| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iseri | Structured version Visualization version GIF version | ||
| Description: A reflexive, symmetric, transitive relation is an equivalence relation on its domain. Inference version of iserd 8697, which avoids the need to provide a "dummy antecedent" 𝜑 if there is no natural one to choose. (Contributed by AV, 30-Apr-2021.) |
| Ref | Expression |
|---|---|
| iseri.1 | ⊢ Rel 𝑅 |
| iseri.2 | ⊢ (𝑥𝑅𝑦 → 𝑦𝑅𝑥) |
| iseri.3 | ⊢ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) |
| iseri.4 | ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥𝑅𝑥) |
| Ref | Expression |
|---|---|
| iseri | ⊢ 𝑅 Er 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iseri.1 | . . . 4 ⊢ Rel 𝑅 | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → Rel 𝑅) |
| 3 | iseri.2 | . . . 4 ⊢ (𝑥𝑅𝑦 → 𝑦𝑅𝑥) | |
| 4 | 3 | adantl 481 | . . 3 ⊢ ((⊤ ∧ 𝑥𝑅𝑦) → 𝑦𝑅𝑥) |
| 5 | iseri.3 | . . . 4 ⊢ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) | |
| 6 | 5 | adantl 481 | . . 3 ⊢ ((⊤ ∧ (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧)) → 𝑥𝑅𝑧) |
| 7 | iseri.4 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥𝑅𝑥) | |
| 8 | 7 | a1i 11 | . . 3 ⊢ (⊤ → (𝑥 ∈ 𝐴 ↔ 𝑥𝑅𝑥)) |
| 9 | 2, 4, 6, 8 | iserd 8697 | . 2 ⊢ (⊤ → 𝑅 Er 𝐴) |
| 10 | 9 | mptru 1547 | 1 ⊢ 𝑅 Er 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ⊤wtru 1541 ∈ wcel 2109 class class class wbr 5107 Rel wrel 5643 Er wer 8668 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-er 8671 |
| This theorem is referenced by: brinxper 8700 eqer 8707 0er 8709 ecopover 8794 ener 8972 gicer 19209 hmpher 23671 phtpcer 24894 vitalilem1 25509 tgjustf 28400 erclwwlk 29952 erclwwlkn 30001 |
| Copyright terms: Public domain | W3C validator |