MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmgaplem6 Structured version   Visualization version   GIF version

Theorem prmgaplem6 16968
Description: Lemma for prmgap 16971: for each positive integer there is a greater prime closest to this integer, i.e. there is a greater prime and no other prime is between this prime and the integer. (Contributed by AV, 10-Aug-2020.)
Assertion
Ref Expression
prmgaplem6 (𝑁 ∈ ℕ → ∃𝑝 ∈ ℙ (𝑁 < 𝑝 ∧ ∀𝑧 ∈ ((𝑁 + 1)..^𝑝)𝑧 ∉ ℙ))
Distinct variable group:   𝑁,𝑝,𝑧

Proof of Theorem prmgaplem6
Dummy variables 𝑛 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prmunb 16826 . 2 (𝑁 ∈ ℕ → ∃𝑛 ∈ ℙ 𝑁 < 𝑛)
2 eqid 2729 . . . . 5 {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)} = {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)}
32prmgaplem4 16966 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) → ∃𝑝 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)}∀𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)}𝑝𝑧)
4 breq2 5096 . . . . . . . . 9 (𝑞 = 𝑝 → (𝑁 < 𝑞𝑁 < 𝑝))
5 breq1 5095 . . . . . . . . 9 (𝑞 = 𝑝 → (𝑞𝑛𝑝𝑛))
64, 5anbi12d 632 . . . . . . . 8 (𝑞 = 𝑝 → ((𝑁 < 𝑞𝑞𝑛) ↔ (𝑁 < 𝑝𝑝𝑛)))
76elrab 3648 . . . . . . 7 (𝑝 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)} ↔ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))
8 simplrl 776 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛))) ∧ ∀𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)}𝑝𝑧) → 𝑝 ∈ ℙ)
9 simprrl 780 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛))) → 𝑁 < 𝑝)
109adantr 480 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛))) ∧ ∀𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)}𝑝𝑧) → 𝑁 < 𝑝)
11 breq2 5096 . . . . . . . . . . . . . . . . . 18 (𝑞 = 𝑧 → (𝑁 < 𝑞𝑁 < 𝑧))
12 breq1 5095 . . . . . . . . . . . . . . . . . 18 (𝑞 = 𝑧 → (𝑞𝑛𝑧𝑛))
1311, 12anbi12d 632 . . . . . . . . . . . . . . . . 17 (𝑞 = 𝑧 → ((𝑁 < 𝑞𝑞𝑛) ↔ (𝑁 < 𝑧𝑧𝑛)))
14 simpll 766 . . . . . . . . . . . . . . . . 17 (((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) ∧ 𝑧 ∈ ((𝑁 + 1)..^𝑝)) → 𝑧 ∈ ℙ)
15 elfzo2 13565 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ ((𝑁 + 1)..^𝑝) ↔ (𝑧 ∈ (ℤ‘(𝑁 + 1)) ∧ 𝑝 ∈ ℤ ∧ 𝑧 < 𝑝))
16 eluz2 12741 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ (ℤ‘(𝑁 + 1)) ↔ ((𝑁 + 1) ∈ ℤ ∧ 𝑧 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑧))
17 nnz 12492 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
18 prmz 16586 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑧 ∈ ℙ → 𝑧 ∈ ℤ)
19 zltp1le 12525 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (𝑁 < 𝑧 ↔ (𝑁 + 1) ≤ 𝑧))
2017, 18, 19syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℙ) → (𝑁 < 𝑧 ↔ (𝑁 + 1) ≤ 𝑧))
2120exbiri 810 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑁 ∈ ℕ → (𝑧 ∈ ℙ → ((𝑁 + 1) ≤ 𝑧𝑁 < 𝑧)))
22213ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) → (𝑧 ∈ ℙ → ((𝑁 + 1) ≤ 𝑧𝑁 < 𝑧)))
2322adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛))) → (𝑧 ∈ ℙ → ((𝑁 + 1) ≤ 𝑧𝑁 < 𝑧)))
2423impcom 407 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) → ((𝑁 + 1) ≤ 𝑧𝑁 < 𝑧))
2524com12 32 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑁 + 1) ≤ 𝑧 → ((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) → 𝑁 < 𝑧))
