MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmgaplem6 Structured version   Visualization version   GIF version

Theorem prmgaplem6 17034
Description: Lemma for prmgap 17037: for each positive integer there is a greater prime closest to this integer, i.e. there is a greater prime and no other prime is between this prime and the integer. (Contributed by AV, 10-Aug-2020.)
Assertion
Ref Expression
prmgaplem6 (𝑁 ∈ ℕ → ∃𝑝 ∈ ℙ (𝑁 < 𝑝 ∧ ∀𝑧 ∈ ((𝑁 + 1)..^𝑝)𝑧 ∉ ℙ))
Distinct variable group:   𝑁,𝑝,𝑧

Proof of Theorem prmgaplem6
Dummy variables 𝑛 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prmunb 16892 . 2 (𝑁 ∈ ℕ → ∃𝑛 ∈ ℙ 𝑁 < 𝑛)
2 eqid 2730 . . . . 5 {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)} = {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)}
32prmgaplem4 17032 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) → ∃𝑝 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)}∀𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)}𝑝𝑧)
4 breq2 5114 . . . . . . . . 9 (𝑞 = 𝑝 → (𝑁 < 𝑞𝑁 < 𝑝))
5 breq1 5113 . . . . . . . . 9 (𝑞 = 𝑝 → (𝑞𝑛𝑝𝑛))
64, 5anbi12d 632 . . . . . . . 8 (𝑞 = 𝑝 → ((𝑁 < 𝑞𝑞𝑛) ↔ (𝑁 < 𝑝𝑝𝑛)))
76elrab 3662 . . . . . . 7 (𝑝 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)} ↔ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))
8 simplrl 776 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛))) ∧ ∀𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)}𝑝𝑧) → 𝑝 ∈ ℙ)
9 simprrl 780 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛))) → 𝑁 < 𝑝)
109adantr 480 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛))) ∧ ∀𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)}𝑝𝑧) → 𝑁 < 𝑝)
11 breq2 5114 . . . . . . . . . . . . . . . . . 18 (𝑞 = 𝑧 → (𝑁 < 𝑞𝑁 < 𝑧))
12 breq1 5113 . . . . . . . . . . . . . . . . . 18 (𝑞 = 𝑧 → (𝑞𝑛𝑧𝑛))
1311, 12anbi12d 632 . . . . . . . . . . . . . . . . 17 (𝑞 = 𝑧 → ((𝑁 < 𝑞𝑞𝑛) ↔ (𝑁 < 𝑧𝑧𝑛)))
14 simpll 766 . . . . . . . . . . . . . . . . 17 (((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) ∧ 𝑧 ∈ ((𝑁 + 1)..^𝑝)) → 𝑧 ∈ ℙ)
15 elfzo2 13630 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ ((𝑁 + 1)..^𝑝) ↔ (𝑧 ∈ (ℤ‘(𝑁 + 1)) ∧ 𝑝 ∈ ℤ ∧ 𝑧 < 𝑝))
16 eluz2 12806 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ (ℤ‘(𝑁 + 1)) ↔ ((𝑁 + 1) ∈ ℤ ∧ 𝑧 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑧))
17 nnz 12557 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
18 prmz 16652 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑧 ∈ ℙ → 𝑧 ∈ ℤ)
19 zltp1le 12590 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (𝑁 < 𝑧 ↔ (𝑁 + 1) ≤ 𝑧))
2017, 18, 19syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℙ) → (𝑁 < 𝑧 ↔ (𝑁 + 1) ≤ 𝑧))
2120exbiri 810 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑁 ∈ ℕ → (𝑧 ∈ ℙ → ((𝑁 + 1) ≤ 𝑧𝑁 < 𝑧)))
22213ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) → (𝑧 ∈ ℙ → ((𝑁 + 1) ≤ 𝑧𝑁 < 𝑧)))
2322adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛))) → (𝑧 ∈ ℙ → ((𝑁 + 1) ≤ 𝑧𝑁 < 𝑧)))
2423impcom 407 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) → ((𝑁 + 1) ≤ 𝑧𝑁 < 𝑧))
2524com12 32 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑁 + 1) ≤ 𝑧 → ((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) → 𝑁 < 𝑧))
