MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmgaplem6 Structured version   Visualization version   GIF version

Theorem prmgaplem6 16382
Description: Lemma for prmgap 16385: for each positive integer there is a greater prime closest to this integer, i.e. there is a greater prime and no other prime is between this prime and the integer. (Contributed by AV, 10-Aug-2020.)
Assertion
Ref Expression
prmgaplem6 (𝑁 ∈ ℕ → ∃𝑝 ∈ ℙ (𝑁 < 𝑝 ∧ ∀𝑧 ∈ ((𝑁 + 1)..^𝑝)𝑧 ∉ ℙ))
Distinct variable group:   𝑁,𝑝,𝑧

Proof of Theorem prmgaplem6
Dummy variables 𝑛 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prmunb 16240 . 2 (𝑁 ∈ ℕ → ∃𝑛 ∈ ℙ 𝑁 < 𝑛)
2 eqid 2798 . . . . 5 {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)} = {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)}
32prmgaplem4 16380 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) → ∃𝑝 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)}∀𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)}𝑝𝑧)
4 breq2 5034 . . . . . . . . 9 (𝑞 = 𝑝 → (𝑁 < 𝑞𝑁 < 𝑝))
5 breq1 5033 . . . . . . . . 9 (𝑞 = 𝑝 → (𝑞𝑛𝑝𝑛))
64, 5anbi12d 633 . . . . . . . 8 (𝑞 = 𝑝 → ((𝑁 < 𝑞𝑞𝑛) ↔ (𝑁 < 𝑝𝑝𝑛)))
76elrab 3628 . . . . . . 7 (𝑝 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)} ↔ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))
8 simplrl 776 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛))) ∧ ∀𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)}𝑝𝑧) → 𝑝 ∈ ℙ)
9 simprrl 780 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛))) → 𝑁 < 𝑝)
109adantr 484 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛))) ∧ ∀𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)}𝑝𝑧) → 𝑁 < 𝑝)
11 breq2 5034 . . . . . . . . . . . . . . . . . 18 (𝑞 = 𝑧 → (𝑁 < 𝑞𝑁 < 𝑧))
12 breq1 5033 . . . . . . . . . . . . . . . . . 18 (𝑞 = 𝑧 → (𝑞𝑛𝑧𝑛))
1311, 12anbi12d 633 . . . . . . . . . . . . . . . . 17 (𝑞 = 𝑧 → ((𝑁 < 𝑞𝑞𝑛) ↔ (𝑁 < 𝑧𝑧𝑛)))
14 simpll 766 . . . . . . . . . . . . . . . . 17 (((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) ∧ 𝑧 ∈ ((𝑁 + 1)..^𝑝)) → 𝑧 ∈ ℙ)
15 elfzo2 13036 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ ((𝑁 + 1)..^𝑝) ↔ (𝑧 ∈ (ℤ‘(𝑁 + 1)) ∧ 𝑝 ∈ ℤ ∧ 𝑧 < 𝑝))
16 eluz2 12237 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ (ℤ‘(𝑁 + 1)) ↔ ((𝑁 + 1) ∈ ℤ ∧ 𝑧 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑧))
17 nnz 11992 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
18 prmz 16009 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑧 ∈ ℙ → 𝑧 ∈ ℤ)
19 zltp1le 12020 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (𝑁 < 𝑧 ↔ (𝑁 + 1) ≤ 𝑧))
2017, 18, 19syl2an 598 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℙ) → (𝑁 < 𝑧 ↔ (𝑁 + 1) ≤ 𝑧))
2120exbiri 810 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑁 ∈ ℕ → (𝑧 ∈ ℙ → ((𝑁 + 1) ≤ 𝑧𝑁 < 𝑧)))
22213ad2ant1 1130 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) → (𝑧 ∈ ℙ → ((𝑁 + 1) ≤ 𝑧𝑁 < 𝑧)))
2322adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛))) → (𝑧 ∈ ℙ → ((𝑁 + 1) ≤ 𝑧𝑁 < 𝑧)))
2423impcom 411 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) → ((𝑁 + 1) ≤ 𝑧𝑁 < 𝑧))
2524com12 32 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑁 + 1) ≤ 𝑧 → ((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) → 𝑁 < 𝑧))
