MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0ima Structured version   Visualization version   GIF version

Theorem 0ima 5917
Description: Image under the empty relation. (Contributed by FL, 11-Jan-2007.)
Assertion
Ref Expression
0ima (∅ “ 𝐴) = ∅

Proof of Theorem 0ima
StepHypRef Expression
1 imassrn 5911 . . 3 (∅ “ 𝐴) ⊆ ran ∅
2 rn0 5764 . . 3 ran ∅ = ∅
31, 2sseqtri 3954 . 2 (∅ “ 𝐴) ⊆ ∅
4 0ss 4307 . 2 ∅ ⊆ (∅ “ 𝐴)
53, 4eqssi 3934 1 (∅ “ 𝐴) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1538  c0 4246  ran crn 5524  cima 5526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pr 5298
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ral 3114  df-rex 3115  df-v 3446  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-sn 4529  df-pr 4531  df-op 4535  df-br 5034  df-opab 5096  df-xp 5529  df-cnv 5531  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536
This theorem is referenced by:  csbrn  6031  nghmfval  23332  isnghm  23333  mthmval  32936  ec0  35780  0he  40480  limsup0  42333  0cnf  42516
  Copyright terms: Public domain W3C validator