MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mavmulsolcl Structured version   Visualization version   GIF version

Theorem mavmulsolcl 21608
Description: Every solution of the equation 𝐴𝑋 = 𝑌 for a matrix 𝐴 and a vector 𝐵 is a vector. (Contributed by AV, 27-Feb-2019.)
Hypotheses
Ref Expression
mavmuldm.b 𝐵 = (Base‘𝑅)
mavmuldm.c 𝐶 = (𝐵m (𝑀 × 𝑁))
mavmuldm.d 𝐷 = (𝐵m 𝑁)
mavmuldm.t · = (𝑅 maVecMul ⟨𝑀, 𝑁⟩)
mavmulsolcl.e 𝐸 = (𝐵m 𝑀)
Assertion
Ref Expression
mavmulsolcl (((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑀 ≠ ∅) ∧ (𝑅𝑉𝑌𝐸)) → ((𝐴 · 𝑋) = 𝑌𝑋𝐷))

Proof of Theorem mavmulsolcl
StepHypRef Expression
1 2a1 28 . 2 (𝑋𝐷 → (((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑀 ≠ ∅) ∧ (𝑅𝑉𝑌𝐸)) → ((𝐴 · 𝑋) = 𝑌𝑋𝐷)))
2 simpl 482 . . . . . . . . 9 ((𝑅𝑉𝑌𝐸) → 𝑅𝑉)
32adantl 481 . . . . . . . 8 (((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑀 ≠ ∅) ∧ (𝑅𝑉𝑌𝐸)) → 𝑅𝑉)
4 simpl1 1189 . . . . . . . 8 (((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑀 ≠ ∅) ∧ (𝑅𝑉𝑌𝐸)) → 𝑀 ∈ Fin)
5 simpl2 1190 . . . . . . . 8 (((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑀 ≠ ∅) ∧ (𝑅𝑉𝑌𝐸)) → 𝑁 ∈ Fin)
63, 4, 53jca 1126 . . . . . . 7 (((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑀 ≠ ∅) ∧ (𝑅𝑉𝑌𝐸)) → (𝑅𝑉𝑀 ∈ Fin ∧ 𝑁 ∈ Fin))
76adantl 481 . . . . . 6 ((¬ 𝑋𝐷 ∧ ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑀 ≠ ∅) ∧ (𝑅𝑉𝑌𝐸))) → (𝑅𝑉𝑀 ∈ Fin ∧ 𝑁 ∈ Fin))
8 mavmuldm.b . . . . . . 7 𝐵 = (Base‘𝑅)
9 mavmuldm.c . . . . . . 7 𝐶 = (𝐵m (𝑀 × 𝑁))
10 mavmuldm.d . . . . . . 7 𝐷 = (𝐵m 𝑁)
11 mavmuldm.t . . . . . . 7 · = (𝑅 maVecMul ⟨𝑀, 𝑁⟩)
128, 9, 10, 11mavmuldm 21607 . . . . . 6 ((𝑅𝑉𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → dom · = (𝐶 × 𝐷))
137, 12syl 17 . . . . 5 ((¬ 𝑋𝐷 ∧ ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑀 ≠ ∅) ∧ (𝑅𝑉𝑌𝐸))) → dom · = (𝐶 × 𝐷))
14 simpl 482 . . . . . 6 ((¬ 𝑋𝐷 ∧ ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑀 ≠ ∅) ∧ (𝑅𝑉𝑌𝐸))) → ¬ 𝑋𝐷)
1514intnand 488 . . . . 5 ((¬ 𝑋𝐷 ∧ ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑀 ≠ ∅) ∧ (𝑅𝑉𝑌𝐸))) → ¬ (𝐴𝐶𝑋𝐷))
16 ndmovg 7433 . . . . 5 ((dom · = (𝐶 × 𝐷) ∧ ¬ (𝐴𝐶𝑋𝐷)) → (𝐴 · 𝑋) = ∅)
1713, 15, 16syl2anc 583 . . . 4 ((¬ 𝑋𝐷 ∧ ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑀 ≠ ∅) ∧ (𝑅𝑉𝑌𝐸))) → (𝐴 · 𝑋) = ∅)
18 eqeq1 2742 . . . . . 6 ((𝐴 · 𝑋) = ∅ → ((𝐴 · 𝑋) = 𝑌 ↔ ∅ = 𝑌))
19 elmapi 8595 . . . . . . . . . . . . . 14 (𝑌 ∈ (𝐵m 𝑀) → 𝑌:𝑀𝐵)
20 f0dom0 6642 . . . . . . . . . . . . . . . . . . . 20 (𝑌:𝑀𝐵 → (𝑀 = ∅ ↔ 𝑌 = ∅))
2120biimprd 247 . . . . . . . . . . . . . . . . . . 19 (𝑌:𝑀𝐵 → (𝑌 = ∅ → 𝑀 = ∅))
2221necon3d 2963 . . . . . . . . . . . . . . . . . 18 (𝑌:𝑀𝐵 → (𝑀 ≠ ∅ → 𝑌 ≠ ∅))
