Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  satf0n0 Structured version   Visualization version   GIF version

Theorem satf0n0 35365
Description: The value of the satisfaction predicate as function over wff codes in the empty model and the empty binary relation does not contain the empty set. (Contributed by AV, 19-Sep-2023.)
Assertion
Ref Expression
satf0n0 (𝑁 ∈ ω → ∅ ∉ ((∅ Sat ∅)‘𝑁))

Proof of Theorem satf0n0
Dummy variables 𝑖 𝑗 𝑥 𝑦 𝑢 𝑣 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6858 . . . . 5 (𝑥 = ∅ → ((∅ Sat ∅)‘𝑥) = ((∅ Sat ∅)‘∅))
21eleq2d 2814 . . . 4 (𝑥 = ∅ → (∅ ∈ ((∅ Sat ∅)‘𝑥) ↔ ∅ ∈ ((∅ Sat ∅)‘∅)))
32notbid 318 . . 3 (𝑥 = ∅ → (¬ ∅ ∈ ((∅ Sat ∅)‘𝑥) ↔ ¬ ∅ ∈ ((∅ Sat ∅)‘∅)))
4 fveq2 6858 . . . . 5 (𝑥 = 𝑦 → ((∅ Sat ∅)‘𝑥) = ((∅ Sat ∅)‘𝑦))
54eleq2d 2814 . . . 4 (𝑥 = 𝑦 → (∅ ∈ ((∅ Sat ∅)‘𝑥) ↔ ∅ ∈ ((∅ Sat ∅)‘𝑦)))
65notbid 318 . . 3 (𝑥 = 𝑦 → (¬ ∅ ∈ ((∅ Sat ∅)‘𝑥) ↔ ¬ ∅ ∈ ((∅ Sat ∅)‘𝑦)))
7 fveq2 6858 . . . . 5 (𝑥 = suc 𝑦 → ((∅ Sat ∅)‘𝑥) = ((∅ Sat ∅)‘suc 𝑦))
87eleq2d 2814 . . . 4 (𝑥 = suc 𝑦 → (∅ ∈ ((∅ Sat ∅)‘𝑥) ↔ ∅ ∈ ((∅ Sat ∅)‘suc 𝑦)))
98notbid 318 . . 3 (𝑥 = suc 𝑦 → (¬ ∅ ∈ ((∅ Sat ∅)‘𝑥) ↔ ¬ ∅ ∈ ((∅ Sat ∅)‘suc 𝑦)))
10 fveq2 6858 . . . . 5 (𝑥 = 𝑁 → ((∅ Sat ∅)‘𝑥) = ((∅ Sat ∅)‘𝑁))
1110eleq2d 2814 . . . 4 (𝑥 = 𝑁 → (∅ ∈ ((∅ Sat ∅)‘𝑥) ↔ ∅ ∈ ((∅ Sat ∅)‘𝑁)))
1211notbid 318 . . 3 (𝑥 = 𝑁 → (¬ ∅ ∈ ((∅ Sat ∅)‘𝑥) ↔ ¬ ∅ ∈ ((∅ Sat ∅)‘𝑁)))
13 0nelopab 5527 . . . 4 ¬ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))}
14 satf00 35361 . . . . 5 ((∅ Sat ∅)‘∅) = {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))}
1514eleq2i 2820 . . . 4 (∅ ∈ ((∅ Sat ∅)‘∅) ↔ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})
1613, 15mtbir 323 . . 3 ¬ ∅ ∈ ((∅ Sat ∅)‘∅)
17 simpr 484 . . . . . 6 ((𝑦 ∈ ω ∧ ¬ ∅ ∈ ((∅ Sat ∅)‘𝑦)) → ¬ ∅ ∈ ((∅ Sat ∅)‘𝑦))
18 0nelopab 5527 . . . . . 6 ¬ ∅ ∈ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}
19 ioran 985 . . . . . 6 (¬ (∅ ∈ ((∅ Sat ∅)‘𝑦) ∨ ∅ ∈ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}) ↔ (¬ ∅ ∈ ((∅ Sat ∅)‘𝑦) ∧ ¬ ∅ ∈ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))
2017, 18, 19sylanblrc 590 . . . . 5 ((𝑦 ∈ ω ∧ ¬ ∅ ∈ ((∅ Sat ∅)‘𝑦)) → ¬ (∅ ∈ ((∅ Sat ∅)‘𝑦) ∨ ∅ ∈ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))
21 eqid 2729 . . . . . . . . 9 (∅ Sat ∅) = (∅ Sat ∅)
2221satf0suc 35363 . . . . . . . 8 (𝑦 ∈ ω → ((∅ Sat ∅)‘suc 𝑦) = (((∅ Sat ∅)‘𝑦) ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))
2322adantr 480 . . . . . . 7 ((𝑦 ∈ ω ∧ ¬ ∅ ∈ ((∅ Sat ∅)‘𝑦)) → ((∅ Sat ∅)‘suc 𝑦) = (((∅ Sat ∅)‘𝑦) ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))
2423eleq2d 2814 . . . . . 6 ((𝑦 ∈ ω ∧ ¬ ∅ ∈ ((∅ Sat ∅)‘𝑦)) → (∅ ∈ ((∅ Sat ∅)‘suc 𝑦) ↔ ∅ ∈ (((∅ Sat ∅)‘𝑦) ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})))
25 elun 4116 . . . . . 6 (∅ ∈ (((∅ Sat ∅)‘𝑦) ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}) ↔ (∅ ∈ ((∅ Sat ∅)‘𝑦) ∨ ∅ ∈ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))
2624, 25bitrdi 287 . . . . 5 ((𝑦 ∈ ω ∧ ¬ ∅ ∈ ((∅ Sat ∅)‘𝑦)) → (∅ ∈ ((∅ Sat ∅)‘suc 𝑦) ↔ (∅ ∈ ((∅ Sat ∅)‘𝑦) ∨ ∅ ∈ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})))
2720, 26mtbird 325 . . . 4 ((𝑦 ∈ ω ∧ ¬ ∅ ∈ ((∅ Sat ∅)‘𝑦)) → ¬ ∅ ∈ ((∅ Sat ∅)‘suc 𝑦))
2827ex 412 . . 3 (𝑦 ∈ ω → (¬ ∅ ∈ ((∅ Sat ∅)‘𝑦) → ¬ ∅ ∈ ((∅ Sat ∅)‘suc 𝑦)))
293, 6, 9, 12, 16, 28finds 7872 . 2 (𝑁 ∈ ω → ¬ ∅ ∈ ((∅ Sat ∅)‘𝑁))
30 df-nel 3030 . 2 (∅ ∉ ((∅ Sat ∅)‘𝑁) ↔ ¬ ∅ ∈ ((∅ Sat ∅)‘𝑁))
3129, 30sylibr 234 1 (𝑁 ∈ ω → ∅ ∉ ((∅ Sat ∅)‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wnel 3029  wrex 3053  cun 3912  c0 4296  {copab 5169  suc csuc 6334  cfv 6511  (class class class)co 7387  ωcom 7842  1st c1st 7966  𝑔cgoe 35320  𝑔cgna 35321  𝑔cgol 35322   Sat csat 35323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-map 8801  df-goel 35327  df-sat 35330
This theorem is referenced by:  fmlafvel  35372
  Copyright terms: Public domain W3C validator