![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iseri | Structured version Visualization version GIF version |
Description: A reflexive, symmetric, transitive relation is an equivalence relation on its domain. Inference version of iserd 8725, which avoids the need to provide a "dummy antecedent" 𝜑 if there is no natural one to choose. (Contributed by AV, 30-Apr-2021.) |
Ref | Expression |
---|---|
iseri.1 | ⊢ Rel 𝑅 |
iseri.2 | ⊢ (𝑥𝑅𝑦 → 𝑦𝑅𝑥) |
iseri.3 | ⊢ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) |
iseri.4 | ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥𝑅𝑥) |
Ref | Expression |
---|---|
iseri | ⊢ 𝑅 Er 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iseri.1 | . . . 4 ⊢ Rel 𝑅 | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → Rel 𝑅) |
3 | iseri.2 | . . . 4 ⊢ (𝑥𝑅𝑦 → 𝑦𝑅𝑥) | |
4 | 3 | adantl 482 | . . 3 ⊢ ((⊤ ∧ 𝑥𝑅𝑦) → 𝑦𝑅𝑥) |
5 | iseri.3 | . . . 4 ⊢ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) | |
6 | 5 | adantl 482 | . . 3 ⊢ ((⊤ ∧ (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧)) → 𝑥𝑅𝑧) |
7 | iseri.4 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥𝑅𝑥) | |
8 | 7 | a1i 11 | . . 3 ⊢ (⊤ → (𝑥 ∈ 𝐴 ↔ 𝑥𝑅𝑥)) |
9 | 2, 4, 6, 8 | iserd 8725 | . 2 ⊢ (⊤ → 𝑅 Er 𝐴) |
10 | 9 | mptru 1548 | 1 ⊢ 𝑅 Er 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ⊤wtru 1542 ∈ wcel 2106 class class class wbr 5147 Rel wrel 5680 Er wer 8696 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-er 8699 |
This theorem is referenced by: eqer 8734 0er 8736 ecopover 8811 ener 8993 gicer 19144 hmpher 23279 phtpcer 24502 vitalilem1 25116 tgjustf 27713 erclwwlk 29265 erclwwlkn 29314 |
Copyright terms: Public domain | W3C validator |