Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  satf0n0 Structured version   Visualization version   GIF version

Theorem satf0n0 33972
Description: The value of the satisfaction predicate as function over wff codes in the empty model and the empty binary relation does not contain the empty set. (Contributed by AV, 19-Sep-2023.)
Assertion
Ref Expression
satf0n0 (𝑁 ∈ ω → ∅ ∉ ((∅ Sat ∅)‘𝑁))

Proof of Theorem satf0n0
Dummy variables 𝑖 𝑗 𝑥 𝑦 𝑢 𝑣 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6842 . . . . 5 (𝑥 = ∅ → ((∅ Sat ∅)‘𝑥) = ((∅ Sat ∅)‘∅))
21eleq2d 2823 . . . 4 (𝑥 = ∅ → (∅ ∈ ((∅ Sat ∅)‘𝑥) ↔ ∅ ∈ ((∅ Sat ∅)‘∅)))
32notbid 317 . . 3 (𝑥 = ∅ → (¬ ∅ ∈ ((∅ Sat ∅)‘𝑥) ↔ ¬ ∅ ∈ ((∅ Sat ∅)‘∅)))
4 fveq2 6842 . . . . 5 (𝑥 = 𝑦 → ((∅ Sat ∅)‘𝑥) = ((∅ Sat ∅)‘𝑦))
54eleq2d 2823 . . . 4 (𝑥 = 𝑦 → (∅ ∈ ((∅ Sat ∅)‘𝑥) ↔ ∅ ∈ ((∅ Sat ∅)‘𝑦)))
65notbid 317 . . 3 (𝑥 = 𝑦 → (¬ ∅ ∈ ((∅ Sat ∅)‘𝑥) ↔ ¬ ∅ ∈ ((∅ Sat ∅)‘𝑦)))
7 fveq2 6842 . . . . 5 (𝑥 = suc 𝑦 → ((∅ Sat ∅)‘𝑥) = ((∅ Sat ∅)‘suc 𝑦))
87eleq2d 2823 . . . 4 (𝑥 = suc 𝑦 → (∅ ∈ ((∅ Sat ∅)‘𝑥) ↔ ∅ ∈ ((∅ Sat ∅)‘suc 𝑦)))
98notbid 317 . . 3 (𝑥 = suc 𝑦 → (¬ ∅ ∈ ((∅ Sat ∅)‘𝑥) ↔ ¬ ∅ ∈ ((∅ Sat ∅)‘suc 𝑦)))
10 fveq2 6842 . . . . 5 (𝑥 = 𝑁 → ((∅ Sat ∅)‘𝑥) = ((∅ Sat ∅)‘𝑁))
1110eleq2d 2823 . . . 4 (𝑥 = 𝑁 → (∅ ∈ ((∅ Sat ∅)‘𝑥) ↔ ∅ ∈ ((∅ Sat ∅)‘𝑁)))
1211notbid 317 . . 3 (𝑥 = 𝑁 → (¬ ∅ ∈ ((∅ Sat ∅)‘𝑥) ↔ ¬ ∅ ∈ ((∅ Sat ∅)‘𝑁)))
13 0nelopab 5524 . . . 4 ¬ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))}
14 satf00 33968 . . . . 5 ((∅ Sat ∅)‘∅) = {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))}
1514eleq2i 2829 . . . 4 (∅ ∈ ((∅ Sat ∅)‘∅) ↔ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})
1613, 15mtbir 322 . . 3 ¬ ∅ ∈ ((∅ Sat ∅)‘∅)
17 simpr 485 . . . . . 6 ((𝑦 ∈ ω ∧ ¬ ∅ ∈ ((∅ Sat ∅)‘𝑦)) → ¬ ∅ ∈ ((∅ Sat ∅)‘𝑦))
18 0nelopab 5524 . . . . . 6 ¬ ∅ ∈ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}
19 ioran 982 . . . . . 6 (¬ (∅ ∈ ((∅ Sat ∅)‘𝑦) ∨ ∅ ∈ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}) ↔ (¬ ∅ ∈ ((∅ Sat ∅)‘𝑦) ∧ ¬ ∅ ∈ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))
2017, 18, 19sylanblrc 590 . . . . 5 ((𝑦 ∈ ω ∧ ¬ ∅ ∈ ((∅ Sat ∅)‘𝑦)) → ¬ (∅ ∈ ((∅ Sat ∅)‘𝑦) ∨ ∅ ∈ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))
21 eqid 2736 . . . . . . . . 9 (∅ Sat ∅) = (∅ Sat ∅)
2221satf0suc 33970 . . . . . . . 8 (𝑦 ∈ ω → ((∅ Sat ∅)‘suc 𝑦) = (((∅ Sat ∅)‘𝑦) ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))
2322adantr 481 . . . . . . 7 ((𝑦 ∈ ω ∧ ¬ ∅ ∈ ((∅ Sat ∅)‘𝑦)) → ((∅ Sat ∅)‘suc 𝑦) = (((∅ Sat ∅)‘𝑦) ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))
2423eleq2d 2823 . . . . . 6 ((𝑦 ∈ ω ∧ ¬ ∅ ∈ ((∅ Sat ∅)‘𝑦)) → (∅ ∈ ((∅ Sat ∅)‘suc 𝑦) ↔ ∅ ∈ (((∅ Sat ∅)‘𝑦) ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})))
25 elun 4108 . . . . . 6 (∅ ∈ (((∅ Sat ∅)‘𝑦) ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}) ↔ (∅ ∈ ((∅ Sat ∅)‘𝑦) ∨ ∅ ∈ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))
2624, 25bitrdi 286 . . . . 5 ((𝑦 ∈ ω ∧ ¬ ∅ ∈ ((∅ Sat ∅)‘𝑦)) → (∅ ∈ ((∅ Sat ∅)‘suc 𝑦) ↔ (∅ ∈ ((∅ Sat ∅)‘𝑦) ∨ ∅ ∈ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})))
2720, 26mtbird 324 . . . 4 ((𝑦 ∈ ω ∧ ¬ ∅ ∈ ((∅ Sat ∅)‘𝑦)) → ¬ ∅ ∈ ((∅ Sat ∅)‘suc 𝑦))
2827ex 413 . . 3 (𝑦 ∈ ω → (¬ ∅ ∈ ((∅ Sat ∅)‘𝑦) → ¬ ∅ ∈ ((∅ Sat ∅)‘suc 𝑦)))
293, 6, 9, 12, 16, 28finds 7835 . 2 (𝑁 ∈ ω → ¬ ∅ ∈ ((∅ Sat ∅)‘𝑁))
30 df-nel 3050 . 2 (∅ ∉ ((∅ Sat ∅)‘𝑁) ↔ ¬ ∅ ∈ ((∅ Sat ∅)‘𝑁))
3129, 30sylibr 233 1 (𝑁 ∈ ω → ∅ ∉ ((∅ Sat ∅)‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 845   = wceq 1541  wcel 2106  wnel 3049  wrex 3073  cun 3908  c0 4282  {copab 5167  suc csuc 6319  cfv 6496  (class class class)co 7357  ωcom 7802  1st c1st 7919  𝑔cgoe 33927  𝑔cgna 33928  𝑔cgol 33929   Sat csat 33930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-map 8767  df-goel 33934  df-sat 33937
This theorem is referenced by:  fmlafvel  33979
  Copyright terms: Public domain W3C validator