MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mavmulsolcl Structured version   Visualization version   GIF version

Theorem mavmulsolcl 22445
Description: Every solution of the equation 𝐴𝑋 = 𝑌 for a matrix 𝐴 and a vector 𝐵 is a vector. (Contributed by AV, 27-Feb-2019.)
Hypotheses
Ref Expression
mavmuldm.b 𝐵 = (Base‘𝑅)
mavmuldm.c 𝐶 = (𝐵m (𝑀 × 𝑁))
mavmuldm.d 𝐷 = (𝐵m 𝑁)
mavmuldm.t · = (𝑅 maVecMul ⟨𝑀, 𝑁⟩)
mavmulsolcl.e 𝐸 = (𝐵m 𝑀)
Assertion
Ref Expression
mavmulsolcl (((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑀 ≠ ∅) ∧ (𝑅𝑉𝑌𝐸)) → ((𝐴 · 𝑋) = 𝑌𝑋𝐷))

Proof of Theorem mavmulsolcl
StepHypRef Expression
1 2a1 28 . 2 (𝑋𝐷 → (((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑀 ≠ ∅) ∧ (𝑅𝑉𝑌𝐸)) → ((𝐴 · 𝑋) = 𝑌𝑋𝐷)))
2 simpl 482 . . . . . . . . 9 ((𝑅𝑉𝑌𝐸) → 𝑅𝑉)
32adantl 481 . . . . . . . 8 (((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑀 ≠ ∅) ∧ (𝑅𝑉𝑌𝐸)) → 𝑅𝑉)
4 simpl1 1192 . . . . . . . 8 (((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑀 ≠ ∅) ∧ (𝑅𝑉𝑌𝐸)) → 𝑀 ∈ Fin)
5 simpl2 1193 . . . . . . . 8 (((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑀 ≠ ∅) ∧ (𝑅𝑉𝑌𝐸)) → 𝑁 ∈ Fin)
63, 4, 53jca 1128 . . . . . . 7 (((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑀 ≠ ∅) ∧ (𝑅𝑉𝑌𝐸)) → (𝑅𝑉𝑀 ∈ Fin ∧ 𝑁 ∈ Fin))
76adantl 481 . . . . . 6 ((¬ 𝑋𝐷 ∧ ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑀 ≠ ∅) ∧ (𝑅𝑉𝑌𝐸))) → (𝑅𝑉𝑀 ∈ Fin ∧ 𝑁 ∈ Fin))
8 mavmuldm.b . . . . . . 7 𝐵 = (Base‘𝑅)
9 mavmuldm.c . . . . . . 7 𝐶 = (𝐵m (𝑀 × 𝑁))
10 mavmuldm.d . . . . . . 7 𝐷 = (𝐵m 𝑁)
11 mavmuldm.t . . . . . . 7 · = (𝑅 maVecMul ⟨𝑀, 𝑁⟩)
128, 9, 10, 11mavmuldm 22444 . . . . . 6 ((𝑅𝑉𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → dom · = (𝐶 × 𝐷))
137, 12syl 17 . . . . 5 ((¬ 𝑋𝐷 ∧ ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑀 ≠ ∅) ∧ (𝑅𝑉𝑌𝐸))) → dom · = (𝐶 × 𝐷))
14 simpl 482 . . . . . 6 ((¬ 𝑋𝐷 ∧ ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑀 ≠ ∅) ∧ (𝑅𝑉𝑌𝐸))) → ¬ 𝑋𝐷)
1514intnand 488 . . . . 5 ((¬ 𝑋𝐷 ∧ ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑀 ≠ ∅) ∧ (𝑅𝑉𝑌𝐸))) → ¬ (𝐴𝐶𝑋𝐷))
16 ndmovg 7575 . . . . 5 ((dom · = (𝐶 × 𝐷) ∧ ¬ (𝐴𝐶𝑋𝐷)) → (𝐴 · 𝑋) = ∅)
1713, 15, 16syl2anc 584 . . . 4 ((¬ 𝑋𝐷 ∧ ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑀 ≠ ∅) ∧ (𝑅𝑉𝑌𝐸))) → (𝐴 · 𝑋) = ∅)
18 eqeq1 2734 . . . . . 6 ((𝐴 · 𝑋) = ∅ → ((𝐴 · 𝑋) = 𝑌 ↔ ∅ = 𝑌))
19 elmapi 8825 . . . . . . . . . . . . . 14 (𝑌 ∈ (𝐵m 𝑀) → 𝑌:𝑀𝐵)
20 f0dom0 6747 . . . . . . . . . . . . . . . . . . . 20 (𝑌:𝑀𝐵 → (𝑀 = ∅ ↔ 𝑌 = ∅))
2120biimprd 248 . . . . . . . . . . . . . . . . . . 19 (𝑌:𝑀𝐵 → (𝑌 = ∅ → 𝑀 = ∅))
2221necon3d 2947 . . . . . . . . . . . . . . . . . 18 (𝑌:𝑀𝐵 → (𝑀 ≠ ∅ → 𝑌 ≠ ∅))
