| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | fveq2 6905 | . . . . 5
⊢ (𝑥 = ∅ → ((∅ Sat
∅)‘𝑥) =
((∅ Sat ∅)‘∅)) | 
| 2 | 1 | eleq2d 2826 | . . . 4
⊢ (𝑥 = ∅ → (∅
∈ ((∅ Sat ∅)‘𝑥) ↔ ∅ ∈ ((∅ Sat
∅)‘∅))) | 
| 3 | 2 | notbid 318 | . . 3
⊢ (𝑥 = ∅ → (¬ ∅
∈ ((∅ Sat ∅)‘𝑥) ↔ ¬ ∅ ∈ ((∅ Sat
∅)‘∅))) | 
| 4 |  | fveq2 6905 | . . . . 5
⊢ (𝑥 = 𝑦 → ((∅ Sat ∅)‘𝑥) = ((∅ Sat
∅)‘𝑦)) | 
| 5 | 4 | eleq2d 2826 | . . . 4
⊢ (𝑥 = 𝑦 → (∅ ∈ ((∅ Sat
∅)‘𝑥) ↔
∅ ∈ ((∅ Sat ∅)‘𝑦))) | 
| 6 | 5 | notbid 318 | . . 3
⊢ (𝑥 = 𝑦 → (¬ ∅ ∈ ((∅ Sat
∅)‘𝑥) ↔
¬ ∅ ∈ ((∅ Sat ∅)‘𝑦))) | 
| 7 |  | fveq2 6905 | . . . . 5
⊢ (𝑥 = suc 𝑦 → ((∅ Sat ∅)‘𝑥) = ((∅ Sat
∅)‘suc 𝑦)) | 
| 8 | 7 | eleq2d 2826 | . . . 4
⊢ (𝑥 = suc 𝑦 → (∅ ∈ ((∅ Sat
∅)‘𝑥) ↔
∅ ∈ ((∅ Sat ∅)‘suc 𝑦))) | 
| 9 | 8 | notbid 318 | . . 3
⊢ (𝑥 = suc 𝑦 → (¬ ∅ ∈ ((∅ Sat
∅)‘𝑥) ↔
¬ ∅ ∈ ((∅ Sat ∅)‘suc 𝑦))) | 
| 10 |  | fveq2 6905 | . . . . 5
⊢ (𝑥 = 𝑁 → ((∅ Sat ∅)‘𝑥) = ((∅ Sat
∅)‘𝑁)) | 
| 11 | 10 | eleq2d 2826 | . . . 4
⊢ (𝑥 = 𝑁 → (∅ ∈ ((∅ Sat
∅)‘𝑥) ↔
∅ ∈ ((∅ Sat ∅)‘𝑁))) | 
| 12 | 11 | notbid 318 | . . 3
⊢ (𝑥 = 𝑁 → (¬ ∅ ∈ ((∅ Sat
∅)‘𝑥) ↔
¬ ∅ ∈ ((∅ Sat ∅)‘𝑁))) | 
| 13 |  | 0nelopab 5571 | . . . 4
⊢  ¬
∅ ∈ {〈𝑥,
𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))} | 
| 14 |  | satf00 35380 | . . . . 5
⊢ ((∅
Sat ∅)‘∅) = {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))} | 
| 15 | 14 | eleq2i 2832 | . . . 4
⊢ (∅
∈ ((∅ Sat ∅)‘∅) ↔ ∅ ∈ {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))}) | 
| 16 | 13, 15 | mtbir 323 | . . 3
⊢  ¬
∅ ∈ ((∅ Sat ∅)‘∅) | 
| 17 |  | simpr 484 | . . . . . 6
⊢ ((𝑦 ∈ ω ∧ ¬
∅ ∈ ((∅ Sat ∅)‘𝑦)) → ¬ ∅ ∈ ((∅ Sat
∅)‘𝑦)) | 
| 18 |  | 0nelopab 5571 | . . . . . 6
⊢  ¬
∅ ∈ {〈𝑥,
𝑧〉 ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat
∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))} | 
| 19 |  | ioran 985 | . . . . . 6
⊢ (¬
(∅ ∈ ((∅ Sat ∅)‘𝑦) ∨ ∅ ∈ {〈𝑥, 𝑧〉 ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))}) ↔ (¬ ∅ ∈ ((∅
