Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  satf0n0 Structured version   Visualization version   GIF version

Theorem satf0n0 32625
Description: The value of the satisfaction predicate as function over wff codes in the empty model and the empty binary relation does not contain the empty set. (Contributed by AV, 19-Sep-2023.)
Assertion
Ref Expression
satf0n0 (𝑁 ∈ ω → ∅ ∉ ((∅ Sat ∅)‘𝑁))

Proof of Theorem satf0n0
Dummy variables 𝑖 𝑗 𝑥 𝑦 𝑢 𝑣 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6670 . . . . 5 (𝑥 = ∅ → ((∅ Sat ∅)‘𝑥) = ((∅ Sat ∅)‘∅))
21eleq2d 2898 . . . 4 (𝑥 = ∅ → (∅ ∈ ((∅ Sat ∅)‘𝑥) ↔ ∅ ∈ ((∅ Sat ∅)‘∅)))
32notbid 320 . . 3 (𝑥 = ∅ → (¬ ∅ ∈ ((∅ Sat ∅)‘𝑥) ↔ ¬ ∅ ∈ ((∅ Sat ∅)‘∅)))
4 fveq2 6670 . . . . 5 (𝑥 = 𝑦 → ((∅ Sat ∅)‘𝑥) = ((∅ Sat ∅)‘𝑦))
54eleq2d 2898 . . . 4 (𝑥 = 𝑦 → (∅ ∈ ((∅ Sat ∅)‘𝑥) ↔ ∅ ∈ ((∅ Sat ∅)‘𝑦)))
65notbid 320 . . 3 (𝑥 = 𝑦 → (¬ ∅ ∈ ((∅ Sat ∅)‘𝑥) ↔ ¬ ∅ ∈ ((∅ Sat ∅)‘𝑦)))
7 fveq2 6670 . . . . 5 (𝑥 = suc 𝑦 → ((∅ Sat ∅)‘𝑥) = ((∅ Sat ∅)‘suc 𝑦))
87eleq2d 2898 . . . 4 (𝑥 = suc 𝑦 → (∅ ∈ ((∅ Sat ∅)‘𝑥) ↔ ∅ ∈ ((∅ Sat ∅)‘suc 𝑦)))
98notbid 320 . . 3 (𝑥 = suc 𝑦 → (¬ ∅ ∈ ((∅ Sat ∅)‘𝑥) ↔ ¬ ∅ ∈ ((∅ Sat ∅)‘suc 𝑦)))
10 fveq2 6670 . . . . 5 (𝑥 = 𝑁 → ((∅ Sat ∅)‘𝑥) = ((∅ Sat ∅)‘𝑁))
1110eleq2d 2898 . . . 4 (𝑥 = 𝑁 → (∅ ∈ ((∅ Sat ∅)‘𝑥) ↔ ∅ ∈ ((∅ Sat ∅)‘𝑁)))
1211notbid 320 . . 3 (𝑥 = 𝑁 → (¬ ∅ ∈ ((∅ Sat ∅)‘𝑥) ↔ ¬ ∅ ∈ ((∅ Sat ∅)‘𝑁)))
13 0nelopab 5452 . . . 4 ¬ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))}
14 satf00 32621 . . . . 5 ((∅ Sat ∅)‘∅) = {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))}
1514eleq2i 2904 . . . 4 (∅ ∈ ((∅ Sat ∅)‘∅) ↔ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})
1613, 15mtbir 325 . . 3 ¬ ∅ ∈ ((∅ Sat ∅)‘∅)
17 simpr 487 . . . . . 6 ((𝑦 ∈ ω ∧ ¬ ∅ ∈ ((∅ Sat ∅)‘𝑦)) → ¬ ∅ ∈ ((∅ Sat ∅)‘𝑦))
18 0nelopab 5452 . . . . . 6 ¬ ∅ ∈ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}
19 ioran 980 . . . . . 6 (¬ (∅ ∈ ((∅ Sat ∅)‘𝑦) ∨ ∅ ∈ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}) ↔ (¬ ∅ ∈ ((∅ Sat ∅)‘𝑦) ∧ ¬ ∅ ∈ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))
2017, 18, 19sylanblrc 592 . . . . 5 ((𝑦 ∈ ω ∧ ¬ ∅ ∈ ((∅ Sat ∅)‘𝑦)) → ¬ (∅ ∈ ((∅ Sat ∅)‘𝑦) ∨ ∅ ∈ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))
21 eqid 2821 . . . . . . . . 9 (∅ Sat ∅) = (∅ Sat ∅)
2221satf0suc 32623 . . . . . . . 8 (𝑦 ∈ ω → ((∅ Sat ∅)‘suc 𝑦) = (((∅ Sat ∅)‘𝑦) ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))
2322adantr 483 . . . . . . 7 ((𝑦 ∈ ω ∧ ¬ ∅ ∈ ((∅ Sat ∅)‘𝑦)) → ((∅ Sat ∅)‘suc 𝑦) = (((∅ Sat ∅)‘𝑦) ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))
2423eleq2d 2898 . . . . . 6 ((𝑦 ∈ ω ∧ ¬ ∅ ∈ ((∅ Sat ∅)‘𝑦)) → (∅ ∈ ((∅ Sat ∅)‘suc 𝑦) ↔ ∅ ∈ (((∅ Sat ∅)‘𝑦) ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})))
25 elun 4125 . . . . . 6 (∅ ∈ (((∅ Sat ∅)‘𝑦) ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}) ↔ (∅ ∈ ((∅ Sat ∅)‘𝑦) ∨ ∅ ∈ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))
2624, 25syl6bb 289 . . . . 5 ((𝑦 ∈ ω ∧ ¬ ∅ ∈ ((∅ Sat ∅)‘𝑦)) → (∅ ∈ ((∅ Sat ∅)‘suc 𝑦) ↔ (∅ ∈ ((∅ Sat ∅)‘𝑦) ∨ ∅ ∈ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})))
2720, 26mtbird 327 . . . 4 ((𝑦 ∈ ω ∧ ¬ ∅ ∈ ((∅ Sat ∅)‘𝑦)) → ¬ ∅ ∈ ((∅ Sat ∅)‘suc 𝑦))
2827ex 415 . . 3 (𝑦 ∈ ω → (¬ ∅ ∈ ((∅ Sat ∅)‘𝑦) → ¬ ∅ ∈ ((∅ Sat ∅)‘suc 𝑦)))
293, 6, 9, 12, 16, 28finds 7608 . 2 (𝑁 ∈ ω → ¬ ∅ ∈ ((∅ Sat ∅)‘𝑁))
30 df-nel 3124 . 2 (∅ ∉ ((∅ Sat ∅)‘𝑁) ↔ ¬ ∅ ∈ ((∅ Sat ∅)‘𝑁))
3129, 30sylibr 236 1 (𝑁 ∈ ω → ∅ ∉ ((∅ Sat ∅)‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  wo 843   = wceq 1537  wcel 2114  wnel 3123  wrex 3139  cun 3934  c0 4291  {copab 5128  suc csuc 6193  cfv 6355  (class class class)co 7156  ωcom 7580  1st c1st 7687  𝑔cgoe 32580  𝑔cgna 32581  𝑔cgol 32582   Sat csat 32583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-map 8408  df-goel 32587  df-sat 32590
This theorem is referenced by:  fmlafvel  32632
  Copyright terms: Public domain W3C validator