2625adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑁 + 1) ≤ 𝑧𝑝 ∈ ℤ) → ((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) → 𝑁 < 𝑧))
2726adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑁 + 1) ≤ 𝑧𝑝 ∈ ℤ) ∧ 𝑧 < 𝑝) → ((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) → 𝑁 < 𝑧))
2827imp 410 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑁 + 1) ≤ 𝑧𝑝 ∈ ℤ) ∧ 𝑧 < 𝑝) ∧ (𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛))))) → 𝑁 < 𝑧)
29 prmnn 16008 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑧 ∈ ℙ → 𝑧 ∈ ℕ)
3029nnred 11640 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑧 ∈ ℙ → 𝑧 ∈ ℝ)
3130ad2antrl 727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑛 ∈ ℙ ∧ (𝑧 ∈ ℙ ∧ 𝑝 ∈ ℙ)) → 𝑧 ∈ ℝ)
32 prmnn 16008 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
3332nnred 11640 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑝 ∈ ℙ → 𝑝 ∈ ℝ)
3433adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑧 ∈ ℙ ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℝ)
3534adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑛 ∈ ℙ ∧ (𝑧 ∈ ℙ ∧ 𝑝 ∈ ℙ)) → 𝑝 ∈ ℝ)
36 prmnn 16008 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑛 ∈ ℙ → 𝑛 ∈ ℕ)
3736nnred 11640 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑛 ∈ ℙ → 𝑛 ∈ ℝ)
3837adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑛 ∈ ℙ ∧ (𝑧 ∈ ℙ ∧ 𝑝 ∈ ℙ)) → 𝑛 ∈ ℝ)
39 ltleletr 10722 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑧 ∈ ℝ ∧ 𝑝 ∈ ℝ ∧ 𝑛 ∈ ℝ) → ((𝑧 < 𝑝𝑝𝑛) → 𝑧𝑛))
4031, 35, 38, 39syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑛 ∈ ℙ ∧ (𝑧 ∈ ℙ ∧ 𝑝 ∈ ℙ)) → ((𝑧 < 𝑝𝑝𝑛) → 𝑧𝑛))
4140exp4b 434 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑛 ∈ ℙ → ((𝑧 ∈ ℙ ∧ 𝑝 ∈ ℙ) → (𝑧 < 𝑝 → (𝑝𝑛𝑧𝑛))))
42413ad2ant2 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) → ((𝑧 ∈ ℙ ∧ 𝑝 ∈ ℙ) → (𝑧 < 𝑝 → (𝑝𝑛𝑧𝑛))))
4342expdcom 418 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑧 ∈ ℙ → (𝑝 ∈ ℙ → ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) → (𝑧 < 𝑝 → (𝑝𝑛𝑧𝑛)))))
4443com45 97 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑧 ∈ ℙ → (𝑝 ∈ ℙ → ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) → (𝑝𝑛 → (𝑧 < 𝑝𝑧𝑛)))))
4544com14 96 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑝𝑛 → (𝑝 ∈ ℙ → ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) → (𝑧 ∈ ℙ → (𝑧 < 𝑝𝑧𝑛)))))
4645adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑁 < 𝑝𝑝𝑛) → (𝑝 ∈ ℙ → ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) → (𝑧 ∈ ℙ → (𝑧 < 𝑝𝑧𝑛)))))
4746impcom 411 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)) → ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) → (𝑧 ∈ ℙ → (𝑧 < 𝑝𝑧𝑛))))
4847impcom 411 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛))) → (𝑧 ∈ ℙ → (𝑧 < 𝑝𝑧𝑛)))
4948impcom 411 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) → (𝑧 < 𝑝𝑧𝑛))
5049adantld 494 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) → ((((𝑁 + 1) ≤ 𝑧𝑝 ∈ ℤ) ∧ 𝑧 < 𝑝) → 𝑧𝑛))
5150impcom 411 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑁 + 1) ≤ 𝑧𝑝 ∈ ℤ) ∧ 𝑧 < 𝑝) ∧ (𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛))))) → 𝑧𝑛)