2322com12 32 . . . . . . . . . . . . . . . . 17 (𝑀 ≠ ∅ → (𝑌:𝑀𝐵𝑌 ≠ ∅))
24233ad2ant3 1133 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑀 ≠ ∅) → (𝑌:𝑀𝐵𝑌 ≠ ∅))
2524com12 32 . . . . . . . . . . . . . . 15 (𝑌:𝑀𝐵 → ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑀 ≠ ∅) → 𝑌 ≠ ∅))
2625a1d 25 . . . . . . . . . . . . . 14 (𝑌:𝑀𝐵 → (𝑅𝑉 → ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑀 ≠ ∅) → 𝑌 ≠ ∅)))
2719, 26syl 17 . . . . . . . . . . . . 13 (𝑌 ∈ (𝐵m 𝑀) → (𝑅𝑉 → ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑀 ≠ ∅) → 𝑌 ≠ ∅)))
28 mavmulsolcl.e . . . . . . . . . . . . 13 𝐸 = (𝐵m 𝑀)
2927, 28eleq2s 2857 . . . . . . . . . . . 12 (𝑌𝐸 → (𝑅𝑉 → ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑀 ≠ ∅) → 𝑌 ≠ ∅)))
3029impcom 407 . . . . . . . . . . 11 ((𝑅𝑉𝑌𝐸) → ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑀 ≠ ∅) → 𝑌 ≠ ∅))
3130impcom 407 . . . . . . . . . 10 (((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑀 ≠ ∅) ∧ (𝑅𝑉𝑌𝐸)) → 𝑌 ≠ ∅)
32 eqneqall 2953 . . . . . . . . . 10 (𝑌 = ∅ → (𝑌 ≠ ∅ → 𝑋𝐷))
3331, 32syl5com 31 . . . . . . . . 9 (((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑀 ≠ ∅) ∧ (𝑅𝑉𝑌𝐸)) → (𝑌 = ∅ → 𝑋𝐷))
3433adantl 481 . . . . . . . 8 ((¬ 𝑋𝐷 ∧ ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑀 ≠ ∅) ∧ (𝑅𝑉𝑌𝐸))) → (𝑌 = ∅ → 𝑋𝐷))
3534com12 32 . . . . . . 7 (𝑌 = ∅ → ((¬ 𝑋𝐷 ∧ ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑀 ≠ ∅) ∧ (𝑅𝑉𝑌𝐸))) → 𝑋𝐷))
3635eqcoms 2746 . . . . . 6 (∅ = 𝑌 → ((¬ 𝑋𝐷 ∧ ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑀 ≠ ∅) ∧ (𝑅𝑉𝑌𝐸))) → 𝑋𝐷))
3718, 36syl6bi 252 . . . . 5 ((𝐴 · 𝑋) = ∅ → ((𝐴 · 𝑋) = 𝑌 → ((¬ 𝑋𝐷 ∧ ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑀 ≠ ∅) ∧ (𝑅𝑉𝑌𝐸))) → 𝑋𝐷)))
3837com23 86 . . . 4 ((𝐴 · 𝑋) = ∅ → ((¬ 𝑋𝐷 ∧ ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑀 ≠ ∅) ∧ (𝑅𝑉𝑌𝐸))) → ((𝐴 · 𝑋) = 𝑌𝑋𝐷)))
3917, 38mpcom 38 . . 3 ((¬ 𝑋𝐷 ∧ ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑀 ≠ ∅) ∧ (𝑅𝑉𝑌𝐸))) → ((𝐴 · 𝑋) = 𝑌𝑋𝐷))
4039ex 412 . 2 𝑋𝐷 → (((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑀 ≠ ∅) ∧ (𝑅𝑉𝑌𝐸)) → ((𝐴 · 𝑋) = 𝑌𝑋𝐷)))
411, 40pm2.61i 182 1 (((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑀 ≠ ∅) ∧ (𝑅𝑉𝑌𝐸)) → ((𝐴 · 𝑋) = 𝑌𝑋𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  c0 4253  cop 4564   × cxp 5578  dom cdm 5580  wf 6414  cfv 6418  (class class class)co 7255  m cmap 8573  Fincfn 8691  Basecbs 16840   maVecMul cmvmul 21597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-map 8575  df-mvmul 21598
This theorem is referenced by:  slesolvec  21736  cramerimplem2  21741
  Copyright terms: Public domain W3C validator