2625adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑁 + 1) ≤ 𝑧𝑝 ∈ ℤ) → ((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) → 𝑁 < 𝑧))
2726adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑁 + 1) ≤ 𝑧𝑝 ∈ ℤ) ∧ 𝑧 < 𝑝) → ((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) → 𝑁 < 𝑧))
2827imp 406 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑁 + 1) ≤ 𝑧𝑝 ∈ ℤ) ∧ 𝑧 < 𝑝) ∧ (𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛))))) → 𝑁 < 𝑧)
29 prmnn 16585 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑧 ∈ ℙ → 𝑧 ∈ ℕ)
3029nnred 12143 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑧 ∈ ℙ → 𝑧 ∈ ℝ)
3130ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑛 ∈ ℙ ∧ (𝑧 ∈ ℙ ∧ 𝑝 ∈ ℙ)) → 𝑧 ∈ ℝ)
32 prmnn 16585 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
3332nnred 12143 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑝 ∈ ℙ → 𝑝 ∈ ℝ)
3433adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑧 ∈ ℙ ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℝ)
3534adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑛 ∈ ℙ ∧ (𝑧 ∈ ℙ ∧ 𝑝 ∈ ℙ)) → 𝑝 ∈ ℝ)
36 prmnn 16585 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑛 ∈ ℙ → 𝑛 ∈ ℕ)
3736nnred 12143 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑛 ∈ ℙ → 𝑛 ∈ ℝ)
3837adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑛 ∈ ℙ ∧ (𝑧 ∈ ℙ ∧ 𝑝 ∈ ℙ)) → 𝑛 ∈ ℝ)
39 ltleletr 11209 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑧 ∈ ℝ ∧ 𝑝 ∈ ℝ ∧ 𝑛 ∈ ℝ) → ((𝑧 < 𝑝𝑝𝑛) → 𝑧𝑛))
4031, 35, 38, 39syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑛 ∈ ℙ ∧ (𝑧 ∈ ℙ ∧ 𝑝 ∈ ℙ)) → ((𝑧 < 𝑝𝑝𝑛) → 𝑧𝑛))
4140exp4b 430 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑛 ∈ ℙ → ((𝑧 ∈ ℙ ∧ 𝑝 ∈ ℙ) → (𝑧 < 𝑝 → (𝑝𝑛𝑧𝑛))))
42413ad2ant2 1134 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) → ((𝑧 ∈ ℙ ∧ 𝑝 ∈ ℙ) → (𝑧 < 𝑝 → (𝑝𝑛𝑧𝑛))))
4342expdcom 414 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑧 ∈ ℙ → (𝑝 ∈ ℙ → ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) → (𝑧 < 𝑝 → (𝑝𝑛𝑧𝑛)))))
4443com45 97 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑧 ∈ ℙ → (𝑝 ∈ ℙ → ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) → (𝑝𝑛 → (𝑧 < 𝑝𝑧𝑛)))))
4544com14 96 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑝𝑛 → (𝑝 ∈ ℙ → ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) → (𝑧 ∈ ℙ → (𝑧 < 𝑝𝑧𝑛)))))
4645adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑁 < 𝑝𝑝𝑛) → (𝑝 ∈ ℙ → ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) → (𝑧 ∈ ℙ → (𝑧 < 𝑝𝑧𝑛)))))
4746impcom 407 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)) → ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) → (𝑧 ∈ ℙ → (𝑧 < 𝑝𝑧𝑛))))
4847impcom 407 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛))) → (𝑧 ∈ ℙ → (𝑧 < 𝑝𝑧𝑛)))
4948impcom 407 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) → (𝑧 < 𝑝𝑧𝑛))
5049adantld 490 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) → ((((𝑁 + 1) ≤ 𝑧𝑝 ∈ ℤ) ∧ 𝑧 < 𝑝) → 𝑧𝑛))
5150impcom 407 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑁 + 1) ≤ 𝑧𝑝 ∈ ℤ) ∧ 𝑧 < 𝑝) ∧ (𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛))))) → 𝑧𝑛)
5228, 51jca 511 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑁 + 1) ≤ 𝑧𝑝 ∈ ℤ) ∧ 𝑧 < 𝑝) ∧ (𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛))))) → (𝑁 < 𝑧𝑧𝑛))
