Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0ima | Structured version Visualization version GIF version |
Description: Image under the empty relation. (Contributed by FL, 11-Jan-2007.) |
Ref | Expression |
---|---|
0ima | ⊢ (∅ “ 𝐴) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imassrn 5980 | . . 3 ⊢ (∅ “ 𝐴) ⊆ ran ∅ | |
2 | rn0 5835 | . . 3 ⊢ ran ∅ = ∅ | |
3 | 1, 2 | sseqtri 3957 | . 2 ⊢ (∅ “ 𝐴) ⊆ ∅ |
4 | 0ss 4330 | . 2 ⊢ ∅ ⊆ (∅ “ 𝐴) | |
5 | 3, 4 | eqssi 3937 | 1 ⊢ (∅ “ 𝐴) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∅c0 4256 ran crn 5590 “ cima 5592 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-cnv 5597 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 |
This theorem is referenced by: csbrn 6106 nghmfval 23886 isnghm 23887 mthmval 33537 ec0 36499 0he 41390 limsup0 43235 0cnf 43418 |
Copyright terms: Public domain | W3C validator |