MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iseri Structured version   Visualization version   GIF version

Theorem iseri 8790
Description: A reflexive, symmetric, transitive relation is an equivalence relation on its domain. Inference version of iserd 8789, which avoids the need to provide a "dummy antecedent" 𝜑 if there is no natural one to choose. (Contributed by AV, 30-Apr-2021.)
Hypotheses
Ref Expression
iseri.1 Rel 𝑅
iseri.2 (𝑥𝑅𝑦𝑦𝑅𝑥)
iseri.3 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)
iseri.4 (𝑥𝐴𝑥𝑅𝑥)
Assertion
Ref Expression
iseri 𝑅 Er 𝐴
Distinct variable groups:   𝑥,𝑦,𝑧,𝑅   𝑥,𝐴
Allowed substitution hints:   𝐴(𝑦,𝑧)

Proof of Theorem iseri
StepHypRef Expression
1 iseri.1 . . . 4 Rel 𝑅
21a1i 11 . . 3 (⊤ → Rel 𝑅)
3 iseri.2 . . . 4 (𝑥𝑅𝑦𝑦𝑅𝑥)
43adantl 481 . . 3 ((⊤ ∧ 𝑥𝑅𝑦) → 𝑦𝑅𝑥)
5 iseri.3 . . . 4 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)
65adantl 481 . . 3 ((⊤ ∧ (𝑥𝑅𝑦𝑦𝑅𝑧)) → 𝑥𝑅𝑧)
7 iseri.4 . . . 4 (𝑥𝐴𝑥𝑅𝑥)
87a1i 11 . . 3 (⊤ → (𝑥𝐴𝑥𝑅𝑥))
92, 4, 6, 8iserd 8789 . 2 (⊤ → 𝑅 Er 𝐴)
109mptru 1544 1 𝑅 Er 𝐴
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wtru 1538  wcel 2108   class class class wbr 5166  Rel wrel 5705   Er wer 8760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-er 8763
This theorem is referenced by:  brinxper  8792  eqer  8799  0er  8801  ecopover  8879  ener  9061  gicer  19317  hmpher  23813  phtpcer  25046  vitalilem1  25662  tgjustf  28499  erclwwlk  30055  erclwwlkn  30104
  Copyright terms: Public domain W3C validator