐵) ∖ (𝐴(,)𝐵))) = 0)
3529, 30, 33, 34syl3anc 1368 . . 3 (𝜑 → (vol*‘((𝐴[,]𝐵) ∖ (𝐴(,)𝐵))) = 0)
36 itgioo.3 . . 3 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐶 ∈ ℂ)
372, 6, 35, 36itgss3 25688 . 2 (𝜑 → (((𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐶) ∈ 𝐿1 ↔ (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐶) ∈ 𝐿1) ∧ ∫(𝐴(,)𝐵)𝐶 d𝑥 = ∫(𝐴[,]𝐵)𝐶 d𝑥))
3837simprd 495 1 (𝜑 → ∫(𝐴(,)𝐵)𝐶 d𝑥 = ∫(𝐴[,]𝐵)𝐶 d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1533  wcel 2098  cdif 3938  cun 3939  wss 3941  c0 4315  {cpr 4623   class class class wbr 5139  cmpt 5222  cfv 6534  (class class class)co 7402  Fincfn 8936  cc 11105  cr 11106  0cc0 11107  *cxr 11246   < clt 11247  cle 11248  (,)cioo 13325  [,]cicc 13328  vol*covol 25335  𝐿1cibl 25490  citg 25491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-inf2 9633  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184  ax-pre-sup 11185  ax-addf 11186
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-symdif 4235  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-int 4942  df-iun 4990  df-disj 5105  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-se 5623  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-isom 6543  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-of 7664  df-ofr 7665  df-om 7850  df-1st 7969  df-2nd 7970  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-er 8700  df-map 8819  df-pm 8820  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-fi 9403  df-sup 9434  df-inf 9435  df-oi 9502  df-dju 9893  df-card 9931  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-div 11871  df-nn 12212  df-2 12274  df-3 12275  df-4 12276  df-n0 12472  df-z 12558  df-uz 12822  df-q 12932  df-rp 12976  df-xneg 13093  df-xadd 13094  df-xmul 13095  df-ioo 13329  df-ico 13331  df-icc 13332  df-fz 13486  df-fzo 13629  df-fl 13758  df-mod 13836  df-seq 13968  df-exp 14029  df-hash 14292  df-cj 15048  df-re 15049  df-im 15050  df-sqrt 15184  df-abs 15185  df-clim 15434  df-sum 15635  df-rest 17373  df-topgen 17394  df-psmet 21226  df-xmet 21227  df-met 21228  df-bl 21229  df-mopn 21230  df-top 22740  df-topon 22757  df-bases 22793  df-cmp 23235  df-ovol 25337  df-vol 25338  df-mbf 25492  df-itg1 25493  df-itg2 25494  df-ibl 25495  df-itg 25496
This theorem is referenced by:  itgpowd  25929  lcmineqlem10  41410  lcmineqlem12  41412  itgioocnicc  45239  itgiccshift  45242  itgperiod  45243  fourierdlem73  45441  fourierdlem81  45449  fourierdlem82  45450  fourierdlem111  45479
  Copyright terms: Public domain W3C validator