MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqreunnltlem Structured version   Visualization version   GIF version

Theorem 2sqreunnltlem 26186
Description: Lemma for 2sqreunnlt 26196. (Contributed by AV, 4-Jun-2023.) Specialization to different integers, proposed by GL. (Revised by AV, 11-Jun-2023.)
Assertion
Ref Expression
2sqreunnltlem ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃!𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
Distinct variable group:   𝑃,𝑎,𝑏

Proof of Theorem 2sqreunnltlem
StepHypRef Expression
1 2sqreunnlem1 26185 . 2 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃!𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
2 oveq1 7178 . . . . . . . . . . . . . . 15 (𝑏 = 𝑎 → (𝑏↑2) = (𝑎↑2))
32oveq2d 7187 . . . . . . . . . . . . . 14 (𝑏 = 𝑎 → ((𝑎↑2) + (𝑏↑2)) = ((𝑎↑2) + (𝑎↑2)))
43adantr 484 . . . . . . . . . . . . 13 ((𝑏 = 𝑎 ∧ (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ 𝑎 ∈ ℕ) ∧ 𝑏 ∈ ℕ)) → ((𝑎↑2) + (𝑏↑2)) = ((𝑎↑2) + (𝑎↑2)))
5 nncn 11725 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ ℕ → 𝑎 ∈ ℂ)
65sqcld 13601 . . . . . . . . . . . . . . . 16 (𝑎 ∈ ℕ → (𝑎↑2) ∈ ℂ)
7 2times 11853 . . . . . . . . . . . . . . . . 17 ((𝑎↑2) ∈ ℂ → (2 · (𝑎↑2)) = ((𝑎↑2) + (𝑎↑2)))
87eqcomd 2744 . . . . . . . . . . . . . . . 16 ((𝑎↑2) ∈ ℂ → ((𝑎↑2) + (𝑎↑2)) = (2 · (𝑎↑2)))
96, 8syl 17 . . . . . . . . . . . . . . 15 (𝑎 ∈ ℕ → ((𝑎↑2) + (𝑎↑2)) = (2 · (𝑎↑2)))
109adantl 485 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ 𝑎 ∈ ℕ) → ((𝑎↑2) + (𝑎↑2)) = (2 · (𝑎↑2)))
1110ad2antrl 728 . . . . . . . . . . . . 13 ((𝑏 = 𝑎 ∧ (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ 𝑎 ∈ ℕ) ∧ 𝑏 ∈ ℕ)) → ((𝑎↑2) + (𝑎↑2)) = (2 · (𝑎↑2)))
124, 11eqtrd 2773 . . . . . . . . . . . 12 ((𝑏 = 𝑎 ∧ (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ 𝑎 ∈ ℕ) ∧ 𝑏 ∈ ℕ)) → ((𝑎↑2) + (𝑏↑2)) = (2 · (𝑎↑2)))
1312eqeq1d 2740 . . . . . . . . . . 11 ((𝑏 = 𝑎 ∧ (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ 𝑎 ∈ ℕ) ∧ 𝑏 ∈ ℕ)) → (((𝑎↑2) + (𝑏↑2)) = 𝑃 ↔ (2 · (𝑎↑2)) = 𝑃))
14 oveq1 7178 . . . . . . . . . . . . . . . . . . . 20 (𝑃 = (2 · (𝑎↑2)) → (𝑃 mod 4) = ((2 · (𝑎↑2)) mod 4))
1514eqeq1d 2740 . . . . . . . . . . . . . . . . . . 19 (𝑃 = (2 · (𝑎↑2)) → ((𝑃 mod 4) = 1 ↔ ((2 · (𝑎↑2)) mod 4) = 1))
16 eleq1 2820 . . . . . . . . . . . . . . . . . . 19 (𝑃 = (2 · (𝑎↑2)) → (𝑃 ∈ ℙ ↔ (2 · (𝑎↑2)) ∈ ℙ))
1715, 16anbi12d 634 . . . . . . . . . . . . . . . . . 18 (𝑃 = (2 · (𝑎↑2)) → (((𝑃 mod 4) = 1 ∧ 𝑃 ∈ ℙ) ↔ (((2 · (𝑎↑2)) mod 4) = 1 ∧ (2 · (𝑎↑2)) ∈ ℙ)))
