![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0top | Structured version Visualization version GIF version |
Description: The singleton of the empty set is the only topology possible for an empty underlying set. (Contributed by NM, 9-Sep-2006.) |
Ref | Expression |
---|---|
0top | ⊢ (𝐽 ∈ Top → (∪ 𝐽 = ∅ ↔ 𝐽 = {∅})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | olc 867 | . . 3 ⊢ (𝐽 = {∅} → (𝐽 = ∅ ∨ 𝐽 = {∅})) | |
2 | 0opn 22931 | . . . . . 6 ⊢ (𝐽 ∈ Top → ∅ ∈ 𝐽) | |
3 | n0i 4363 | . . . . . 6 ⊢ (∅ ∈ 𝐽 → ¬ 𝐽 = ∅) | |
4 | 2, 3 | syl 17 | . . . . 5 ⊢ (𝐽 ∈ Top → ¬ 𝐽 = ∅) |
5 | 4 | pm2.21d 121 | . . . 4 ⊢ (𝐽 ∈ Top → (𝐽 = ∅ → 𝐽 = {∅})) |
6 | idd 24 | . . . 4 ⊢ (𝐽 ∈ Top → (𝐽 = {∅} → 𝐽 = {∅})) | |
7 | 5, 6 | jaod 858 | . . 3 ⊢ (𝐽 ∈ Top → ((𝐽 = ∅ ∨ 𝐽 = {∅}) → 𝐽 = {∅})) |
8 | 1, 7 | impbid2 226 | . 2 ⊢ (𝐽 ∈ Top → (𝐽 = {∅} ↔ (𝐽 = ∅ ∨ 𝐽 = {∅}))) |
9 | uni0b 4957 | . . 3 ⊢ (∪ 𝐽 = ∅ ↔ 𝐽 ⊆ {∅}) | |
10 | sssn 4851 | . . 3 ⊢ (𝐽 ⊆ {∅} ↔ (𝐽 = ∅ ∨ 𝐽 = {∅})) | |
11 | 9, 10 | bitr2i 276 | . 2 ⊢ ((𝐽 = ∅ ∨ 𝐽 = {∅}) ↔ ∪ 𝐽 = ∅) |
12 | 8, 11 | bitr2di 288 | 1 ⊢ (𝐽 ∈ Top → (∪ 𝐽 = ∅ ↔ 𝐽 = {∅})) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∨ wo 846 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 ∅c0 4352 {csn 4648 ∪ cuni 4931 Topctop 22920 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-11 2158 ax-ext 2711 ax-sep 5317 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-in 3983 df-ss 3993 df-nul 4353 df-pw 4624 df-sn 4649 df-uni 4932 df-top 22921 |
This theorem is referenced by: locfinref 33787 |
Copyright terms: Public domain | W3C validator |