5228, 51jca 515 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑁 + 1) ≤ 𝑧𝑝 ∈ ℤ) ∧ 𝑧 < 𝑝) ∧ (𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛))))) → (𝑁 < 𝑧𝑧𝑛))
5352exp41 438 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 + 1) ≤ 𝑧 → (𝑝 ∈ ℤ → (𝑧 < 𝑝 → ((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) → (𝑁 < 𝑧𝑧𝑛)))))
54533ad2ant3 1132 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 + 1) ∈ ℤ ∧ 𝑧 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑧) → (𝑝 ∈ ℤ → (𝑧 < 𝑝 → ((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) → (𝑁 < 𝑧𝑧𝑛)))))
5516, 54sylbi 220 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ (ℤ‘(𝑁 + 1)) → (𝑝 ∈ ℤ → (𝑧 < 𝑝 → ((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) → (𝑁 < 𝑧𝑧𝑛)))))
56553imp 1108 . . . . . . . . . . . . . . . . . . 19 ((𝑧 ∈ (ℤ‘(𝑁 + 1)) ∧ 𝑝 ∈ ℤ ∧ 𝑧 < 𝑝) → ((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) → (𝑁 < 𝑧𝑧𝑛)))
5715, 56sylbi 220 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ ((𝑁 + 1)..^𝑝) → ((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) → (𝑁 < 𝑧𝑧𝑛)))
5857impcom 411 . . . . . . . . . . . . . . . . 17 (((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) ∧ 𝑧 ∈ ((𝑁 + 1)..^𝑝)) → (𝑁 < 𝑧𝑧𝑛))
5913, 14, 58elrabd 3630 . . . . . . . . . . . . . . . 16 (((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) ∧ 𝑧 ∈ ((𝑁 + 1)..^𝑝)) → 𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)})
60 elfzolt2 13042 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ((𝑁 + 1)..^𝑝) → 𝑧 < 𝑝)
6133ad2antrl 727 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛))) → 𝑝 ∈ ℝ)
62 ltnle 10709 . . . . . . . . . . . . . . . . . . . . 21 ((𝑧 ∈ ℝ ∧ 𝑝 ∈ ℝ) → (𝑧 < 𝑝 ↔ ¬ 𝑝𝑧))
6362biimpd 232 . . . . . . . . . . . . . . . . . . . 20 ((𝑧 ∈ ℝ ∧ 𝑝 ∈ ℝ) → (𝑧 < 𝑝 → ¬ 𝑝𝑧))
6430, 61, 63syl2an 598 . . . . . . . . . . . . . . . . . . 19 ((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) → (𝑧 < 𝑝 → ¬ 𝑝𝑧))
6564imp 410 . . . . . . . . . . . . . . . . . 18 (((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) ∧ 𝑧 < 𝑝) → ¬ 𝑝𝑧)
6665pm2.21d 121 . . . . . . . . . . . . . . . . 17 (((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) ∧ 𝑧 < 𝑝) → (𝑝𝑧𝑧 ∉ ℙ))
6760, 66sylan2 595 . . . . . . . . . . . . . . . 16 (((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) ∧ 𝑧 ∈ ((𝑁 + 1)..^𝑝)) → (𝑝𝑧𝑧 ∉ ℙ))
6859, 67embantd 59 . . . . . . . . . . . . . . 15 (((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) ∧ 𝑧 ∈ ((𝑁 + 1)..^𝑝)) → ((𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)} → 𝑝𝑧) → 𝑧 ∉ ℙ))
6968ex 416 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) → (𝑧 ∈ ((𝑁 + 1)..^𝑝) → ((𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)} → 𝑝𝑧) → 𝑧 ∉ ℙ)))
7069com23 86 . . . . . . . . . . . . 13 ((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) → ((𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)} → 𝑝𝑧) → (𝑧 ∈ ((𝑁 + 1)..^𝑝) → 𝑧 ∉ ℙ)))
7170ex 416 . . . . . . . . . . . 12 (𝑧 ∈ ℙ → (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛))) → ((𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)} → 𝑝𝑧) → (𝑧 ∈ ((𝑁 + 1)..^𝑝) → 𝑧 ∉ ℙ))))
72 df-nel 3092 . . . . . . . . . . . . 13 (𝑧 ∉ ℙ ↔ ¬ 𝑧 ∈ ℙ)
73 2a1 28 . . . . . . . . . . . . . 14 (𝑧 ∉ ℙ → ((𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)} → 𝑝𝑧) → (𝑧 ∈ ((𝑁 + 1)..^𝑝) → 𝑧 ∉ ℙ)))