2625adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑁 + 1) ≤ 𝑧𝑝 ∈ ℤ) → ((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) → 𝑁 < 𝑧))
2726adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑁 + 1) ≤ 𝑧𝑝 ∈ ℤ) ∧ 𝑧 < 𝑝) → ((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) → 𝑁 < 𝑧))
2827imp 406 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑁 + 1) ≤ 𝑧𝑝 ∈ ℤ) ∧ 𝑧 < 𝑝) ∧ (𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛))))) → 𝑁 < 𝑧)
29 prmnn 16651 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑧 ∈ ℙ → 𝑧 ∈ ℕ)
3029nnred 12208 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑧 ∈ ℙ → 𝑧 ∈ ℝ)
3130ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑛 ∈ ℙ ∧ (𝑧 ∈ ℙ ∧ 𝑝 ∈ ℙ)) → 𝑧 ∈ ℝ)
32 prmnn 16651 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
3332nnred 12208 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑝 ∈ ℙ → 𝑝 ∈ ℝ)
3433adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑧 ∈ ℙ ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℝ)
3534adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑛 ∈ ℙ ∧ (𝑧 ∈ ℙ ∧ 𝑝 ∈ ℙ)) → 𝑝 ∈ ℝ)
36 prmnn 16651 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑛 ∈ ℙ → 𝑛 ∈ ℕ)
3736nnred 12208 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑛 ∈ ℙ → 𝑛 ∈ ℝ)
3837adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑛 ∈ ℙ ∧ (𝑧 ∈ ℙ ∧ 𝑝 ∈ ℙ)) → 𝑛 ∈ ℝ)
39 ltleletr 11274 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑧 ∈ ℝ ∧ 𝑝 ∈ ℝ ∧ 𝑛 ∈ ℝ) → ((𝑧 < 𝑝𝑝𝑛) → 𝑧𝑛))
4031, 35, 38, 39syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑛 ∈ ℙ ∧ (𝑧 ∈ ℙ ∧ 𝑝 ∈ ℙ)) → ((𝑧 < 𝑝𝑝𝑛) → 𝑧𝑛))
4140exp4b 430 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑛 ∈ ℙ → ((𝑧 ∈ ℙ ∧ 𝑝 ∈ ℙ) → (𝑧 < 𝑝 → (𝑝𝑛𝑧𝑛))))
42413ad2ant2 1134 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) → ((𝑧 ∈ ℙ ∧ 𝑝 ∈ ℙ) → (𝑧 < 𝑝 → (𝑝𝑛𝑧𝑛))))
4342expdcom 414 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑧 ∈ ℙ → (𝑝 ∈ ℙ → ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) → (𝑧 < 𝑝 → (𝑝𝑛𝑧𝑛)))))
4443com45 97 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑧 ∈ ℙ → (𝑝 ∈ ℙ → ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) → (𝑝𝑛 → (𝑧 < 𝑝𝑧𝑛)))))
4544com14 96 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑝𝑛 → (𝑝 ∈ ℙ → ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) → (𝑧 ∈ ℙ → (𝑧 < 𝑝𝑧𝑛)))))
4645adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑁 < 𝑝𝑝𝑛) → (𝑝 ∈ ℙ → ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) → (𝑧 ∈ ℙ → (𝑧 < 𝑝𝑧𝑛)))))
4746impcom 407 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)) → ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) → (𝑧 ∈ ℙ → (𝑧 < 𝑝𝑧𝑛))))
4847impcom 407 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛))) → (𝑧 ∈ ℙ → (𝑧 < 𝑝𝑧𝑛)))
4948impcom 407 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) → (𝑧 < 𝑝𝑧𝑛))
5049adantld 490 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) → ((((𝑁 + 1) ≤ 𝑧𝑝 ∈ ℤ) ∧ 𝑧 < 𝑝) → 𝑧𝑛))
5150impcom 407 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑁 + 1) ≤ 𝑧𝑝 ∈ ℤ) ∧ 𝑧 < 𝑝) ∧ (𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛))))) → 𝑧𝑛)