2322com12 32 . . . . . . . . . . . . . . . . 17 (𝑀 ≠ ∅ → (𝑌:𝑀𝐵𝑌 ≠ ∅))
24233ad2ant3 1135 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑀 ≠ ∅) → (𝑌:𝑀𝐵𝑌 ≠ ∅))
2524com12 32 . . . . . . . . . . . . . . 15 (𝑌:𝑀𝐵 → ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑀 ≠ ∅) → 𝑌 ≠ ∅))
2625a1d 25 . . . . . . . . . . . . . 14 (𝑌:𝑀𝐵 → (𝑅𝑉 → ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑀 ≠ ∅) → 𝑌 ≠ ∅)))
2719, 26syl 17 . . . . . . . . . . . . 13 (𝑌 ∈ (𝐵m 𝑀) → (𝑅𝑉 → ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑀 ≠ ∅) → 𝑌 ≠ ∅)))
28 mavmulsolcl.e . . . . . . . . . . . . 13 𝐸 = (𝐵m 𝑀)
2927, 28eleq2s 2847 . . . . . . . . . . . 12 (𝑌𝐸 → (𝑅𝑉 → ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑀 ≠ ∅) → 𝑌 ≠ ∅)))
3029impcom 407 . . . . . . . . . . 11 ((𝑅𝑉𝑌𝐸) → ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑀 ≠ ∅) → 𝑌 ≠ ∅))
3130impcom 407 . . . . . . . . . 10 (((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑀 ≠ ∅) ∧ (𝑅𝑉𝑌𝐸)) → 𝑌 ≠ ∅)
32 eqneqall 2937 . . . . . . . . . 10 (𝑌 = ∅ → (𝑌 ≠ ∅ → 𝑋𝐷))
3331, 32syl5com 31 . . . . . . . . 9 (((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑀 ≠ ∅) ∧ (𝑅𝑉𝑌𝐸)) → (𝑌 = ∅ → 𝑋𝐷))
3433adantl 481 . . . . . . . 8 ((¬ 𝑋𝐷 ∧ ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑀 ≠ ∅) ∧ (𝑅𝑉𝑌𝐸))) → (𝑌 = ∅ → 𝑋𝐷))
3534com12 32 . . . . . . 7 (𝑌 = ∅ → ((¬ 𝑋𝐷 ∧ ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑀 ≠ ∅) ∧ (𝑅𝑉𝑌𝐸))) → 𝑋𝐷))
3635eqcoms 2738 . . . . . 6 (∅ = 𝑌 → ((¬ 𝑋𝐷 ∧ ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑀 ≠ ∅) ∧ (𝑅𝑉𝑌𝐸))) → 𝑋𝐷))
3718, 36biimtrdi 253 . . . . 5 ((𝐴 · 𝑋) = ∅ → ((𝐴 · 𝑋) = 𝑌 → ((¬ 𝑋𝐷 ∧ ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑀 ≠ ∅) ∧ (𝑅𝑉𝑌𝐸))) → 𝑋𝐷)))
3837com23 86 . . . 4 ((𝐴 · 𝑋) = ∅ → ((¬ 𝑋𝐷 ∧ ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑀 ≠ ∅) ∧ (𝑅𝑉𝑌𝐸))) → ((𝐴 · 𝑋) = 𝑌𝑋𝐷)))
3917, 38mpcom 38 . . 3 ((¬ 𝑋𝐷 ∧ ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑀 ≠ ∅) ∧ (𝑅𝑉𝑌𝐸))) → ((𝐴 · 𝑋) = 𝑌𝑋𝐷))
4039ex 412 . 2 𝑋𝐷 → (((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑀 ≠ ∅) ∧ (𝑅𝑉𝑌𝐸)) → ((𝐴 · 𝑋) = 𝑌𝑋𝐷)))
411, 40pm2.61i 182 1 (((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑀 ≠ ∅) ∧ (𝑅𝑉𝑌𝐸)) → ((𝐴 · 𝑋) = 𝑌𝑋𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  c0 4299  cop 4598   × cxp 5639  dom cdm 5641  wf 6510  cfv 6514  (class class class)co 7390  m cmap 8802  Fincfn 8921  Basecbs 17186   maVecMul cmvmul 22434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-map 8804  df-mvmul 22435
This theorem is referenced by:  slesolvec  22573  cramerimplem2  22578
  Copyright terms: Public domain W3C validator