7473a1d 25 . . . . . . . . . . . . 13 (𝑧 ∉ ℙ → (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛))) → ((𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)} → 𝑝𝑧) → (𝑧 ∈ ((𝑁 + 1)..^𝑝) → 𝑧 ∉ ℙ))))
7572, 74sylbir 238 . . . . . . . . . . . 12 𝑧 ∈ ℙ → (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛))) → ((𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)} → 𝑝𝑧) → (𝑧 ∈ ((𝑁 + 1)..^𝑝) → 𝑧 ∉ ℙ))))
7671, 75pm2.61i 185 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛))) → ((𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)} → 𝑝𝑧) → (𝑧 ∈ ((𝑁 + 1)..^𝑝) → 𝑧 ∉ ℙ)))
7776ralimdv2 3143 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛))) → (∀𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)}𝑝𝑧 → ∀𝑧 ∈ ((𝑁 + 1)..^𝑝)𝑧 ∉ ℙ))
7877imp 410 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛))) ∧ ∀𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)}𝑝𝑧) → ∀𝑧 ∈ ((𝑁 + 1)..^𝑝)𝑧 ∉ ℙ)
798, 10, 78jca32 519 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛))) ∧ ∀𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)}𝑝𝑧) → (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝 ∧ ∀𝑧 ∈ ((𝑁 + 1)..^𝑝)𝑧 ∉ ℙ)))
8079exp31 423 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) → ((𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)) → (∀𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)}𝑝𝑧 → (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝 ∧ ∀𝑧 ∈ ((𝑁 + 1)..^𝑝)𝑧 ∉ ℙ)))))
817, 80syl5bi 245 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) → (𝑝 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)} → (∀𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)}𝑝𝑧 → (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝 ∧ ∀𝑧 ∈ ((𝑁 + 1)..^𝑝)𝑧 ∉ ℙ)))))
8281impd 414 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) → ((𝑝 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)} ∧ ∀𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)}𝑝𝑧) → (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝 ∧ ∀𝑧 ∈ ((𝑁 + 1)..^𝑝)𝑧 ∉ ℙ))))
8382reximdv2 3230 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) → (∃𝑝 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)}∀𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)}𝑝𝑧 → ∃𝑝 ∈ ℙ (𝑁 < 𝑝 ∧ ∀𝑧 ∈ ((𝑁 + 1)..^𝑝)𝑧 ∉ ℙ)))
843, 83mpd 15 . . 3 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) → ∃𝑝 ∈ ℙ (𝑁 < 𝑝 ∧ ∀𝑧 ∈ ((𝑁 + 1)..^𝑝)𝑧 ∉ ℙ))
8584rexlimdv3a 3245 . 2 (𝑁 ∈ ℕ → (∃𝑛 ∈ ℙ 𝑁 < 𝑛 → ∃𝑝 ∈ ℙ (𝑁 < 𝑝 ∧ ∀𝑧 ∈ ((𝑁 + 1)..^𝑝)𝑧 ∉ ℙ)))
861, 85mpd 15 1 (𝑁 ∈ ℕ → ∃𝑝 ∈ ℙ (𝑁 < 𝑝 ∧ ∀𝑧 ∈ ((𝑁 + 1)..^𝑝)𝑧 ∉ ℙ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084  wcel 2111  wnel 3091  wral 3106  wrex 3107  {crab 3110   class class class wbr 5030  cfv 6324  (class class class)co 7135  cr 10525  1c1 10527   + caddc 10529   < clt 10664  cle 10665  cn 11625  cz 11969  cuz 12231  ..^cfzo 13028  cprime 16005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12886  df-fzo 13029  df-seq 13365  df-exp 13426  df-fac 13630  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-dvds 15600  df-prm 16006
This theorem is referenced by:  prmgaplem7  16383
  Copyright terms: Public domain W3C validator