| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > itgioo | Structured version Visualization version GIF version | ||
| Description: Equality of integrals on open and closed intervals. (Contributed by Mario Carneiro, 2-Sep-2014.) |
| Ref | Expression |
|---|---|
| itgioo.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| itgioo.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| itgioo.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐶 ∈ ℂ) |
| Ref | Expression |
|---|---|
| itgioo | ⊢ (𝜑 → ∫(𝐴(,)𝐵)𝐶 d𝑥 = ∫(𝐴[,]𝐵)𝐶 d𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ioossicc 13343 | . . . 4 ⊢ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)) |
| 3 | itgioo.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 4 | itgioo.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 5 | iccssre 13339 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) | |
| 6 | 3, 4, 5 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℝ) |
| 7 | 3 | rexrd 11172 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| 8 | 4 | rexrd 11172 | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| 9 | icc0 13303 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴)) | |
| 10 | 7, 8, 9 | syl2anc 584 | . . . . . . . 8 ⊢ (𝜑 → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴)) |
| 11 | 10 | biimpar 477 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → (𝐴[,]𝐵) = ∅) |
| 12 | 11 | difeq1d 4076 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → ((𝐴[,]𝐵) ∖ (𝐴(,)𝐵)) = (∅ ∖ (𝐴(,)𝐵))) |
| 13 | 0dif 4356 | . . . . . . 7 ⊢ (∅ ∖ (𝐴(,)𝐵)) = ∅ | |
| 14 | 0ss 4351 | . . . . . . 7 ⊢ ∅ ⊆ {𝐴, 𝐵} | |
| 15 | 13, 14 | eqsstri 3978 | . . . . . 6 ⊢ (∅ ∖ (𝐴(,)𝐵)) ⊆ {𝐴, 𝐵} |
| 16 | 12, 15 | eqsstrdi 3976 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → ((𝐴[,]𝐵) ∖ (𝐴(,)𝐵)) ⊆ {𝐴, 𝐵}) |
| 17 | uncom 4109 | . . . . . . . . 9 ⊢ ({𝐴, 𝐵} ∪ (𝐴(,)𝐵)) = ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) | |
| 18 | 7 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → 𝐴 ∈ ℝ*) |
| 19 | 8 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → 𝐵 ∈ ℝ*) |
| 20 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → 𝐴 ≤ 𝐵) | |
| 21 | prunioo 13391 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (𝐴[,]𝐵)) | |
| 22 | 18, 19, 20, 21 | syl3anc 1373 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (𝐴[,]𝐵)) |
| 23 | 17, 22 | eqtr2id 2781 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → (𝐴[,]𝐵) = ({𝐴, 𝐵} ∪ (𝐴(,)𝐵))) |
| 24 | 23 | difeq1d 4076 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → ((𝐴[,]𝐵) ∖ (𝐴(,)𝐵)) = (({𝐴, 𝐵} ∪ (𝐴(,)𝐵)) ∖ (𝐴(,)𝐵))) |
| 25 | difun2 4432 | . . . . . . 7 ⊢ (({𝐴, 𝐵} ∪ (𝐴(,)𝐵)) ∖ (𝐴(,)𝐵)) = ({𝐴, 𝐵} ∖ (𝐴(,)𝐵)) | |
| 26 | 24, 25 | eqtrdi 2784 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → ((𝐴[,]𝐵) ∖ (𝐴(,)𝐵)) = ({𝐴, 𝐵} ∖ (𝐴(,)𝐵))) |
| 27 | difss 4087 | . . . . . 6 ⊢ ({𝐴, 𝐵} ∖ (𝐴(,)𝐵)) ⊆ {𝐴, 𝐵} | |
| 28 | 26, 27 | eqsstrdi 3976 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → ((𝐴[,]𝐵) ∖ (𝐴(,)𝐵)) ⊆ {𝐴, 𝐵}) |