5228, 51jca 511 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑁 + 1) ≤ 𝑧𝑝 ∈ ℤ) ∧ 𝑧 < 𝑝) ∧ (𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛))))) → (𝑁 < 𝑧𝑧𝑛))
5352exp41 434 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 + 1) ≤ 𝑧 → (𝑝 ∈ ℤ → (𝑧 < 𝑝 → ((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) → (𝑁 < 𝑧𝑧𝑛)))))
54533ad2ant3 1135 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 + 1) ∈ ℤ ∧ 𝑧 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑧) → (𝑝 ∈ ℤ → (𝑧 < 𝑝 → ((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) → (𝑁 < 𝑧𝑧𝑛)))))
5516, 54sylbi 217 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ (ℤ‘(𝑁 + 1)) → (𝑝 ∈ ℤ → (𝑧 < 𝑝 → ((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) → (𝑁 < 𝑧𝑧𝑛)))))
56553imp 1110 . . . . . . . . . . . . . . . . . . 19 ((𝑧 ∈ (ℤ‘(𝑁 + 1)) ∧ 𝑝 ∈ ℤ ∧ 𝑧 < 𝑝) → ((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) → (𝑁 < 𝑧𝑧𝑛)))
5715, 56sylbi 217 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ ((𝑁 + 1)..^𝑝) → ((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) → (𝑁 < 𝑧𝑧𝑛)))
5857impcom 407 . . . . . . . . . . . . . . . . 17 (((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) ∧ 𝑧 ∈ ((𝑁 + 1)..^𝑝)) → (𝑁 < 𝑧𝑧𝑛))
5913, 14, 58elrabd 3664 . . . . . . . . . . . . . . . 16 (((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) ∧ 𝑧 ∈ ((𝑁 + 1)..^𝑝)) → 𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)})
60 elfzolt2 13636 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ((𝑁 + 1)..^𝑝) → 𝑧 < 𝑝)
6133ad2antrl 728 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛))) → 𝑝 ∈ ℝ)
62 ltnle 11260 . . . . . . . . . . . . . . . . . . . . 21 ((𝑧 ∈ ℝ ∧ 𝑝 ∈ ℝ) → (𝑧 < 𝑝 ↔ ¬ 𝑝𝑧))
6362biimpd 229 . . . . . . . . . . . . . . . . . . . 20 ((𝑧 ∈ ℝ ∧ 𝑝 ∈ ℝ) → (𝑧 < 𝑝 → ¬ 𝑝𝑧))
6430, 61, 63syl2an 596 . . . . . . . . . . . . . . . . . . 19 ((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) → (𝑧 < 𝑝 → ¬ 𝑝𝑧))
6564imp 406 . . . . . . . . . . . . . . . . . 18 (((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) ∧ 𝑧 < 𝑝) → ¬ 𝑝𝑧)
6665pm2.21d 121 . . . . . . . . . . . . . . . . 17 (((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) ∧ 𝑧 < 𝑝) → (𝑝𝑧𝑧 ∉ ℙ))
6760, 66sylan2 593 . . . . . . . . . . . . . . . 16 (((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) ∧ 𝑧 ∈ ((𝑁 + 1)..^𝑝)) → (𝑝𝑧𝑧 ∉ ℙ))
6859, 67embantd 59 . . . . . . . . . . . . . . 15 (((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) ∧ 𝑧 ∈ ((𝑁 + 1)..^𝑝)) → ((𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)} → 𝑝𝑧) → 𝑧 ∉ ℙ))
6968ex 412 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) → (𝑧 ∈ ((𝑁 + 1)..^𝑝) → ((𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)} → 𝑝𝑧) → 𝑧 ∉ ℙ)))
7069com23 86 . . . . . . . . . . . . 13 ((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) → ((𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)} → 𝑝𝑧) → (𝑧 ∈ ((𝑁 + 1)..^𝑝) → 𝑧 ∉ ℙ)))
7170ex 412 . . . . . . . . . . . 12 (𝑧 ∈ ℙ → (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛))) → ((𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)} → 𝑝𝑧) → (𝑧 ∈ ((𝑁 + 1)..^𝑝) → 𝑧 ∉ ℙ))))
72 df-nel 3031 . . . . . . . . . . . . 13 (𝑧 ∉ ℙ ↔ ¬ 𝑧 ∈ ℙ)
73 2a1 28 . . . . . . . . . . . . . 14 (𝑧 ∉ ℙ → ((𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)} → 𝑝𝑧) → (𝑧 ∈ ((𝑁 + 1)..^𝑝) → 𝑧 ∉ ℙ)))
