MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0ima Structured version   Visualization version   GIF version

Theorem 0ima 5975
Description: Image under the empty relation. (Contributed by FL, 11-Jan-2007.)
Assertion
Ref Expression
0ima (∅ “ 𝐴) = ∅

Proof of Theorem 0ima
StepHypRef Expression
1 imassrn 5969 . . 3 (∅ “ 𝐴) ⊆ ran ∅
2 rn0 5824 . . 3 ran ∅ = ∅
31, 2sseqtri 3953 . 2 (∅ “ 𝐴) ⊆ ∅
4 0ss 4327 . 2 ∅ ⊆ (∅ “ 𝐴)
53, 4eqssi 3933 1 (∅ “ 𝐴) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  c0 4253  ran crn 5581  cima 5583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-cnv 5588  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593
This theorem is referenced by:  csbrn  6095  nghmfval  23792  isnghm  23793  mthmval  33437  ec0  36426  0he  41279  limsup0  43125  0cnf  43308
  Copyright terms: Public domain W3C validator