![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0nelopabOLD | Structured version Visualization version GIF version |
Description: Obsolete version of 0nelopab 5563 as of 3-Oct-2024. (Contributed by Alexander van der Vekens, 5-Nov-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
0nelopabOLD | ⊢ ¬ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elopab 5523 | . . 3 ⊢ (∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥∃𝑦(∅ = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) | |
2 | nfopab1 5212 | . . . . . 6 ⊢ Ⅎ𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑} | |
3 | 2 | nfel2 2916 | . . . . 5 ⊢ Ⅎ𝑥∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} |
4 | 3 | nfn 1853 | . . . 4 ⊢ Ⅎ𝑥 ¬ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} |
5 | nfopab2 5213 | . . . . . . 7 ⊢ Ⅎ𝑦{⟨𝑥, 𝑦⟩ ∣ 𝜑} | |
6 | 5 | nfel2 2916 | . . . . . 6 ⊢ Ⅎ𝑦∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} |
7 | 6 | nfn 1853 | . . . . 5 ⊢ Ⅎ𝑦 ¬ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} |
8 | vex 3473 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
9 | vex 3473 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
10 | 8, 9 | opnzi 5470 | . . . . . . 7 ⊢ ⟨𝑥, 𝑦⟩ ≠ ∅ |
11 | nesym 2992 | . . . . . . . 8 ⊢ (⟨𝑥, 𝑦⟩ ≠ ∅ ↔ ¬ ∅ = ⟨𝑥, 𝑦⟩) | |
12 | pm2.21 123 | . . . . . . . 8 ⊢ (¬ ∅ = ⟨𝑥, 𝑦⟩ → (∅ = ⟨𝑥, 𝑦⟩ → ¬ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑})) | |
13 | 11, 12 | sylbi 216 | . . . . . . 7 ⊢ (⟨𝑥, 𝑦⟩ ≠ ∅ → (∅ = ⟨𝑥, 𝑦⟩ → ¬ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑})) |
14 | 10, 13 | ax-mp 5 | . . . . . 6 ⊢ (∅ = ⟨𝑥, 𝑦⟩ → ¬ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}) |
15 | 14 | adantr 480 | . . . . 5 ⊢ ((∅ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → ¬ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}) |
16 | 7, 15 | exlimi 2203 | . . . 4 ⊢ (∃𝑦(∅ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → ¬ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}) |
17 | 4, 16 | exlimi 2203 | . . 3 ⊢ (∃𝑥∃𝑦(∅ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → ¬ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}) |
18 | 1, 17 | sylbi 216 | . 2 ⊢ (∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} → ¬ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}) |
19 | id 22 | . 2 ⊢ (¬ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} → ¬ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}) | |
20 | 18, 19 | pm2.61i 182 | 1 ⊢ ¬ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1534 ∃wex 1774 ∈ wcel 2099 ≠ wne 2935 ∅c0 4318 ⟨cop 4630 {copab 5204 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-opab 5205 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |