Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > itgioo | Structured version Visualization version GIF version |
Description: Equality of integrals on open and closed intervals. (Contributed by Mario Carneiro, 2-Sep-2014.) |
Ref | Expression |
---|---|
itgioo.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
itgioo.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
itgioo.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐶 ∈ ℂ) |
Ref | Expression |
---|---|
itgioo | ⊢ (𝜑 → ∫(𝐴(,)𝐵)𝐶 d𝑥 = ∫(𝐴[,]𝐵)𝐶 d𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ioossicc 13275 | . . . 4 ⊢ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) | |
2 | 1 | a1i 11 | . . 3 ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)) |
3 | itgioo.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
4 | itgioo.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
5 | iccssre 13271 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) | |
6 | 3, 4, 5 | syl2anc 585 | . . 3 ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℝ) |
7 | 3 | rexrd 11135 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
8 | 4 | rexrd 11135 | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
9 | icc0 13237 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴)) | |
10 | 7, 8, 9 | syl2anc 585 | . . . . . . . 8 ⊢ (𝜑 → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴)) |
11 | 10 | biimpar 479 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → (𝐴[,]𝐵) = ∅) |
12 | 11 | difeq1d 4076 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → ((𝐴[,]𝐵) ∖ (𝐴(,)𝐵)) = (∅ ∖ (𝐴(,)𝐵))) |
13 | 0dif 4356 | . . . . . . 7 ⊢ (∅ ∖ (𝐴(,)𝐵)) = ∅ | |
14 | 0ss 4351 | . . . . . . 7 ⊢ ∅ ⊆ {𝐴, 𝐵} | |
15 | 13, 14 | eqsstri 3973 | . . . . . 6 ⊢ (∅ ∖ (𝐴(,)𝐵)) ⊆ {𝐴, 𝐵} |
16 | 12, 15 | eqsstrdi 3993 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → ((𝐴[,]𝐵) ∖ (𝐴(,)𝐵)) ⊆ {𝐴, 𝐵}) |
17 | uncom 4108 | . . . . . . . . 9 ⊢ ({𝐴, 𝐵} ∪ (𝐴(,)𝐵)) = ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) | |
18 | 7 | adantr 482 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → 𝐴 ∈ ℝ*) |
19 | 8 | adantr 482 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → 𝐵 ∈ ℝ*) |
20 | simpr 486 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → 𝐴 ≤ 𝐵) | |
21 | prunioo 13323 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (𝐴[,]𝐵)) | |
22 | 18, 19, 20, 21 | syl3anc 1371 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (𝐴[,]𝐵)) |
23 | 17, 22 | eqtr2id 2790 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → (𝐴[,]𝐵) = ({𝐴, 𝐵} ∪ (𝐴(,)𝐵))) |
24 | 23 | difeq1d 4076 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → ((𝐴[,]𝐵) ∖ (𝐴(,)𝐵)) = (({𝐴, 𝐵} ∪ (𝐴(,)𝐵)) ∖ (𝐴(,)𝐵))) |
25 | difun2 4435 | . . . . . . 7 ⊢ (({𝐴, 𝐵} ∪ (𝐴(,)𝐵)) ∖ (𝐴(,)𝐵)) = ({𝐴, 𝐵} ∖ (𝐴(,)𝐵)) | |
26 | 24, 25 | eqtrdi 2793 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → ((𝐴[,]𝐵) ∖ (𝐴(,)𝐵)) = ({𝐴, 𝐵} ∖ (𝐴(,)𝐵))) |
27 | difss 4086 | . . . . . 6 ⊢ ({𝐴, 𝐵} ∖ (𝐴(,)𝐵)) ⊆ {𝐴, 𝐵} | |
28 | 26, 27 | eqsstrdi 3993 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → ((𝐴[,]𝐵) ∖ (𝐴(,)𝐵)) ⊆ {𝐴, 𝐵}) |
29 | 16, 28, 4, 3 | ltlecasei 11193 | . . . 4 ⊢ (𝜑 → ((𝐴[,]𝐵) ∖ (𝐴(,)𝐵)) ⊆ {𝐴, 𝐵}) |
30 | 3, 4 | prssd 4777 | . . . 4 ⊢ (𝜑 → {𝐴, 𝐵} ⊆ ℝ) |
31 | prfi 9196 | . . . . 5 ⊢ {𝐴, 𝐵} ∈ Fin | |
32 | ovolfi 24768 | . . . . 5 ⊢ (({𝐴, 𝐵} ∈ Fin ∧ {𝐴, 𝐵} ⊆ ℝ) → (vol*‘{𝐴, 𝐵}) = 0) | |
33 | 31, 30, 32 | sylancr 588 | . . . 4 ⊢ (𝜑 → (vol*‘{𝐴, 𝐵}) = 0) |
34 | ovolssnul 24761 | . . . 4 ⊢ ((((𝐴[,]𝐵) ∖ (𝐴(,)𝐵)) ⊆ {𝐴, 𝐵} ∧ {𝐴, 𝐵} ⊆ ℝ ∧ (vol*‘{𝐴, 𝐵}) = 0) → (vol*‘((𝐴[,]𝐵) ∖ (𝐴(,)𝐵))) = 0) | |
35 | 29, 30, 33, 34 | syl3anc 1371 | . . 3 ⊢ (𝜑 → (vol*‘((𝐴[,]𝐵) ∖ (𝐴(,)𝐵))) = 0) |
36 | itgioo.3 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐶 ∈ ℂ) | |
37 | 2, 6, 35, 36 | itgss3 25089 | . 2 ⊢ (𝜑 → (((𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐶) ∈ 𝐿1 ↔ (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐶) ∈ 𝐿1) ∧ ∫(𝐴(,)𝐵)𝐶 d𝑥 = ∫(𝐴[,]𝐵)𝐶 d𝑥)) |
38 | 37 | simprd 497 | 1 ⊢ (𝜑 → ∫(𝐴(,)𝐵)𝐶 d𝑥 = ∫(𝐴[,]𝐵)𝐶 d𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1541 ∈ wcel 2106 ∖ cdif 3902 ∪ cun 3903 ⊆ wss 3905 ∅c0 4277 {cpr 4583 class class class wbr 5100 ↦ cmpt 5183 ‘cfv 6488 (class class class)co 7346 Fincfn 8813 ℂcc 10979 ℝcr 10980 0cc0 10981 ℝ*cxr 11118 < clt 11119 ≤ cle 11120 (,)cioo 13189 [,]cicc 13192 vol*covol 24736 𝐿1cibl 24891 ∫citg 24892 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5237 ax-sep 5251 ax-nul 5258 ax-pow 5315 ax-pr 5379 ax-un 7659 ax-inf2 9507 ax-cnex 11037 ax-resscn 11038 ax-1cn 11039 ax-icn 11040 ax-addcl 11041 ax-addrcl 11042 ax-mulcl 11043 ax-mulrcl 11044 ax-mulcom 11045 ax-addass 11046 ax-mulass 11047 ax-distr 11048 ax-i2m1 11049 ax-1ne0 11050 ax-1rid 11051 ax-rnegex 11052 ax-rrecex 11053 ax-cnre 11054 ax-pre-lttri 11055 ax-pre-lttrn 11056 ax-pre-ltadd 11057 ax-pre-mulgt0 11058 ax-pre-sup 11059 ax-addf 11060 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3351 df-reu 3352 df-rab 3406 df-v 3445 df-sbc 3735 df-csb 3851 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3924 df-symdif 4197 df-nul 4278 df-if 4482 df-pw 4557 df-sn 4582 df-pr 4584 df-op 4588 df-uni 4861 df-int 4903 df-iun 4951 df-disj 5066 df-br 5101 df-opab 5163 df-mpt 5184 df-tr 5218 df-id 5525 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5582 df-se 5583 df-we 5584 df-xp 5633 df-rel 5634 df-cnv 5635 df-co 5636 df-dm 5637 df-rn 5638 df-res 5639 df-ima 5640 df-pred 6246 df-ord 6313 df-on 6314 df-lim 6315 df-suc 6316 df-iota 6440 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-isom 6497 df-riota 7302 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7604 df-ofr 7605 df-om 7790 df-1st 7908 df-2nd 7909 df-frecs 8176 df-wrecs 8207 df-recs 8281 df-rdg 8320 df-1o 8376 df-2o 8377 df-er 8578 df-map 8697 df-pm 8698 df-en 8814 df-dom 8815 df-sdom 8816 df-fin 8817 df-fi 9277 df-sup 9308 df-inf 9309 df-oi 9376 df-dju 9767 df-card 9805 df-pnf 11121 df-mnf 11122 df-xr 11123 df-ltxr 11124 df-le 11125 df-sub 11317 df-neg 11318 df-div 11743 df-nn 12084 df-2 12146 df-3 12147 df-4 12148 df-n0 12344 df-z 12430 df-uz 12693 df-q 12799 df-rp 12841 df-xneg 12958 df-xadd 12959 df-xmul 12960 df-ioo 13193 df-ico 13195 df-icc 13196 df-fz 13350 df-fzo 13493 df-fl 13622 df-mod 13700 df-seq 13832 df-exp 13893 df-hash 14155 df-cj 14914 df-re 14915 df-im 14916 df-sqrt 15050 df-abs 15051 df-clim 15301 df-sum 15502 df-rest 17235 df-topgen 17256 df-psmet 20699 df-xmet 20700 df-met 20701 df-bl 20702 df-mopn 20703 df-top 22153 df-topon 22170 df-bases 22206 df-cmp 22648 df-ovol 24738 df-vol 24739 df-mbf 24893 df-itg1 24894 df-itg2 24895 df-ibl 24896 df-itg 24897 |
This theorem is referenced by: itgpowd 25324 lcmineqlem10 40351 lcmineqlem12 40353 itgioocnicc 43906 itgiccshift 43909 itgperiod 43910 fourierdlem73 44108 fourierdlem81 44116 fourierdlem82 44117 fourierdlem111 44146 |
Copyright terms: Public domain | W3C validator |