Sat ∅)‘𝑦) ∧
¬ ∅ ∈ {〈𝑥, 𝑧〉 ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))})) | 
| 20 | 17, 18, 19 | sylanblrc 590 | . . . . 5
⊢ ((𝑦 ∈ ω ∧ ¬
∅ ∈ ((∅ Sat ∅)‘𝑦)) → ¬ (∅ ∈ ((∅ Sat
∅)‘𝑦) ∨
∅ ∈ {〈𝑥,
𝑧〉 ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat
∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))})) | 
| 21 |  | eqid 2736 | . . . . . . . . 9
⊢ (∅
Sat ∅) = (∅ Sat ∅) | 
| 22 | 21 | satf0suc 35382 | . . . . . . . 8
⊢ (𝑦 ∈ ω → ((∅
Sat ∅)‘suc 𝑦) =
(((∅ Sat ∅)‘𝑦) ∪ {〈𝑥, 𝑧〉 ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))})) | 
| 23 | 22 | adantr 480 | . . . . . . 7
⊢ ((𝑦 ∈ ω ∧ ¬
∅ ∈ ((∅ Sat ∅)‘𝑦)) → ((∅ Sat ∅)‘suc
𝑦) = (((∅ Sat
∅)‘𝑦) ∪
{〈𝑥, 𝑧〉 ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat
∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))})) | 
| 24 | 23 | eleq2d 2826 | . . . . . 6
⊢ ((𝑦 ∈ ω ∧ ¬
∅ ∈ ((∅ Sat ∅)‘𝑦)) → (∅ ∈ ((∅ Sat
∅)‘suc 𝑦)
↔ ∅ ∈ (((∅ Sat ∅)‘𝑦) ∪ {〈𝑥, 𝑧〉 ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))}))) | 
| 25 |  | elun 4152 | . . . . . 6
⊢ (∅
∈ (((∅ Sat ∅)‘𝑦) ∪ {〈𝑥, 𝑧〉 ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))}) ↔ (∅ ∈ ((∅ Sat
∅)‘𝑦) ∨
∅ ∈ {〈𝑥,
𝑧〉 ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat
∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))})) | 
| 26 | 24, 25 | bitrdi 287 | . . . . 5
⊢ ((𝑦 ∈ ω ∧ ¬
∅ ∈ ((∅ Sat ∅)‘𝑦)) → (∅ ∈ ((∅ Sat
∅)‘suc 𝑦)
↔ (∅ ∈ ((∅ Sat ∅)‘𝑦) ∨ ∅ ∈ {〈𝑥, 𝑧〉 ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))}))) | 
| 27 | 20, 26 | mtbird 325 | . . . 4
⊢ ((𝑦 ∈ ω ∧ ¬
∅ ∈ ((∅ Sat ∅)‘𝑦)) → ¬ ∅ ∈ ((∅ Sat
∅)‘suc 𝑦)) | 
| 28 | 27 | ex 412 | . . 3
⊢ (𝑦 ∈ ω → (¬
∅ ∈ ((∅ Sat ∅)‘𝑦) → ¬ ∅ ∈ ((∅ Sat
∅)‘suc 𝑦))) | 
| 29 | 3, 6, 9, 12, 16, 28 | finds 7919 | . 2
⊢ (𝑁 ∈ ω → ¬
∅ ∈ ((∅ Sat ∅)‘𝑁)) | 
| 30 |  | df-nel 3046 | . 2
⊢ (∅
∉ ((∅ Sat ∅)‘𝑁) ↔ ¬ ∅ ∈ ((∅ Sat
∅)‘𝑁)) | 
| 31 | 29, 30 | sylibr 234 | 1
⊢ (𝑁 ∈ ω → ∅
∉ ((∅ Sat ∅)‘𝑁)) |