7473a1d 25 . . . . . . . . . . . . 13 (𝑧 ∉ ℙ → (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛))) → ((𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)} → 𝑝𝑧) → (𝑧 ∈ ((𝑁 + 1)..^𝑝) → 𝑧 ∉ ℙ))))
7572, 74sylbir 235 . . . . . . . . . . . 12 𝑧 ∈ ℙ → (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛))) → ((𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)} → 𝑝𝑧) → (𝑧 ∈ ((𝑁 + 1)..^𝑝) → 𝑧 ∉ ℙ))))
7671, 75pm2.61i 182 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛))) → ((𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)} → 𝑝𝑧) → (𝑧 ∈ ((𝑁 + 1)..^𝑝) → 𝑧 ∉ ℙ)))
7776ralimdv2 3143 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛))) → (∀𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)}𝑝𝑧 → ∀𝑧 ∈ ((𝑁 + 1)..^𝑝)𝑧 ∉ ℙ))
7877imp 406 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛))) ∧ ∀𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)}𝑝𝑧) → ∀𝑧 ∈ ((𝑁 + 1)..^𝑝)𝑧 ∉ ℙ)
798, 10, 78jca32 515 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛))) ∧ ∀𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)}𝑝𝑧) → (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝 ∧ ∀𝑧 ∈ ((𝑁 + 1)..^𝑝)𝑧 ∉ ℙ)))
8079exp31 419 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) → ((𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)) → (∀𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)}𝑝𝑧 → (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝 ∧ ∀𝑧 ∈ ((𝑁 + 1)..^𝑝)𝑧 ∉ ℙ)))))
817, 80biimtrid 242 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) → (𝑝 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)} → (∀𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)}𝑝𝑧 → (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝 ∧ ∀𝑧 ∈ ((𝑁 + 1)..^𝑝)𝑧 ∉ ℙ)))))
8281impd 410 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) → ((𝑝 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)} ∧ ∀𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)}𝑝𝑧) → (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝 ∧ ∀𝑧 ∈ ((𝑁 + 1)..^𝑝)𝑧 ∉ ℙ))))
8382reximdv2 3144 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) → (∃𝑝 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)}∀𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)}𝑝𝑧 → ∃𝑝 ∈ ℙ (𝑁 < 𝑝 ∧ ∀𝑧 ∈ ((𝑁 + 1)..^𝑝)𝑧 ∉ ℙ)))
843, 83mpd 15 . . 3 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) → ∃𝑝 ∈ ℙ (𝑁 < 𝑝 ∧ ∀𝑧 ∈ ((𝑁 + 1)..^𝑝)𝑧 ∉ ℙ))
8584rexlimdv3a 3139 . 2 (𝑁 ∈ ℕ → (∃𝑛 ∈ ℙ 𝑁 < 𝑛 → ∃𝑝 ∈ ℙ (𝑁 < 𝑝 ∧ ∀𝑧 ∈ ((𝑁 + 1)..^𝑝)𝑧 ∉ ℙ)))
861, 85mpd 15 1 (𝑁 ∈ ℕ → ∃𝑝 ∈ ℙ (𝑁 < 𝑝 ∧ ∀𝑧 ∈ ((𝑁 + 1)..^𝑝)𝑧 ∉ ℙ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086  wcel 2109  wnel 3030  wral 3045  wrex 3054  {crab 3408   class class class wbr 5110  cfv 6514  (class class class)co 7390  cr 11074  1c1 11076   + caddc 11078   < clt 11215  cle 11216  cn 12193  cz 12536  cuz 12800  ..^cfzo 13622  cprime 16648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-fz 13476  df-fzo 13623  df-seq 13974  df-exp 14034  df-fac 14246  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-dvds 16230  df-prm 16649
This theorem is referenced by:  prmgaplem7  17035
  Copyright terms: Public domain W3C validator