MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0top Structured version   Visualization version   GIF version

Theorem 0top 22240
Description: The singleton of the empty set is the only topology possible for an empty underlying set. (Contributed by NM, 9-Sep-2006.)
Assertion
Ref Expression
0top (𝐽 ∈ Top → ( 𝐽 = ∅ ↔ 𝐽 = {∅}))

Proof of Theorem 0top
StepHypRef Expression
1 olc 865 . . 3 (𝐽 = {∅} → (𝐽 = ∅ ∨ 𝐽 = {∅}))
2 0opn 22160 . . . . . 6 (𝐽 ∈ Top → ∅ ∈ 𝐽)
3 n0i 4281 . . . . . 6 (∅ ∈ 𝐽 → ¬ 𝐽 = ∅)
42, 3syl 17 . . . . 5 (𝐽 ∈ Top → ¬ 𝐽 = ∅)
54pm2.21d 121 . . . 4 (𝐽 ∈ Top → (𝐽 = ∅ → 𝐽 = {∅}))
6 idd 24 . . . 4 (𝐽 ∈ Top → (𝐽 = {∅} → 𝐽 = {∅}))
75, 6jaod 856 . . 3 (𝐽 ∈ Top → ((𝐽 = ∅ ∨ 𝐽 = {∅}) → 𝐽 = {∅}))
81, 7impbid2 225 . 2 (𝐽 ∈ Top → (𝐽 = {∅} ↔ (𝐽 = ∅ ∨ 𝐽 = {∅})))
9 uni0b 4882 . . 3 ( 𝐽 = ∅ ↔ 𝐽 ⊆ {∅})
10 sssn 4774 . . 3 (𝐽 ⊆ {∅} ↔ (𝐽 = ∅ ∨ 𝐽 = {∅}))
119, 10bitr2i 275 . 2 ((𝐽 = ∅ ∨ 𝐽 = {∅}) ↔ 𝐽 = ∅)
128, 11bitr2di 287 1 (𝐽 ∈ Top → ( 𝐽 = ∅ ↔ 𝐽 = {∅}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wo 844   = wceq 1540  wcel 2105  wss 3898  c0 4270  {csn 4574   cuni 4853  Topctop 22149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-11 2153  ax-ext 2707  ax-sep 5244
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-dif 3901  df-in 3905  df-ss 3915  df-nul 4271  df-pw 4550  df-sn 4575  df-uni 4854  df-top 22150
This theorem is referenced by:  locfinref  32089
  Copyright terms: Public domain W3C validator