18 nnz 12086 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 ∈ ℕ → 𝑎 ∈ ℤ)
19 2nn0 11994 . . . . . . . . . . . . . . . . . . . . . . 23 2 ∈ ℕ0
20 zexpcl 13537 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑎 ∈ ℤ ∧ 2 ∈ ℕ0) → (𝑎↑2) ∈ ℤ)
2118, 19, 20sylancl 589 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 ∈ ℕ → (𝑎↑2) ∈ ℤ)
22 2mulprm 16135 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎↑2) ∈ ℤ → ((2 · (𝑎↑2)) ∈ ℙ ↔ (𝑎↑2) = 1))
2321, 22syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 ∈ ℕ → ((2 · (𝑎↑2)) ∈ ℙ ↔ (𝑎↑2) = 1))
24 oveq2 7179 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑎↑2) = 1 → (2 · (𝑎↑2)) = (2 · 1))
25 2t1e2 11880 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (2 · 1) = 2
2624, 25eqtrdi 2789 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑎↑2) = 1 → (2 · (𝑎↑2)) = 2)
2726oveq1d 7186 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑎↑2) = 1 → ((2 · (𝑎↑2)) mod 4) = (2 mod 4))
28 2re 11791 . . . . . . . . . . . . . . . . . . . . . . . . 25 2 ∈ ℝ
29 4nn 11800 . . . . . . . . . . . . . . . . . . . . . . . . . 26 4 ∈ ℕ
30 nnrp 12484 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (4 ∈ ℕ → 4 ∈ ℝ+)
3129, 30ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . 25 4 ∈ ℝ+
32 0le2 11819 . . . . . . . . . . . . . . . . . . . . . . . . 25 0 ≤ 2
33 2lt4 11892 . . . . . . . . . . . . . . . . . . . . . . . . 25 2 < 4
34 modid 13356 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((2 ∈ ℝ ∧ 4 ∈ ℝ+) ∧ (0 ≤ 2 ∧ 2 < 4)) → (2 mod 4) = 2)
3528, 31, 32, 33, 34mp4an 693 . . . . . . . . . . . . . . . . . . . . . . . 24 (2 mod 4) = 2
3627, 35eqtrdi 2789 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑎↑2) = 1 → ((2 · (𝑎↑2)) mod 4) = 2)
3736eqeq1d 2740 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎↑2) = 1 → (((2 · (𝑎↑2)) mod 4) = 1 ↔ 2 = 1))
38 1ne2 11925 . . . . . . . . . . . . . . . . . . . . . . 23 1 ≠ 2
39 eqcom 2745 . . . . . . . . . . . . . . . . . . . . . . . 24 (2 = 1 ↔ 1 = 2)
40 eqneqall 2945 . . . . . . . . . . . . . . . . . . . . . . . . 25 (1 = 2 → (1 ≠ 2 → (𝑎𝑏𝑏𝑎)))
4140com12 32 . . . . . . . . . . . . . . . . . . . . . . . 24 (1 ≠ 2 → (1 = 2 → (𝑎𝑏𝑏𝑎)))
4239, 41syl5bi 245 . . . . . . . . . . . . . . . . . . . . . . 23 (1 ≠ 2 → (2 = 1 → (𝑎𝑏𝑏𝑎)))
4338, 42ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 (2 = 1 → (𝑎𝑏𝑏𝑎))
4437, 43syl6bi 256 . . . . . . . . . . . . . . . . . . . . 21 ((𝑎↑2) = 1 → (((2 · (𝑎↑2)) mod 4) = 1 → (𝑎𝑏𝑏𝑎)))
4523, 44syl6bi 256 . . . . . . . . . . . . . . . . . . . 20 (𝑎 ∈ ℕ → ((2 · (𝑎↑2)) ∈ ℙ → (((2 · (𝑎↑2)) mod 4) = 1 → (𝑎𝑏𝑏𝑎))))
