MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgtop11 Structured version   Visualization version   GIF version

Theorem tgtop11 22484
Description: The topology generation function is one-to-one when applied to completed topologies. (Contributed by NM, 18-Jul-2006.)
Assertion
Ref Expression
tgtop11 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ (topGen‘𝐽) = (topGen‘𝐾)) → 𝐽 = 𝐾)

Proof of Theorem tgtop11
StepHypRef Expression
1 tgtop 22475 . . 3 (𝐽 ∈ Top → (topGen‘𝐽) = 𝐽)
2 tgtop 22475 . . 3 (𝐾 ∈ Top → (topGen‘𝐾) = 𝐾)
31, 2eqeqan12d 2746 . 2 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → ((topGen‘𝐽) = (topGen‘𝐾) ↔ 𝐽 = 𝐾))
43biimp3a 1469 1 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ (topGen‘𝐽) = (topGen‘𝐾)) → 𝐽 = 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1541  wcel 2106  cfv 6543  topGenctg 17382  Topctop 22394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-topgen 17388  df-top 22395
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator