![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > itgioo | Structured version Visualization version GIF version |
Description: Equality of integrals on open and closed intervals. (Contributed by Mario Carneiro, 2-Sep-2014.) |
Ref | Expression |
---|---|
itgioo.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
itgioo.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
itgioo.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐶 ∈ ℂ) |
Ref | Expression |
---|---|
itgioo | ⊢ (𝜑 → ∫(𝐴(,)𝐵)𝐶 d𝑥 = ∫(𝐴[,]𝐵)𝐶 d𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ioossicc 13443 | . . . 4 ⊢ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) | |
2 | 1 | a1i 11 | . . 3 ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)) |
3 | itgioo.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
4 | itgioo.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
5 | iccssre 13439 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) | |
6 | 3, 4, 5 | syl2anc 583 | . . 3 ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℝ) |
7 | 3 | rexrd 11295 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
8 | 4 | rexrd 11295 | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
9 | icc0 13405 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴)) | |
10 | 7, 8, 9 | syl2anc 583 | . . . . . . . 8 ⊢ (𝜑 → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴)) |
11 | 10 | biimpar 477 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → (𝐴[,]𝐵) = ∅) |
12 | 11 | difeq1d 4119 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → ((𝐴[,]𝐵) ∖ (𝐴(,)𝐵)) = (∅ ∖ (𝐴(,)𝐵))) |
13 | 0dif 4402 | . . . . . . 7 ⊢ (∅ ∖ (𝐴(,)𝐵)) = ∅ | |
14 | 0ss 4397 | . . . . . . 7 ⊢ ∅ ⊆ {𝐴, 𝐵} | |
15 | 13, 14 | eqsstri 4014 | . . . . . 6 ⊢ (∅ ∖ (𝐴(,)𝐵)) ⊆ {𝐴, 𝐵} |
16 | 12, 15 | eqsstrdi 4034 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → ((𝐴[,]𝐵) ∖ (𝐴(,)𝐵)) ⊆ {𝐴, 𝐵}) |
17 | uncom 4152 | . . . . . . . . 9 ⊢ ({𝐴, 𝐵} ∪ (𝐴(,)𝐵)) = ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) | |
18 | 7 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → 𝐴 ∈ ℝ*) |
19 | 8 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → 𝐵 ∈ ℝ*) |
20 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → 𝐴 ≤ 𝐵) | |
21 | prunioo 13491 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (𝐴[,]𝐵)) | |
22 | 18, 19, 20, 21 | syl3anc 1369 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (𝐴[,]𝐵)) |
23 | 17, 22 | eqtr2id 2781 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → (𝐴[,]𝐵) = ({𝐴, 𝐵} ∪ (𝐴(,)𝐵))) |
24 | 23 | difeq1d 4119 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → ((𝐴[,]𝐵) ∖ (𝐴(,)𝐵)) = (({𝐴, 𝐵} ∪ (𝐴(,)𝐵)) ∖ (𝐴(,)𝐵))) |
25 | difun2 4481 | . . . . . . 7 ⊢ (({𝐴, 𝐵} ∪ (𝐴(,)𝐵)) ∖ (𝐴(,)𝐵)) = ({𝐴, 𝐵} ∖ (𝐴(,)𝐵)) | |
26 | 24, 25 | eqtrdi 2784 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → ((𝐴[,]𝐵) ∖ (𝐴(,)𝐵)) = ({𝐴, 𝐵} ∖ (𝐴(,)𝐵))) |
27 | difss 4130 | . . . . . 6 ⊢ ({𝐴, 𝐵} ∖ (𝐴(,)𝐵)) ⊆ {𝐴, 𝐵} | |
