MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iseri Structured version   Visualization version   GIF version

Theorem iseri 8525
Description: A reflexive, symmetric, transitive relation is an equivalence relation on its domain. Inference version of iserd 8524, which avoids the need to provide a "dummy antecedent" 𝜑 if there is no natural one to choose. (Contributed by AV, 30-Apr-2021.)
Hypotheses
Ref Expression
iseri.1 Rel 𝑅
iseri.2 (𝑥𝑅𝑦𝑦𝑅𝑥)
iseri.3 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)
iseri.4 (𝑥𝐴𝑥𝑅𝑥)
Assertion
Ref Expression
iseri 𝑅 Er 𝐴
Distinct variable groups:   𝑥,𝑦,𝑧,𝑅   𝑥,𝐴
Allowed substitution hints:   𝐴(𝑦,𝑧)

Proof of Theorem iseri
StepHypRef Expression
1 iseri.1 . . . 4 Rel 𝑅
21a1i 11 . . 3 (⊤ → Rel 𝑅)
3 iseri.2 . . . 4 (𝑥𝑅𝑦𝑦𝑅𝑥)
43adantl 482 . . 3 ((⊤ ∧ 𝑥𝑅𝑦) → 𝑦𝑅𝑥)
5 iseri.3 . . . 4 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)
65adantl 482 . . 3 ((⊤ ∧ (𝑥𝑅𝑦𝑦𝑅𝑧)) → 𝑥𝑅𝑧)
7 iseri.4 . . . 4 (𝑥𝐴𝑥𝑅𝑥)
87a1i 11 . . 3 (⊤ → (𝑥𝐴𝑥𝑅𝑥))
92, 4, 6, 8iserd 8524 . 2 (⊤ → 𝑅 Er 𝐴)
109mptru 1546 1 𝑅 Er 𝐴
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wtru 1540  wcel 2106   class class class wbr 5074  Rel wrel 5594   Er wer 8495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-11 2154  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-er 8498
This theorem is referenced by:  eqer  8533  0er  8535  ecopover  8610  ener  8787  gicer  18892  hmpher  22935  phtpcer  24158  vitalilem1  24772  tgjustf  26834  erclwwlk  28387  erclwwlkn  28436
  Copyright terms: Public domain W3C validator