Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0ima | Structured version Visualization version GIF version |
Description: Image under the empty relation. (Contributed by FL, 11-Jan-2007.) |
Ref | Expression |
---|---|
0ima | ⊢ (∅ “ 𝐴) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imassrn 5969 | . . 3 ⊢ (∅ “ 𝐴) ⊆ ran ∅ | |
2 | rn0 5824 | . . 3 ⊢ ran ∅ = ∅ | |
3 | 1, 2 | sseqtri 3953 | . 2 ⊢ (∅ “ 𝐴) ⊆ ∅ |
4 | 0ss 4327 | . 2 ⊢ ∅ ⊆ (∅ “ 𝐴) | |
5 | 3, 4 | eqssi 3933 | 1 ⊢ (∅ “ 𝐴) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∅c0 4253 ran crn 5581 “ cima 5583 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 |
This theorem is referenced by: csbrn 6095 nghmfval 23792 isnghm 23793 mthmval 33437 ec0 36426 0he 41279 limsup0 43125 0cnf 43308 |
Copyright terms: Public domain | W3C validator |