28 | 26, 27 | eqsstrdi 4034 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → ((𝐴[,]𝐵) ∖ (𝐴(,)𝐵)) ⊆ {𝐴, 𝐵}) |
29 | 16, 28, 4, 3 | ltlecasei 11353 | . . . 4 ⊢ (𝜑 → ((𝐴[,]𝐵) ∖ (𝐴(,)𝐵)) ⊆ {𝐴, 𝐵}) |
30 | 3, 4 | prssd 4826 | . . . 4 ⊢ (𝜑 → {𝐴, 𝐵} ⊆ ℝ) |
31 | prfi 9347 | . . . . 5 ⊢ {𝐴, 𝐵} ∈ Fin | |
32 | ovolfi 25436 | . . . . 5 ⊢ (({𝐴, 𝐵} ∈ Fin ∧ {𝐴, 𝐵} ⊆ ℝ) → (vol*‘{𝐴, 𝐵}) = 0) | |
33 | 31, 30, 32 | sylancr 586 | . . . 4 ⊢ (𝜑 → (vol*‘{𝐴, 𝐵}) = 0) |
34 | ovolssnul 25429 | . . . 4 ⊢ ((((𝐴[,]𝐵) ∖ (𝐴(,)𝐵)) ⊆ {𝐴, 𝐵} ∧ {𝐴, 𝐵} ⊆ ℝ ∧ (vol*‘{𝐴, 𝐵}) = 0) → (vol*‘((𝐴[,]𝐵) ∖ (𝐴(,)𝐵))) = 0) | |
35 | 29, 30, 33, 34 | syl3anc 1369 | . . 3 ⊢ (𝜑 → (vol*‘((𝐴[,]𝐵) ∖ (𝐴(,)𝐵))) = 0) |
36 | itgioo.3 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐶 ∈ ℂ) | |
37 | 2, 6, 35, 36 | itgss3 25757 | . 2 ⊢ (𝜑 → (((𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐶) ∈ 𝐿1 ↔ (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐶) ∈ 𝐿1) ∧ ∫(𝐴(,)𝐵)𝐶 d𝑥 = ∫(𝐴[,]𝐵)𝐶 d𝑥)) |
38 | 37 | simprd 495 | 1 ⊢ (𝜑 → ∫(𝐴(,)𝐵)𝐶 d𝑥 = ∫(𝐴[,]𝐵)𝐶 d𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∖ cdif 3944 ∪ cun 3945 ⊆ wss 3947 ∅c0 4323 {cpr 4631 class class class wbr 5148 ↦ cmpt 5231 ‘cfv 6548 (class class class)co 7420 Fincfn 8964 ℂcc 11137 ℝcr 11138 0cc0 11139 ℝ*cxr 11278 < clt 11279 ≤ cle 11280 (,)cioo 13357 [,]cicc 13360 vol*covol 25404 𝐿1cibl 25559 ∫citg 25560 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-inf2 9665 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 ax-pre-sup 11217 ax-addf 11218 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-symdif 4243 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-disj 5114 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-isom 6557 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-of 7685 df-ofr 7686 df-om 7871 df-1st 7993 df-2nd 7994 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-2o 8488 df-er 8725 df-map 8847 df-pm 8848 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fi 9435 df-sup 9466 df-inf 9467 df-oi 9534 df-dju 9925 df-card 9963 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-div 11903 df-nn 12244 df-2 12306 df-3 12307 df-4 12308 df-n0 12504 df-z 12590 df-uz 12854 df-q 12964 df-rp 13008 df-xneg 13125 df-xadd 13126 df-xmul 13127 df-ioo 13361 df-ico 13363 df-icc 13364 df-fz 13518 df-fzo 13661 df-fl 13790 df-mod 13868 df-seq 14000 df-exp 14060 df-hash 14323 df-cj 15079 df-re 15080 df-im 15081 df-sqrt 15215 df-abs 15216 df-clim 15465 df-sum 15666 df-rest 17404 df-topgen 17425 df-psmet 21271 df-xmet 21272 df-met 21273 df-bl 21274 df-mopn 21275 df-top 22809 df-topon 22826 df-bases 22862 df-cmp 23304 df-ovol 25406 df-vol 25407 df-mbf 25561 df-itg1 25562 df-itg2 25563 df-ibl 25564 df-itg 25565 |
This theorem is referenced by: itgpowd 25998 lcmineqlem10 41509 lcmineqlem12 41511 itgioocnicc 45365 itgiccshift 45368 itgperiod 45369 fourierdlem73 45567 fourierdlem81 45575 fourierdlem82 45576 fourierdlem111 45605 |
Copyright terms: Public domain | W3C validator |