MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgioo Structured version   Visualization version   GIF version

Theorem itgioo 25203
Description: Equality of integrals on open and closed intervals. (Contributed by Mario Carneiro, 2-Sep-2014.)
Hypotheses
Ref Expression
itgioo.1 (𝜑𝐴 ∈ ℝ)
itgioo.2 (𝜑𝐵 ∈ ℝ)
itgioo.3 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐶 ∈ ℂ)
Assertion
Ref Expression
itgioo (𝜑 → ∫(𝐴(,)𝐵)𝐶 d𝑥 = ∫(𝐴[,]𝐵)𝐶 d𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem itgioo
StepHypRef Expression
1 ioossicc 13359 . . . 4 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
21a1i 11 . . 3 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵))
3 itgioo.1 . . . 4 (𝜑𝐴 ∈ ℝ)
4 itgioo.2 . . . 4 (𝜑𝐵 ∈ ℝ)
5 iccssre 13355 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
63, 4, 5syl2anc 585 . . 3 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
73rexrd 11213 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ*)
84rexrd 11213 . . . . . . . . 9 (𝜑𝐵 ∈ ℝ*)
9 icc0 13321 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴))
107, 8, 9syl2anc 585 . . . . . . . 8 (𝜑 → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴))
1110biimpar 479 . . . . . . 7 ((𝜑𝐵 < 𝐴) → (𝐴[,]𝐵) = ∅)
1211difeq1d 4085 . . . . . 6 ((𝜑𝐵 < 𝐴) → ((𝐴[,]𝐵) ∖ (𝐴(,)𝐵)) = (∅ ∖ (𝐴(,)𝐵)))
13 0dif 4365 . . . . . . 7 (∅ ∖ (𝐴(,)𝐵)) = ∅
14 0ss 4360 . . . . . . 7 ∅ ⊆ {𝐴, 𝐵}
1513, 14eqsstri 3982 . . . . . 6 (∅ ∖ (𝐴(,)𝐵)) ⊆ {𝐴, 𝐵}
1612, 15eqsstrdi 4002 . . . . 5 ((𝜑𝐵 < 𝐴) → ((𝐴[,]𝐵) ∖ (𝐴(,)𝐵)) ⊆ {𝐴, 𝐵})
17 uncom 4117 . . . . . . . . 9 ({𝐴, 𝐵} ∪ (𝐴(,)𝐵)) = ((𝐴(,)𝐵) ∪ {𝐴, 𝐵})
187adantr 482 . . . . . . . . . 10 ((𝜑𝐴𝐵) → 𝐴 ∈ ℝ*)
198adantr 482 . . . . . . . . . 10 ((𝜑𝐴𝐵) → 𝐵 ∈ ℝ*)
20 simpr 486 . . . . . . . . . 10 ((𝜑𝐴𝐵) → 𝐴𝐵)
21 prunioo 13407 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (𝐴[,]𝐵))
2218, 19, 20, 21syl3anc 1372 . . . . . . . . 9 ((𝜑𝐴𝐵) → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (𝐴[,]𝐵))
2317, 22eqtr2id 2786 . . . . . . . 8 ((𝜑𝐴𝐵) → (𝐴[,]𝐵) = ({𝐴, 𝐵} ∪ (𝐴(,)𝐵)))
2423difeq1d 4085 . . . . . . 7 ((𝜑𝐴𝐵) → ((𝐴[,]𝐵) ∖ (𝐴(,)𝐵)) = (({𝐴, 𝐵} ∪ (𝐴(,)𝐵)) ∖ (𝐴(,)𝐵)))
25 difun2 4444 . . . . . . 7 (({𝐴, 𝐵} ∪ (𝐴(,)𝐵)) ∖ (𝐴(,)𝐵)) = ({𝐴, 𝐵} ∖ (𝐴(,)𝐵))
2624, 25eqtrdi 2789 . . . . . 6 ((𝜑𝐴𝐵) → ((𝐴[,]𝐵) ∖ (𝐴(,)𝐵)) = ({𝐴, 𝐵} ∖ (𝐴(,)𝐵)))
27 difss 4095 . . . . . 6 ({𝐴, 𝐵} ∖ (𝐴(,)𝐵)) ⊆ {𝐴, 𝐵}
2826, 27eqsstrdi 4002 . . . . 5 ((𝜑𝐴𝐵) → ((𝐴[,]𝐵) ∖ (𝐴(,)𝐵)) ⊆ {𝐴, 𝐵})
2916, 28, 4, 3ltlecasei 11271 . . . 4 (𝜑 → ((𝐴[,]𝐵) ∖ (𝐴(,)𝐵)) ⊆ {𝐴, 𝐵})
303, 4prssd 4786 . . . 4 (𝜑 → {𝐴, 𝐵} ⊆ ℝ)
31 prfi 9272 . . . . 5 {𝐴, 𝐵} ∈ Fin
32 ovolfi 24881 . . . . 5 (({𝐴, 𝐵} ∈ Fin ∧ {𝐴, 𝐵} ⊆ ℝ) → (vol*‘{𝐴, 𝐵}) = 0)
3331, 30, 32sylancr 588 . . . 4 (𝜑 → (vol*‘{𝐴, 𝐵}) = 0)
34 ovolssnul 24874 . . . 4 ((((𝐴[,]𝐵) ∖ (𝐴(,)𝐵)) ⊆ {𝐴, 𝐵} ∧ {𝐴, 𝐵} ⊆ ℝ ∧ (vol*‘{𝐴, 𝐵}) = 0) → (vol*‘((𝐴[,]𝐵) ∖ (𝐴(,)𝐵))) = 0)
3529, 30, 33, 34syl3anc 1372 . . 3 (𝜑 → (vol*‘((𝐴[,]𝐵) ∖ (𝐴(,)𝐵))) = 0)
36 itgioo.3 . . 3 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐶 ∈ ℂ)