4645impcomd 415 . . . . . . . . . . . . . . . . . . 19 (𝑎 ∈ ℕ → ((((2 · (𝑎↑2)) mod 4) = 1 ∧ (2 · (𝑎↑2)) ∈ ℙ) → (𝑎𝑏𝑏𝑎)))
4746com12 32 . . . . . . . . . . . . . . . . . 18 ((((2 · (𝑎↑2)) mod 4) = 1 ∧ (2 · (𝑎↑2)) ∈ ℙ) → (𝑎 ∈ ℕ → (𝑎𝑏𝑏𝑎)))
4817, 47syl6bi 256 . . . . . . . . . . . . . . . . 17 (𝑃 = (2 · (𝑎↑2)) → (((𝑃 mod 4) = 1 ∧ 𝑃 ∈ ℙ) → (𝑎 ∈ ℕ → (𝑎𝑏𝑏𝑎))))
4948expd 419 . . . . . . . . . . . . . . . 16 (𝑃 = (2 · (𝑎↑2)) → ((𝑃 mod 4) = 1 → (𝑃 ∈ ℙ → (𝑎 ∈ ℕ → (𝑎𝑏𝑏𝑎)))))
5049com34 91 . . . . . . . . . . . . . . 15 (𝑃 = (2 · (𝑎↑2)) → ((𝑃 mod 4) = 1 → (𝑎 ∈ ℕ → (𝑃 ∈ ℙ → (𝑎𝑏𝑏𝑎)))))
5150eqcoms 2746 . . . . . . . . . . . . . 14 ((2 · (𝑎↑2)) = 𝑃 → ((𝑃 mod 4) = 1 → (𝑎 ∈ ℕ → (𝑃 ∈ ℙ → (𝑎𝑏𝑏𝑎)))))
5251com14 96 . . . . . . . . . . . . 13 (𝑃 ∈ ℙ → ((𝑃 mod 4) = 1 → (𝑎 ∈ ℕ → ((2 · (𝑎↑2)) = 𝑃 → (𝑎𝑏𝑏𝑎)))))
5352imp31 421 . . . . . . . . . . . 12 (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ 𝑎 ∈ ℕ) → ((2 · (𝑎↑2)) = 𝑃 → (𝑎𝑏𝑏𝑎)))
5453ad2antrl 728 . . . . . . . . . . 11 ((𝑏 = 𝑎 ∧ (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ 𝑎 ∈ ℕ) ∧ 𝑏 ∈ ℕ)) → ((2 · (𝑎↑2)) = 𝑃 → (𝑎𝑏𝑏𝑎)))
5513, 54sylbid 243 . . . . . . . . . 10 ((𝑏 = 𝑎 ∧ (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ 𝑎 ∈ ℕ) ∧ 𝑏 ∈ ℕ)) → (((𝑎↑2) + (𝑏↑2)) = 𝑃 → (𝑎𝑏𝑏𝑎)))
5655expimpd 457 . . . . . . . . 9 (𝑏 = 𝑎 → (((((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ 𝑎 ∈ ℕ) ∧ 𝑏 ∈ ℕ) ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → (𝑎𝑏𝑏𝑎)))
57 2a1 28 . . . . . . . . 9 (𝑏𝑎 → (((((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ 𝑎 ∈ ℕ) ∧ 𝑏 ∈ ℕ) ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → (𝑎𝑏𝑏𝑎)))
5856, 57pm2.61ine 3017 . . . . . . . 8 (((((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ 𝑎 ∈ ℕ) ∧ 𝑏 ∈ ℕ) ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → (𝑎𝑏𝑏𝑎))
5958pm4.71d 565 . . . . . . 7 (((((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ 𝑎 ∈ ℕ) ∧ 𝑏 ∈ ℕ) ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → (𝑎𝑏 ↔ (𝑎𝑏𝑏𝑎)))
60 nnre 11724 . . . . . . . . . . 11 (𝑎 ∈ ℕ → 𝑎 ∈ ℝ)
6160adantl 485 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ 𝑎 ∈ ℕ) → 𝑎 ∈ ℝ)
62 nnre 11724 . . . . . . . . . 10 (𝑏 ∈ ℕ → 𝑏 ∈ ℝ)
63 ltlen 10820 . . . . . . . . . 10 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝑎 < 𝑏 ↔ (𝑎𝑏𝑏𝑎)))
6461, 62, 63syl2an 599 . . . . . . . . 9 ((((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ 𝑎 ∈ ℕ) ∧ 𝑏 ∈ ℕ) → (𝑎 < 𝑏 ↔ (𝑎𝑏𝑏𝑎)))
6564bibi2d 346 . . . . . . . 8 ((((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ 𝑎 ∈ ℕ) ∧ 𝑏 ∈ ℕ) → ((𝑎𝑏𝑎 < 𝑏) ↔ (𝑎𝑏 ↔ (𝑎𝑏𝑏𝑎))))