5352exp41 434 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 + 1) ≤ 𝑧 → (𝑝 ∈ ℤ → (𝑧 < 𝑝 → ((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) → (𝑁 < 𝑧𝑧𝑛)))))
54533ad2ant3 1135 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 + 1) ∈ ℤ ∧ 𝑧 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑧) → (𝑝 ∈ ℤ → (𝑧 < 𝑝 → ((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) → (𝑁 < 𝑧𝑧𝑛)))))
5516, 54sylbi 217 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ (ℤ‘(𝑁 + 1)) → (𝑝 ∈ ℤ → (𝑧 < 𝑝 → ((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) → (𝑁 < 𝑧𝑧𝑛)))))
56553imp 1110 . . . . . . . . . . . . . . . . . . 19 ((𝑧 ∈ (ℤ‘(𝑁 + 1)) ∧ 𝑝 ∈ ℤ ∧ 𝑧 < 𝑝) → ((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) → (𝑁 < 𝑧𝑧𝑛)))
5715, 56sylbi 217 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ ((𝑁 + 1)..^𝑝) → ((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) → (𝑁 < 𝑧𝑧𝑛)))
5857impcom 407 . . . . . . . . . . . . . . . . 17 (((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) ∧ 𝑧 ∈ ((𝑁 + 1)..^𝑝)) → (𝑁 < 𝑧𝑧𝑛))
5913, 14, 58elrabd 3650 . . . . . . . . . . . . . . . 16 (((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) ∧ 𝑧 ∈ ((𝑁 + 1)..^𝑝)) → 𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)})
60 elfzolt2 13571 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ((𝑁 + 1)..^𝑝) → 𝑧 < 𝑝)
6133ad2antrl 728 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛))) → 𝑝 ∈ ℝ)
62 ltnle 11195 . . . . . . . . . . . . . . . . . . . . 21 ((𝑧 ∈ ℝ ∧ 𝑝 ∈ ℝ) → (𝑧 < 𝑝 ↔ ¬ 𝑝𝑧))
6362biimpd 229 . . . . . . . . . . . . . . . . . . . 20 ((𝑧 ∈ ℝ ∧ 𝑝 ∈ ℝ) → (𝑧 < 𝑝 → ¬ 𝑝𝑧))
6430, 61, 63syl2an 596 . . . . . . . . . . . . . . . . . . 19 ((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) → (𝑧 < 𝑝 → ¬ 𝑝𝑧))
6564imp 406 . . . . . . . . . . . . . . . . . 18 (((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) ∧ 𝑧 < 𝑝) → ¬ 𝑝𝑧)
6665pm2.21d 121 . . . . . . . . . . . . . . . . 17 (((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) ∧ 𝑧 < 𝑝) → (𝑝𝑧𝑧 ∉ ℙ))
6760, 66sylan2 593 . . . . . . . . . . . . . . . 16 (((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) ∧ 𝑧 ∈ ((𝑁 + 1)..^𝑝)) → (𝑝𝑧𝑧 ∉ ℙ))
6859, 67embantd 59 . . . . . . . . . . . . . . 15 (((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) ∧ 𝑧 ∈ ((𝑁 + 1)..^𝑝)) → ((𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)} → 𝑝𝑧) → 𝑧 ∉ ℙ))
6968ex 412 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) → (𝑧 ∈ ((𝑁 + 1)..^𝑝) → ((𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)} → 𝑝𝑧) → 𝑧 ∉ ℙ)))
7069com23 86 . . . . . . . . . . . . 13 ((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) → ((𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)} → 𝑝𝑧) → (𝑧 ∈ ((𝑁 + 1)..^𝑝) → 𝑧 ∉ ℙ)))
7170ex 412 . . . . . . . . . . . 12 (𝑧 ∈ ℙ → (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛))) → ((𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)} → 𝑝𝑧) → (𝑧 ∈ ((𝑁 + 1)..^𝑝) → 𝑧 ∉ ℙ))))
72 df-nel 3030 . . . . . . . . . . . . 13 (𝑧 ∉ ℙ ↔ ¬ 𝑧 ∈ ℙ)
73 2a1 28 . . . . . . . . . . . . . 14 (𝑧 ∉ ℙ → ((𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)} → 𝑝𝑧) → (𝑧 ∈ ((𝑁 + 1)..^𝑝) → 𝑧 ∉ ℙ)))
