MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en1top Structured version   Visualization version   GIF version

Theorem en1top 21586
Description: {∅} is the only topology with one element. (Contributed by FL, 18-Aug-2008.)
Assertion
Ref Expression
en1top (𝐽 ∈ Top → (𝐽 ≈ 1o𝐽 = {∅}))

Proof of Theorem en1top
StepHypRef Expression
1 0opn 21506 . . 3 (𝐽 ∈ Top → ∅ ∈ 𝐽)
2 en1eqsn 8742 . . . 4 ((∅ ∈ 𝐽𝐽 ≈ 1o) → 𝐽 = {∅})
32ex 415 . . 3 (∅ ∈ 𝐽 → (𝐽 ≈ 1o𝐽 = {∅}))
41, 3syl 17 . 2 (𝐽 ∈ Top → (𝐽 ≈ 1o𝐽 = {∅}))
5 id 22 . . 3 (𝐽 = {∅} → 𝐽 = {∅})
6 0ex 5203 . . . 4 ∅ ∈ V
76ensn1 8567 . . 3 {∅} ≈ 1o
85, 7eqbrtrdi 5097 . 2 (𝐽 = {∅} → 𝐽 ≈ 1o)
94, 8impbid1 227 1 (𝐽 ∈ Top → (𝐽 ≈ 1o𝐽 = {∅}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208   = wceq 1533  wcel 2110  c0 4290  {csn 4560   class class class wbr 5058  1oc1o 8089  cen 8500  Topctop 21495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-br 5059  df-opab 5121  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-om 7575  df-1o 8096  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-top 21496
This theorem is referenced by:  hmph0  22397
  Copyright terms: Public domain W3C validator