Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  satf0n0 Structured version   Visualization version   GIF version

Theorem satf0n0 35338
Description: The value of the satisfaction predicate as function over wff codes in the empty model and the empty binary relation does not contain the empty set. (Contributed by AV, 19-Sep-2023.)
Assertion
Ref Expression
satf0n0 (𝑁 ∈ ω → ∅ ∉ ((∅ Sat ∅)‘𝑁))

Proof of Theorem satf0n0
Dummy variables 𝑖 𝑗 𝑥 𝑦 𝑢 𝑣 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6840 . . . . 5 (𝑥 = ∅ → ((∅ Sat ∅)‘𝑥) = ((∅ Sat ∅)‘∅))
21eleq2d 2814 . . . 4 (𝑥 = ∅ → (∅ ∈ ((∅ Sat ∅)‘𝑥) ↔ ∅ ∈ ((∅ Sat ∅)‘∅)))
32notbid 318 . . 3 (𝑥 = ∅ → (¬ ∅ ∈ ((∅ Sat ∅)‘𝑥) ↔ ¬ ∅ ∈ ((∅ Sat ∅)‘∅)))
4 fveq2 6840 . . . . 5 (𝑥 = 𝑦 → ((∅ Sat ∅)‘𝑥) = ((∅ Sat ∅)‘𝑦))
54eleq2d 2814 . . . 4 (𝑥 = 𝑦 → (∅ ∈ ((∅ Sat ∅)‘𝑥) ↔ ∅ ∈ ((∅ Sat ∅)‘𝑦)))
65notbid 318 . . 3 (𝑥 = 𝑦 → (¬ ∅ ∈ ((∅ Sat ∅)‘𝑥) ↔ ¬ ∅ ∈ ((∅ Sat ∅)‘𝑦)))
7 fveq2 6840 . . . . 5 (𝑥 = suc 𝑦 → ((∅ Sat ∅)‘𝑥) = ((∅ Sat ∅)‘suc 𝑦))
87eleq2d 2814 . . . 4 (𝑥 = suc 𝑦 → (∅ ∈ ((∅ Sat ∅)‘𝑥) ↔ ∅ ∈ ((∅ Sat ∅)‘suc 𝑦)))
98notbid 318 . . 3 (𝑥 = suc 𝑦 → (¬ ∅ ∈ ((∅ Sat ∅)‘𝑥) ↔ ¬ ∅ ∈ ((∅ Sat ∅)‘suc 𝑦)))
10 fveq2 6840 . . . . 5 (𝑥 = 𝑁 → ((∅ Sat ∅)‘𝑥) = ((∅ Sat ∅)‘𝑁))
1110eleq2d 2814 . . . 4 (𝑥 = 𝑁 → (∅ ∈ ((∅ Sat ∅)‘𝑥) ↔ ∅ ∈ ((∅ Sat ∅)‘𝑁)))
1211notbid 318 . . 3 (𝑥 = 𝑁 → (¬ ∅ ∈ ((∅ Sat ∅)‘𝑥) ↔ ¬ ∅ ∈ ((∅ Sat ∅)‘𝑁)))
13 0nelopab 5520 . . . 4 ¬ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))}
14 satf00 35334 . . . . 5 ((∅ Sat ∅)‘∅) = {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))}
1514eleq2i 2820 . . . 4 (∅ ∈ ((∅ Sat ∅)‘∅) ↔ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})
1613, 15mtbir 323 . . 3 ¬ ∅ ∈ ((∅ Sat ∅)‘∅)
17 simpr 484 . . . . . 6 ((𝑦 ∈ ω ∧ ¬ ∅ ∈ ((∅ Sat ∅)‘𝑦)) → ¬ ∅ ∈ ((∅ Sat ∅)‘𝑦))
18 0nelopab 5520 . . . . . 6 ¬ ∅ ∈ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}
19 ioran 985 . . . . . 6 (¬ (∅ ∈ ((∅ Sat ∅)‘𝑦) ∨ ∅ ∈ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}) ↔ (¬ ∅ ∈ ((∅ Sat ∅)‘𝑦) ∧ ¬ ∅ ∈ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))
2017, 18, 19sylanblrc 590 . . . . 5 ((𝑦 ∈ ω ∧ ¬ ∅ ∈ ((∅ Sat ∅)‘𝑦)) → ¬ (∅ ∈ ((∅ Sat ∅)‘𝑦) ∨ ∅ ∈ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))
21 eqid 2729 . . . . . . . . 9 (∅ Sat ∅) = (∅ Sat ∅)
2221satf0suc 35336 . . . . . . . 8 (𝑦 ∈ ω → ((∅ Sat ∅)‘suc 𝑦) = (((∅ Sat ∅)‘𝑦) ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))
2322adantr 480 . . . . . . 7 ((𝑦 ∈ ω ∧ ¬ ∅ ∈ ((∅ Sat ∅)‘𝑦)) → ((∅ Sat ∅)‘suc 𝑦) = (((∅ Sat ∅)‘𝑦) ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))
2423eleq2d 2814 . . . . . 6 ((𝑦 ∈ ω ∧ ¬ ∅ ∈ ((∅ Sat ∅)‘𝑦)) → (∅ ∈ ((∅ Sat ∅)‘suc 𝑦) ↔ ∅ ∈ (((∅ Sat ∅)‘𝑦) ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})))
25 elun 4112 . . . . . 6 (∅ ∈ (((∅ Sat ∅)‘𝑦) ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}) ↔ (∅ ∈ ((∅ Sat ∅)‘𝑦) ∨ ∅ ∈ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))
2624, 25bitrdi 287 . . . . 5 ((𝑦 ∈ ω ∧ ¬ ∅ ∈ ((∅ Sat ∅)‘𝑦)) → (∅ ∈ ((∅ Sat ∅)‘suc 𝑦) ↔ (∅ ∈ ((∅ Sat ∅)‘𝑦) ∨ ∅ ∈ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})))
2720, 26mtbird 325 . . . 4 ((𝑦 ∈ ω ∧ ¬ ∅ ∈ ((∅ Sat ∅)‘𝑦)) → ¬ ∅ ∈ ((∅ Sat ∅)‘suc 𝑦))
2827ex 412 . . 3 (𝑦 ∈ ω → (¬ ∅ ∈ ((∅ Sat ∅)‘𝑦) → ¬ ∅ ∈ ((∅ Sat ∅)‘suc 𝑦)))
293, 6, 9, 12, 16, 28finds 7852 . 2 (𝑁 ∈ ω → ¬ ∅ ∈ ((∅ Sat ∅)‘𝑁))
30 df-nel 3030 . 2 (∅ ∉ ((∅ Sat ∅)‘𝑁) ↔ ¬ ∅ ∈ ((∅ Sat ∅)‘𝑁))
3129, 30sylibr 234 1 (𝑁 ∈ ω → ∅ ∉ ((∅ Sat ∅)‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wnel 3029  wrex 3053  cun 3909  c0 4292  {copab 5164  suc csuc 6322  cfv 6499  (class class class)co 7369  ωcom 7822  1st c1st 7945  𝑔cgoe 35293  𝑔cgna 35294  𝑔cgol 35295   Sat csat 35296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-map 8778  df-goel 35300  df-sat 35303
This theorem is referenced by:  fmlafvel  35345
  Copyright terms: Public domain W3C validator