| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0ima | Structured version Visualization version GIF version | ||
| Description: Image under the empty relation. (Contributed by FL, 11-Jan-2007.) |
| Ref | Expression |
|---|---|
| 0ima | ⊢ (∅ “ 𝐴) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imassrn 6020 | . . 3 ⊢ (∅ “ 𝐴) ⊆ ran ∅ | |
| 2 | rn0 5866 | . . 3 ⊢ ran ∅ = ∅ | |
| 3 | 1, 2 | sseqtri 3983 | . 2 ⊢ (∅ “ 𝐴) ⊆ ∅ |
| 4 | 0ss 4350 | . 2 ⊢ ∅ ⊆ (∅ “ 𝐴) | |
| 5 | 3, 4 | eqssi 3951 | 1 ⊢ (∅ “ 𝐴) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∅c0 4283 ran crn 5617 “ cima 5619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-xp 5622 df-cnv 5624 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 |
| This theorem is referenced by: csbrn 6150 nghmfval 24635 isnghm 24636 mptiffisupp 32669 mthmval 35607 ec0 38396 0he 43814 limsup0 45731 0cnf 45914 |
| Copyright terms: Public domain | W3C validator |