MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iseri Structured version   Visualization version   GIF version

Theorem iseri 8649
Description: A reflexive, symmetric, transitive relation is an equivalence relation on its domain. Inference version of iserd 8648, which avoids the need to provide a "dummy antecedent" 𝜑 if there is no natural one to choose. (Contributed by AV, 30-Apr-2021.)
Hypotheses
Ref Expression
iseri.1 Rel 𝑅
iseri.2 (𝑥𝑅𝑦𝑦𝑅𝑥)
iseri.3 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)
iseri.4 (𝑥𝐴𝑥𝑅𝑥)
Assertion
Ref Expression
iseri 𝑅 Er 𝐴
Distinct variable groups:   𝑥,𝑦,𝑧,𝑅   𝑥,𝐴
Allowed substitution hints:   𝐴(𝑦,𝑧)

Proof of Theorem iseri
StepHypRef Expression
1 iseri.1 . . . 4 Rel 𝑅
21a1i 11 . . 3 (⊤ → Rel 𝑅)
3 iseri.2 . . . 4 (𝑥𝑅𝑦𝑦𝑅𝑥)
43adantl 481 . . 3 ((⊤ ∧ 𝑥𝑅𝑦) → 𝑦𝑅𝑥)
5 iseri.3 . . . 4 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)
65adantl 481 . . 3 ((⊤ ∧ (𝑥𝑅𝑦𝑦𝑅𝑧)) → 𝑥𝑅𝑧)
7 iseri.4 . . . 4 (𝑥𝐴𝑥𝑅𝑥)
87a1i 11 . . 3 (⊤ → (𝑥𝐴𝑥𝑅𝑥))
92, 4, 6, 8iserd 8648 . 2 (⊤ → 𝑅 Er 𝐴)
109mptru 1548 1 𝑅 Er 𝐴
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wtru 1542  wcel 2111   class class class wbr 5091  Rel wrel 5621   Er wer 8619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-opab 5154  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-er 8622
This theorem is referenced by:  brinxper  8651  eqer  8658  0er  8660  ecopover  8745  ener  8923  gicer  19187  hmpher  23697  phtpcer  24919  vitalilem1  25534  tgjustf  28449  erclwwlk  29998  erclwwlkn  30047
  Copyright terms: Public domain W3C validator