6665adantr 484 . . . . . . 7 (((((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ 𝑎 ∈ ℕ) ∧ 𝑏 ∈ ℕ) ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ((𝑎𝑏𝑎 < 𝑏) ↔ (𝑎𝑏 ↔ (𝑎𝑏𝑏𝑎))))
6759, 66mpbird 260 . . . . . 6 (((((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ 𝑎 ∈ ℕ) ∧ 𝑏 ∈ ℕ) ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → (𝑎𝑏𝑎 < 𝑏))
6867ex 416 . . . . 5 ((((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ 𝑎 ∈ ℕ) ∧ 𝑏 ∈ ℕ) → (((𝑎↑2) + (𝑏↑2)) = 𝑃 → (𝑎𝑏𝑎 < 𝑏)))
6968pm5.32rd 581 . . . 4 ((((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ 𝑎 ∈ ℕ) ∧ 𝑏 ∈ ℕ) → ((𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)))
7069reubidva 3291 . . 3 (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ 𝑎 ∈ ℕ) → (∃!𝑏 ∈ ℕ (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ ∃!𝑏 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)))
7170reubidva 3291 . 2 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → (∃!𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ ∃!𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)))
721, 71mpbid 235 1 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃!𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1542  wcel 2113  wne 2934  ∃!wreu 3055   class class class wbr 5031  (class class class)co 7171  cc 10614  cr 10615  0cc0 10616  1c1 10617   + caddc 10619   · cmul 10621   < clt 10754  cle 10755  cn 11717  2c2 11772  4c4 11774  0cn0 11977  cz 12063  +crp 12473   mod cmo 13329  cexp 13522  cprime 16113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5233  ax-pr 5297  ax-un 7480  ax-cnex 10672  ax-resscn 10673  ax-1cn 10674  ax-icn 10675  ax-addcl 10676  ax-addrcl 10677  ax-mulcl 10678  ax-mulrcl 10679  ax-mulcom 10680  ax-addass 10681  ax-mulass 10682  ax-distr 10683  ax-i2m1 10684  ax-1ne0 10685  ax-1rid 10686  ax-rnegex 10687  ax-rrecex 10688  ax-cnre 10689  ax-pre-lttri 10690  ax-pre-lttrn 10691  ax-pre-ltadd 10692  ax-pre-mulgt0 10693  ax-pre-sup 10694  ax-addf 10695  ax-mulf 10696
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3683  df-csb 3792  df-dif 3847  df-un 3849  df-in 3851  df-ss 3861  df-pss 3863  df-nul 4213  df-if 4416  df-pw 4491  df-sn 4518  df-pr 4520  df-tp 4522  df-op 4524  df-uni 4798  df-int 4838  df-iun 4884  df-iin 4885  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5484  df-se 5485  df-we 5486  df-xp 5532  df-rel 5533  df-cnv 5534  df-co 5535  df-dm 5536  df-rn 5537  df-res 5538  df-ima 5539  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-isom 