![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > en1top | Structured version Visualization version GIF version |
Description: {∅} is the only topology with one element. (Contributed by FL, 18-Aug-2008.) |
Ref | Expression |
---|---|
en1top | ⊢ (𝐽 ∈ Top → (𝐽 ≈ 1o ↔ 𝐽 = {∅})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0opn 22406 | . . 3 ⊢ (𝐽 ∈ Top → ∅ ∈ 𝐽) | |
2 | en1eqsn 9274 | . . . 4 ⊢ ((∅ ∈ 𝐽 ∧ 𝐽 ≈ 1o) → 𝐽 = {∅}) | |
3 | 2 | ex 414 | . . 3 ⊢ (∅ ∈ 𝐽 → (𝐽 ≈ 1o → 𝐽 = {∅})) |
4 | 1, 3 | syl 17 | . 2 ⊢ (𝐽 ∈ Top → (𝐽 ≈ 1o → 𝐽 = {∅})) |
5 | id 22 | . . 3 ⊢ (𝐽 = {∅} → 𝐽 = {∅}) | |
6 | 0ex 5308 | . . . 4 ⊢ ∅ ∈ V | |
7 | 6 | ensn1 9017 | . . 3 ⊢ {∅} ≈ 1o |
8 | 5, 7 | eqbrtrdi 5188 | . 2 ⊢ (𝐽 = {∅} → 𝐽 ≈ 1o) |
9 | 4, 8 | impbid1 224 | 1 ⊢ (𝐽 ∈ Top → (𝐽 ≈ 1o ↔ 𝐽 = {∅})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1542 ∈ wcel 2107 ∅c0 4323 {csn 4629 class class class wbr 5149 1oc1o 8459 ≈ cen 8936 Topctop 22395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-1o 8466 df-en 8940 df-top 22396 |
This theorem is referenced by: hmph0 23299 |
Copyright terms: Public domain | W3C validator |