372, 6, 35, 36itgss3 25202 . 2 (𝜑 → (((𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐶) ∈ 𝐿1 ↔ (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐶) ∈ 𝐿1) ∧ ∫(𝐴(,)𝐵)𝐶 d𝑥 = ∫(𝐴[,]𝐵)𝐶 d𝑥))
3837simprd 497 1 (𝜑 → ∫(𝐴(,)𝐵)𝐶 d𝑥 = ∫(𝐴[,]𝐵)𝐶 d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  cdif 3911  cun 3912  wss 3914  c0 4286  {cpr 4592   class class class wbr 5109  cmpt 5192  cfv 6500  (class class class)co 7361  Fincfn 8889  cc 11057  cr 11058  0cc0 11059  *cxr 11196   < clt 11197  cle 11198  (,)cioo 13273  [,]cicc 13276  vol*covol 24849  𝐿1cibl 25004  citg 25005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5246  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676  ax-inf2 9585  ax-cnex 11115  ax-resscn 11116  ax-1cn 11117  ax-icn 11118  ax-addcl 11119  ax-addrcl 11120  ax-mulcl 11121  ax-mulrcl 11122  ax-mulcom 11123  ax-addass 11124  ax-mulass 11125  ax-distr 11126  ax-i2m1 11127  ax-1ne0 11128  ax-1rid 11129  ax-rnegex 11130  ax-rrecex 11131  ax-cnre 11132  ax-pre-lttri 11133  ax-pre-lttrn 11134  ax-pre-ltadd 11135  ax-pre-mulgt0 11136  ax-pre-sup 11137  ax-addf 11138
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-symdif 4206  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-int 4912  df-iun 4960  df-disj 5075  df-br 5110  df-opab 5172  df-mpt 5193  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-se 5593  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-pred 6257  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-isom 6509  df-riota 7317  df-ov 7364  df-oprab 7365  df-mpo 7366  df-of 7621  df-ofr 7622  df-om 7807  df-1st 7925  df-2nd 7926  df-frecs 8216  df-wrecs 8247  df-recs 8321  df-rdg 8360  df-1o 8416  df-2o 8417  df-er 8654  df-map 8773  df-pm 8774  df-en 8890  df-dom 8891  df-sdom 8892  df-fin 8893  df-fi 9355  df-sup 9386  df-inf 9387  df-oi 9454  df-dju 9845  df-card 9883  df-pnf 11199  df-mnf 11200  df-xr 11201  df-ltxr 11202  df-le 11203  df-sub 11395  df-neg 11396  df-div 11821  df-nn 12162  df-2 12224  df-3 12225  df-4 12226  df-n0 12422  df-z 12508  df-uz 12772  df-q 12882  df-rp 12924  df-xneg 13041  df-xadd 13042  df-xmul 13043  df-ioo 13277  df-ico 13279  df-icc 13280  df-fz 13434  df-fzo 13577  df-fl 13706  df-mod 13784  df-seq 13916  df-exp 13977  df-hash 14240  df-cj 14993  df-re 14994  df-im 14995  df-sqrt 15129  df-abs 15130  df-clim 15379  df-sum 15580  df-rest 17312  df-topgen 17333  df-psmet 20811  df-xmet 20812  df-met 20813  df-bl 20814  df-mopn 20815  df-top 22266  df-topon 22283  df-bases 22319  df-cmp 22761  df-ovol 24851  df-vol 24852  df-mbf 25006  df-itg1 25007  df-itg2 25008  df-ibl 25009  df-itg 25010
This theorem is referenced by:  itgpowd  25437  lcmineqlem10  40545  lcmineqlem12  40547  itgioocnicc  44308  itgiccshift  44311  itgperiod  44312  fourierdlem73  44510  fourierdlem81  44518  fourierdlem82  44519  fourierdlem111  44548
  Copyright terms: Public domain W3C validator