MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgioo Structured version   Visualization version   GIF version

Theorem itgioo 25789
Description: Equality of integrals on open and closed intervals. (Contributed by Mario Carneiro, 2-Sep-2014.)
Hypotheses
Ref Expression
itgioo.1 (𝜑𝐴 ∈ ℝ)
itgioo.2 (𝜑𝐵 ∈ ℝ)
itgioo.3 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐶 ∈ ℂ)
Assertion
Ref Expression
itgioo (𝜑 → ∫(𝐴(,)𝐵)𝐶 d𝑥 = ∫(𝐴[,]𝐵)𝐶 d𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem itgioo
StepHypRef Expression
1 ioossicc 13445 . . . 4 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
21a1i 11 . . 3 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵))
3 itgioo.1 . . . 4 (𝜑𝐴 ∈ ℝ)
4 itgioo.2 . . . 4 (𝜑𝐵 ∈ ℝ)
5 iccssre 13441 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
63, 4, 5syl2anc 582 . . 3 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
73rexrd 11296 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ*)
84rexrd 11296 . . . . . . . . 9 (𝜑𝐵 ∈ ℝ*)
9 icc0 13407 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴))
107, 8, 9syl2anc 582 . . . . . . . 8 (𝜑 → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴))
1110biimpar 476 . . . . . . 7 ((𝜑𝐵 < 𝐴) → (𝐴[,]𝐵) = ∅)
1211difeq1d 4117 . . . . . 6 ((𝜑𝐵 < 𝐴) → ((𝐴[,]𝐵) ∖ (𝐴(,)𝐵)) = (∅ ∖ (𝐴(,)𝐵)))
13 0dif 4403 . . . . . . 7 (∅ ∖ (𝐴(,)𝐵)) = ∅
14 0ss 4398 . . . . . . 7 ∅ ⊆ {𝐴, 𝐵}
1513, 14eqsstri 4011 . . . . . 6 (∅ ∖ (𝐴(,)𝐵)) ⊆ {𝐴, 𝐵}
1612, 15eqsstrdi 4031 . . . . 5 ((𝜑𝐵 < 𝐴) → ((𝐴[,]𝐵) ∖ (𝐴(,)𝐵)) ⊆ {𝐴, 𝐵})
17 uncom 4150 . . . . . . . . 9 ({𝐴, 𝐵} ∪ (𝐴(,)𝐵)) = ((𝐴(,)𝐵) ∪ {𝐴, 𝐵})
187adantr 479 . . . . . . . . . 10 ((𝜑𝐴𝐵) → 𝐴 ∈ ℝ*)
198adantr 479 . . . . . . . . . 10 ((𝜑𝐴𝐵) → 𝐵 ∈ ℝ*)
20 simpr 483 . . . . . . . . . 10 ((𝜑𝐴𝐵) → 𝐴𝐵)
21 prunioo 13493 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (𝐴[,]𝐵))
2218, 19, 20, 21syl3anc 1368 . . . . . . . . 9 ((𝜑𝐴𝐵) → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (𝐴[,]𝐵))
2317, 22eqtr2id 2778 . . . . . . . 8 ((𝜑𝐴𝐵) → (𝐴[,]𝐵) = ({𝐴, 𝐵} ∪ (𝐴(,)𝐵)))
2423difeq1d 4117 . . . . . . 7 ((𝜑𝐴𝐵) → ((𝐴[,]𝐵) ∖ (𝐴(,)𝐵)) = (({𝐴, 𝐵} ∪ (𝐴(,)𝐵)) ∖ (𝐴(,)𝐵)))
25 difun2 4482 . . . . . . 7 (({𝐴, 𝐵} ∪ (𝐴(,)𝐵)) ∖ (𝐴(,)𝐵)) = ({𝐴, 𝐵} ∖ (𝐴(,)𝐵))
2624, 25eqtrdi 2781 . . . . . 6 ((𝜑𝐴𝐵) → ((𝐴[,]𝐵) ∖ (𝐴(,)𝐵)) = ({𝐴, 𝐵} ∖ (𝐴(,)𝐵)))
27 difss 4128 . . . . . 6 ({𝐴, 𝐵} ∖ (𝐴(,)𝐵)) ⊆ {𝐴, 𝐵}
2826, 27eqsstrdi 4031 . . . . 5 ((𝜑𝐴𝐵) → ((𝐴[,]𝐵) ∖ (𝐴(,)𝐵)) ⊆ {𝐴, 𝐵})
2916, 28, 4, 3ltlecasei 11354 . . . 4 (𝜑 → ((𝐴[,]𝐵) ∖ (𝐴(,)𝐵)) ⊆ {𝐴, 𝐵})
303, 4prssd 4827 . . . 4 (𝜑 → {𝐴, 𝐵} ⊆ ℝ)
31 prfi 9348 . . . . 5 {𝐴, 𝐵} ∈ Fin
