![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iseri | Structured version Visualization version GIF version |
Description: A reflexive, symmetric, transitive relation is an equivalence relation on its domain. Inference version of iserd 8789, which avoids the need to provide a "dummy antecedent" 𝜑 if there is no natural one to choose. (Contributed by AV, 30-Apr-2021.) |
Ref | Expression |
---|---|
iseri.1 | ⊢ Rel 𝑅 |
iseri.2 | ⊢ (𝑥𝑅𝑦 → 𝑦𝑅𝑥) |
iseri.3 | ⊢ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) |
iseri.4 | ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥𝑅𝑥) |
Ref | Expression |
---|---|
iseri | ⊢ 𝑅 Er 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iseri.1 | . . . 4 ⊢ Rel 𝑅 | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → Rel 𝑅) |
3 | iseri.2 | . . . 4 ⊢ (𝑥𝑅𝑦 → 𝑦𝑅𝑥) | |
4 | 3 | adantl 481 | . . 3 ⊢ ((⊤ ∧ 𝑥𝑅𝑦) → 𝑦𝑅𝑥) |
5 | iseri.3 | . . . 4 ⊢ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) | |
6 | 5 | adantl 481 | . . 3 ⊢ ((⊤ ∧ (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧)) → 𝑥𝑅𝑧) |
7 | iseri.4 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥𝑅𝑥) | |
8 | 7 | a1i 11 | . . 3 ⊢ (⊤ → (𝑥 ∈ 𝐴 ↔ 𝑥𝑅𝑥)) |
9 | 2, 4, 6, 8 | iserd 8789 | . 2 ⊢ (⊤ → 𝑅 Er 𝐴) |
10 | 9 | mptru 1544 | 1 ⊢ 𝑅 Er 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ⊤wtru 1538 ∈ wcel 2108 class class class wbr 5166 Rel wrel 5705 Er wer 8760 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-er 8763 |
This theorem is referenced by: brinxper 8792 eqer 8799 0er 8801 ecopover 8879 ener 9061 gicer 19317 hmpher 23813 phtpcer 25046 vitalilem1 25662 tgjustf 28499 erclwwlk 30055 erclwwlkn 30104 |
Copyright terms: Public domain | W3C validator |