MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0ima Structured version   Visualization version   GIF version

Theorem 0ima 6031
Description: Image under the empty relation. (Contributed by FL, 11-Jan-2007.)
Assertion
Ref Expression
0ima (∅ “ 𝐴) = ∅

Proof of Theorem 0ima
StepHypRef Expression
1 imassrn 6024 . . 3 (∅ “ 𝐴) ⊆ ran ∅
2 rn0 5870 . . 3 ran ∅ = ∅
31, 2sseqtri 3979 . 2 (∅ “ 𝐴) ⊆ ∅
4 0ss 4349 . 2 ∅ ⊆ (∅ “ 𝐴)
53, 4eqssi 3947 1 (∅ “ 𝐴) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  c0 4282  ran crn 5620  cima 5622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-br 5094  df-opab 5156  df-xp 5625  df-cnv 5627  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632
This theorem is referenced by:  csbrn  6155  nghmfval  24638  isnghm  24639  mptiffisupp  32678  mthmval  35640  ec0  38422  0he  43900  limsup0  45817  0cnf  46000
  Copyright terms: Public domain W3C validator