32 ovolfi 25467 . . . . 5 (({𝐴, 𝐵} ∈ Fin ∧ {𝐴, 𝐵} ⊆ ℝ) → (vol*‘{𝐴, 𝐵}) = 0)
3331, 30, 32sylancr 585 . . . 4 (𝜑 → (vol*‘{𝐴, 𝐵}) = 0)
34 ovolssnul 25460 . . . 4 ((((𝐴[,]𝐵) ∖ (𝐴(,)𝐵)) ⊆ {𝐴, 𝐵} ∧ {𝐴, 𝐵} ⊆ ℝ ∧ (vol*‘{𝐴, 𝐵}) = 0) → (vol*‘((𝐴[,]𝐵) ∖ (𝐴(,)𝐵))) = 0)
3529, 30, 33, 34syl3anc 1368 . . 3 (𝜑 → (vol*‘((𝐴[,]𝐵) ∖ (𝐴(,)𝐵))) = 0)
36 itgioo.3 . . 3 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐶 ∈ ℂ)
372, 6, 35, 36itgss3 25788 . 2 (𝜑 → (((𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐶) ∈ 𝐿1 ↔ (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐶) ∈ 𝐿1) ∧ ∫(𝐴(,)𝐵)𝐶 d𝑥 = ∫(𝐴[,]𝐵)𝐶 d𝑥))
3837simprd 494 1 (𝜑 → ∫(𝐴(,)𝐵)𝐶 d𝑥 = ∫(𝐴[,]𝐵)𝐶 d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  cdif 3941  cun 3942  wss 3944  c0 4322  {cpr 4632   class class class wbr 5149  cmpt 5232  cfv 6549  (class class class)co 7419  Fincfn 8964  cc 11138  cr 11139  0cc0 11140  *cxr 11279   < clt 11280  cle 11281  (,)cioo 13359  [,]cicc 13362  vol*covol 25435  𝐿1cibl 25590  citg 25591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-inf2 9666  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-pre-sup 11218  ax-addf 11219
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-symdif 4241  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-disj 5115  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-of 7685  df-ofr 7686  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-er 8725  df-map 8847  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fi 9436  df-sup 9467  df-inf 9468  df-oi 9535  df-dju 9926  df-card 9964  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-div 11904  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-n0 12506  df-z 12592  df-uz 12856  df-q 12966  df-rp 13010  df-xneg 13127  df-xadd 13128  df-xmul 13129  df-ioo 13363  df-ico 13365  df-icc 13366  df-fz 13520  df-fzo 13663  df-fl 13793  df-mod 13871  df-seq 14003  df-exp 14063  df-hash 14326  df-cj 15082  df-re 15083  df-im 15084  df-sqrt 15218  df-abs 15219  df-clim 15468  df-sum 15669  df-rest 17407  df-topgen 17428  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-top 22840  df-topon 22857  df-bases 22893  df-cmp 23335  df-ovol 25437  df-vol 25438  df-mbf 25592  df-itg1 25593  df-itg2 25594  df-ibl 25595  df-itg 25596
This theorem is referenced by:  itgpowd  26029  lcmineqlem10  41641  lcmineqlem12  41643  itgioocnicc  45503  itgiccshift  45506  itgperiod  45507  fourierdlem73  45705  fourierdlem81  45713  fourierdlem82  45714  fourierdlem111  45743
  Copyright terms: Public domain W3C validator