| 29 | 16, 28, 4, 3 | ltlecasei 11231 | . . . 4 ⊢ (𝜑 → ((𝐴[,]𝐵) ∖ (𝐴(,)𝐵)) ⊆ {𝐴, 𝐵}) |
| 30 | 3, 4 | prssd 4775 | . . . 4 ⊢ (𝜑 → {𝐴, 𝐵} ⊆ ℝ) |
| 31 | prfi 9218 | . . . . 5 ⊢ {𝐴, 𝐵} ∈ Fin | |
| 32 | ovolfi 25432 | . . . . 5 ⊢ (({𝐴, 𝐵} ∈ Fin ∧ {𝐴, 𝐵} ⊆ ℝ) → (vol*‘{𝐴, 𝐵}) = 0) | |
| 33 | 31, 30, 32 | sylancr 587 | . . . 4 ⊢ (𝜑 → (vol*‘{𝐴, 𝐵}) = 0) |
| 34 | ovolssnul 25425 | . . . 4 ⊢ ((((𝐴[,]𝐵) ∖ (𝐴(,)𝐵)) ⊆ {𝐴, 𝐵} ∧ {𝐴, 𝐵} ⊆ ℝ ∧ (vol*‘{𝐴, 𝐵}) = 0) → (vol*‘((𝐴[,]𝐵) ∖ (𝐴(,)𝐵))) = 0) | |
| 35 | 29, 30, 33, 34 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (vol*‘((𝐴[,]𝐵) ∖ (𝐴(,)𝐵))) = 0) |
| 36 | itgioo.3 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐶 ∈ ℂ) | |
| 37 | 2, 6, 35, 36 | itgss3 25753 | . 2 ⊢ (𝜑 → (((𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐶) ∈ 𝐿1 ↔ (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐶) ∈ 𝐿1) ∧ ∫(𝐴(,)𝐵)𝐶 d𝑥 = ∫(𝐴[,]𝐵)𝐶 d𝑥)) |
| 38 | 37 | simprd 495 | 1 ⊢ (𝜑 → ∫(𝐴(,)𝐵)𝐶 d𝑥 = ∫(𝐴[,]𝐵)𝐶 d𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∖ cdif 3896 ∪ cun 3897 ⊆ wss 3899 ∅c0 4284 {cpr 4579 class class class wbr 5095 ↦ cmpt 5176 ‘cfv 6489 (class class class)co 7355 Fincfn 8878 ℂcc 11014 ℝcr 11015 0cc0 11016 ℝ*cxr 11155 < clt 11156 ≤ cle 11157 (,)cioo 13255 [,]cicc 13258 vol*covol 25400 𝐿1cibl 25555 ∫citg 25556 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-inf2 9541 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 ax-pre-mulgt0 11093 ax-pre-sup 11094 ax-addf 11095 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-symdif 4204 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-disj 5063 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-isom 6498 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-of 7619 df-ofr 7620 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-2o 8395 df-er 8631 df-map 8761 df-pm 8762 df-en 8879 df-dom 8880 df-sdom 8881 df-fin 8882 df-fi 9305 df-sup 9336 df-inf 9337 df-oi 9406 df-dju 9804 df-card 9842 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-sub 11356 df-neg 11357 df-div 11785 df-nn 12136 df-2 12198 df-3 12199 df-4 12200 df-n0 12392 df-z 12479 df-uz 12743 df-q 12857 df-rp 12901 df-xneg 13021 df-xadd 13022 df-xmul 13023 df-ioo 13259 df-ico 13261 df-icc 13262 df-fz 13418 df-fzo 13565 df-fl 13706 df-mod 13784 df-seq 13919 df-exp 13979 df-hash 14248 df-cj 15016 df-re 15017 df-im 15018 df-sqrt 15152 df-abs 15153 df-clim 15405 df-sum 15604 df-rest 17336 df-topgen 17357 df-psmet 21293 df-xmet 21294 df-met 21295 df-bl 21296 df-mopn 21297 df-top 22819 df-topon 22836 df-bases 22871 df-cmp 23312 df-ovol 25402 df-vol 25403 df-mbf 25557 df-itg1 25558 df-itg2 25559 df-ibl 25560 df-itg 25561 |
| This theorem is referenced by: itgpowd 25994 lcmineqlem10 42141 lcmineqlem12 42143 itgioocnicc 46089 itgiccshift 46092 itgperiod 46093 fourierdlem73 46291 fourierdlem81 46299 fourierdlem82 46300 fourierdlem111 46329 |
| Copyright terms: Public domain | W3C validator |