7473a1d 25 . . . . . . . . . . . . 13 (𝑧 ∉ ℙ → (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛))) → ((𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)} → 𝑝𝑧) → (𝑧 ∈ ((𝑁 + 1)..^𝑝) → 𝑧 ∉ ℙ))))
7572, 74sylbir 235 . . . . . . . . . . . 12 𝑧 ∈ ℙ → (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛))) → ((𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)} → 𝑝𝑧) → (𝑧 ∈ ((𝑁 + 1)..^𝑝) → 𝑧 ∉ ℙ))))
7671, 75pm2.61i 182 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛))) → ((𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)} → 𝑝𝑧) → (𝑧 ∈ ((𝑁 + 1)..^𝑝) → 𝑧 ∉ ℙ)))
7776ralimdv2 3138 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛))) → (∀𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)}𝑝𝑧 → ∀𝑧 ∈ ((𝑁 + 1)..^𝑝)𝑧 ∉ ℙ))
7877imp 406 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛))) ∧ ∀𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)}𝑝𝑧) → ∀𝑧 ∈ ((𝑁 + 1)..^𝑝)𝑧 ∉ ℙ)
798, 10, 78jca32 515 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛))) ∧ ∀𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)}𝑝𝑧) → (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝 ∧ ∀𝑧 ∈ ((𝑁 + 1)..^𝑝)𝑧 ∉ ℙ)))
8079exp31 419 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) → ((𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)) → (∀𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)}𝑝𝑧 → (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝 ∧ ∀𝑧 ∈ ((𝑁 + 1)..^𝑝)𝑧 ∉ ℙ)))))
817, 80biimtrid 242 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) → (𝑝 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)} → (∀𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)}𝑝𝑧 → (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝 ∧ ∀𝑧 ∈ ((𝑁 + 1)..^𝑝)𝑧 ∉ ℙ)))))
8281impd 410 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) → ((𝑝 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)} ∧ ∀𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)}𝑝𝑧) → (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝 ∧ ∀𝑧 ∈ ((𝑁 + 1)..^𝑝)𝑧 ∉ ℙ))))
8382reximdv2 3139 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) → (∃𝑝 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)}∀𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)}𝑝𝑧 → ∃𝑝 ∈ ℙ (𝑁 < 𝑝 ∧ ∀𝑧 ∈ ((𝑁 + 1)..^𝑝)𝑧 ∉ ℙ)))
843, 83mpd 15 . . 3 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) → ∃𝑝 ∈ ℙ (𝑁 < 𝑝 ∧ ∀𝑧 ∈ ((𝑁 + 1)..^𝑝)𝑧 ∉ ℙ))
8584rexlimdv3a 3134 . 2 (𝑁 ∈ ℕ → (∃𝑛 ∈ ℙ 𝑁 < 𝑛 → ∃𝑝 ∈ ℙ (𝑁 < 𝑝 ∧ ∀𝑧 ∈ ((𝑁 + 1)..^𝑝)𝑧 ∉ ℙ)))
861, 85mpd 15 1 (𝑁 ∈ ℕ → ∃𝑝 ∈ ℙ (𝑁 < 𝑝 ∧ ∀𝑧 ∈ ((𝑁 + 1)..^𝑝)𝑧 ∉ ℙ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086  wcel 2109  wnel 3029  wral 3044  wrex 3053  {crab 3394   class class class wbr 5092  cfv 6482  (class class class)co 7349  cr 11008  1c1 11010   + caddc 11012   < clt 11149  cle 11150  cn 12128  cz 12471  cuz 12735  ..^cfzo 13557  cprime 16582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-inf 9333  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-fz 13411  df-fzo 13558  df-seq 13909  df-exp 13969  df-fac 14181  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-dvds 16164  df-prm 16583
This theorem is referenced by:  prmgaplem7  16969
  Copyright terms: Public domain W3C validator