6349  df-riota 7128  df-ov 7174  df-oprab 7175  df-mpo 7176  df-of 7426  df-ofr 7427  df-om 7601  df-1st 7715  df-2nd 7716  df-supp 7858  df-tpos 7922  df-wrecs 7977  df-recs 8038  df-rdg 8076  df-1o 8132  df-2o 8133  df-oadd 8136  df-er 8321  df-ec 8323  df-qs 8327  df-map 8440  df-pm 8441  df-ixp 8509  df-en 8557  df-dom 8558  df-sdom 8559  df-fin 8560  df-fsupp 8908  df-sup 8980  df-inf 8981  df-oi 9048  df-dju 9404  df-card 9442  df-pnf 10756  df-mnf 10757  df-xr 10758  df-ltxr 10759  df-le 10760  df-sub 10951  df-neg 10952  df-div 11377  df-nn 11718  df-2 11780  df-3 11781  df-4 11782  df-5 11783  df-6 11784  df-7 11785  df-8 11786  df-9 11787  df-n0 11978  df-xnn0 12050  df-z 12064  df-dec 12181  df-uz 12326  df-q 12432  df-rp 12474  df-fz 12983  df-fzo 13126  df-fl 13254  df-mod 13330  df-seq 13462  df-exp 13523  df-hash 13784  df-cj 14549  df-re 14550  df-im 14551  df-sqrt 14685  df-abs 14686  df-dvds 15701  df-gcd 15939  df-prm 16114  df-phi 16204  df-pc 16275  df-gz 16367  df-struct 16589  df-ndx 16590  df-slot 16591  df-base 16593  df-sets 16594  df-ress 16595  df-plusg 16682  df-mulr 16683  df-starv 16684  df-sca 16685  df-vsca 16686  df-ip 16687  df-tset 16688  df-ple 16689  df-ds 16691  df-unif 16692  df-hom 16693  df-cco 16694  df-0g 16819  df-gsum 16820  df-prds 16825  df-pws 16827  df-imas 16885  df-qus 16886  df-mre 16961  df-mrc 16962  df-acs 16964  df-mgm 17969  df-sgrp 18018  df-mnd 18029  df-mhm 18073  df-submnd 18074  df-grp 18223  df-minusg 18224  df-sbg 18225  df-mulg 18344  df-subg 18395  df-nsg 18396  df-eqg 18397  df-ghm 18475  df-cntz 18566  df-cmn 19027  df-abl 19028  df-mgp 19360  df-ur 19372  df-srg 19376  df-ring 19419  df-cring 19420  df-oppr 19496  df-dvdsr 19514  df-unit 19515  df-invr 19545  df-dvr 19556  df-rnghom 19590  df-drng 19624  df-field 19625  df-subrg 19653  df-lmod 19756  df-lss 19824  df-lsp 19864  df-sra 20064  df-rgmod 20065  df-lidl 20066  df-rsp 20067  df-2idl 20125  df-nzr 20151  df-rlreg 20176  df-domn 20177  df-idom 20178  df-cnfld 20219  df-zring 20291  df-zrh 20325  df-zn 20328  df-assa 20670  df-asp 20671  df-ascl 20672  df-psr 20723  df-mvr 20724  df-mpl 20725  df-opsr 20727  df-evls 20887  df-evl 20888  df-psr1 20956  df-vr1 20957  df-ply1 20958  df-coe1 20959  df-evl1 21087  df-mdeg 24805  df-deg1 24806  df-mon1 24883  df-uc1p 24884  df-q1p 24885  df-r1p 24886  df-lgs 26031
This theorem is referenced by:  2sqreunnltblem  26187  2sqreunnlt  26196
  Copyright terms: Public domain W3C validator