Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0nelopabOLD | Structured version Visualization version GIF version |
Description: Obsolete version of 0nelopab 5480 as of 3-Oct-2024. (Contributed by Alexander van der Vekens, 5-Nov-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
0nelopabOLD | ⊢ ¬ ∅ ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elopab 5440 | . . 3 ⊢ (∅ ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∃𝑥∃𝑦(∅ = 〈𝑥, 𝑦〉 ∧ 𝜑)) | |
2 | nfopab1 5144 | . . . . . 6 ⊢ Ⅎ𝑥{〈𝑥, 𝑦〉 ∣ 𝜑} | |
3 | 2 | nfel2 2925 | . . . . 5 ⊢ Ⅎ𝑥∅ ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} |
4 | 3 | nfn 1860 | . . . 4 ⊢ Ⅎ𝑥 ¬ ∅ ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} |
5 | nfopab2 5145 | . . . . . . 7 ⊢ Ⅎ𝑦{〈𝑥, 𝑦〉 ∣ 𝜑} | |
6 | 5 | nfel2 2925 | . . . . . 6 ⊢ Ⅎ𝑦∅ ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} |
7 | 6 | nfn 1860 | . . . . 5 ⊢ Ⅎ𝑦 ¬ ∅ ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} |
8 | vex 3436 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
9 | vex 3436 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
10 | 8, 9 | opnzi 5389 | . . . . . . 7 ⊢ 〈𝑥, 𝑦〉 ≠ ∅ |
11 | nesym 3000 | . . . . . . . 8 ⊢ (〈𝑥, 𝑦〉 ≠ ∅ ↔ ¬ ∅ = 〈𝑥, 𝑦〉) | |
12 | pm2.21 123 | . . . . . . . 8 ⊢ (¬ ∅ = 〈𝑥, 𝑦〉 → (∅ = 〈𝑥, 𝑦〉 → ¬ ∅ ∈ {〈𝑥, 𝑦〉 ∣ 𝜑})) | |
13 | 11, 12 | sylbi 216 | . . . . . . 7 ⊢ (〈𝑥, 𝑦〉 ≠ ∅ → (∅ = 〈𝑥, 𝑦〉 → ¬ ∅ ∈ {〈𝑥, 𝑦〉 ∣ 𝜑})) |
14 | 10, 13 | ax-mp 5 | . . . . . 6 ⊢ (∅ = 〈𝑥, 𝑦〉 → ¬ ∅ ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) |
15 | 14 | adantr 481 | . . . . 5 ⊢ ((∅ = 〈𝑥, 𝑦〉 ∧ 𝜑) → ¬ ∅ ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) |
16 | 7, 15 | exlimi 2210 | . . . 4 ⊢ (∃𝑦(∅ = 〈𝑥, 𝑦〉 ∧ 𝜑) → ¬ ∅ ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) |
17 | 4, 16 | exlimi 2210 | . . 3 ⊢ (∃𝑥∃𝑦(∅ = 〈𝑥, 𝑦〉 ∧ 𝜑) → ¬ ∅ ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) |
18 | 1, 17 | sylbi 216 | . 2 ⊢ (∅ ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} → ¬ ∅ ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) |
19 | id 22 | . 2 ⊢ (¬ ∅ ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} → ¬ ∅ ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) | |
20 | 18, 19 | pm2.61i 182 | 1 ⊢ ¬ ∅ ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1539 ∃wex 1782 ∈ wcel 2106 ≠ wne 2943 ∅c0 4256 〈cop 4567 {copab 5136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-v 3434 df-dif 3890 df-un 3892 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-opab 5137 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |