| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0top | Structured version Visualization version GIF version | ||
| Description: The singleton of the empty set is the only topology possible for an empty underlying set. (Contributed by NM, 9-Sep-2006.) |
| Ref | Expression |
|---|---|
| 0top | ⊢ (𝐽 ∈ Top → (∪ 𝐽 = ∅ ↔ 𝐽 = {∅})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | olc 868 | . . 3 ⊢ (𝐽 = {∅} → (𝐽 = ∅ ∨ 𝐽 = {∅})) | |
| 2 | 0opn 22819 | . . . . . 6 ⊢ (𝐽 ∈ Top → ∅ ∈ 𝐽) | |
| 3 | n0i 4287 | . . . . . 6 ⊢ (∅ ∈ 𝐽 → ¬ 𝐽 = ∅) | |
| 4 | 2, 3 | syl 17 | . . . . 5 ⊢ (𝐽 ∈ Top → ¬ 𝐽 = ∅) |
| 5 | 4 | pm2.21d 121 | . . . 4 ⊢ (𝐽 ∈ Top → (𝐽 = ∅ → 𝐽 = {∅})) |
| 6 | idd 24 | . . . 4 ⊢ (𝐽 ∈ Top → (𝐽 = {∅} → 𝐽 = {∅})) | |
| 7 | 5, 6 | jaod 859 | . . 3 ⊢ (𝐽 ∈ Top → ((𝐽 = ∅ ∨ 𝐽 = {∅}) → 𝐽 = {∅})) |
| 8 | 1, 7 | impbid2 226 | . 2 ⊢ (𝐽 ∈ Top → (𝐽 = {∅} ↔ (𝐽 = ∅ ∨ 𝐽 = {∅}))) |
| 9 | uni0b 4882 | . . 3 ⊢ (∪ 𝐽 = ∅ ↔ 𝐽 ⊆ {∅}) | |
| 10 | sssn 4775 | . . 3 ⊢ (𝐽 ⊆ {∅} ↔ (𝐽 = ∅ ∨ 𝐽 = {∅})) | |
| 11 | 9, 10 | bitr2i 276 | . 2 ⊢ ((𝐽 = ∅ ∨ 𝐽 = {∅}) ↔ ∪ 𝐽 = ∅) |
| 12 | 8, 11 | bitr2di 288 | 1 ⊢ (𝐽 ∈ Top → (∪ 𝐽 = ∅ ↔ 𝐽 = {∅})) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∨ wo 847 = wceq 1541 ∈ wcel 2111 ⊆ wss 3897 ∅c0 4280 {csn 4573 ∪ cuni 4856 Topctop 22808 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-11 2160 ax-ext 2703 ax-sep 5232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-in 3904 df-ss 3914 df-nul 4281 df-pw 4549 df-sn 4574 df-uni 4857 df-top 22809 |
| This theorem is referenced by: locfinref 33854 |
| Copyright terms: Public domain | W3C validator |