MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqreunnltlem Structured version   Visualization version   GIF version

Theorem 2sqreunnltlem 27394
Description: Lemma for 2sqreunnlt 27404. (Contributed by AV, 4-Jun-2023.) Specialization to different integers, proposed by GL. (Revised by AV, 11-Jun-2023.)
Assertion
Ref Expression
2sqreunnltlem ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃!𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
Distinct variable group:   𝑃,𝑎,𝑏

Proof of Theorem 2sqreunnltlem
StepHypRef Expression
1 2sqreunnlem1 27393 . 2 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃!𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
2 oveq1 7376 . . . . . . . . . . . . . . 15 (𝑏 = 𝑎 → (𝑏↑2) = (𝑎↑2))
32oveq2d 7385 . . . . . . . . . . . . . 14 (𝑏 = 𝑎 → ((𝑎↑2) + (𝑏↑2)) = ((𝑎↑2) + (𝑎↑2)))
43adantr 480 . . . . . . . . . . . . 13 ((𝑏 = 𝑎 ∧ (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ 𝑎 ∈ ℕ) ∧ 𝑏 ∈ ℕ)) → ((𝑎↑2) + (𝑏↑2)) = ((𝑎↑2) + (𝑎↑2)))
5 nncn 12170 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ ℕ → 𝑎 ∈ ℂ)
65sqcld 14085 . . . . . . . . . . . . . . . 16 (𝑎 ∈ ℕ → (𝑎↑2) ∈ ℂ)
7 2times 12293 . . . . . . . . . . . . . . . . 17 ((𝑎↑2) ∈ ℂ → (2 · (𝑎↑2)) = ((𝑎↑2) + (𝑎↑2)))
87eqcomd 2735 . . . . . . . . . . . . . . . 16 ((𝑎↑2) ∈ ℂ → ((𝑎↑2) + (𝑎↑2)) = (2 · (𝑎↑2)))
96, 8syl 17 . . . . . . . . . . . . . . 15 (𝑎 ∈ ℕ → ((𝑎↑2) + (𝑎↑2)) = (2 · (𝑎↑2)))
109adantl 481 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ 𝑎 ∈ ℕ) → ((𝑎↑2) + (𝑎↑2)) = (2 · (𝑎↑2)))
1110ad2antrl 728 . . . . . . . . . . . . 13 ((𝑏 = 𝑎 ∧ (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ 𝑎 ∈ ℕ) ∧ 𝑏 ∈ ℕ)) → ((𝑎↑2) + (𝑎↑2)) = (2 · (𝑎↑2)))
124, 11eqtrd 2764 . . . . . . . . . . . 12 ((𝑏 = 𝑎 ∧ (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ 𝑎 ∈ ℕ) ∧ 𝑏 ∈ ℕ)) → ((𝑎↑2) + (𝑏↑2)) = (2 · (𝑎↑2)))
1312eqeq1d 2731 . . . . . . . . . . 11 ((𝑏 = 𝑎 ∧ (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ 𝑎 ∈ ℕ) ∧ 𝑏 ∈ ℕ)) → (((𝑎↑2) + (𝑏↑2)) = 𝑃 ↔ (2 · (𝑎↑2)) = 𝑃))
14 oveq1 7376 . . . . . . . . . . . . . . . . . . . 20 (𝑃 = (2 · (𝑎↑2)) → (𝑃 mod 4) = ((2 · (𝑎↑2)) mod 4))
1514eqeq1d 2731 . . . . . . . . . . . . . . . . . . 19 (𝑃 = (2 · (𝑎↑2)) → ((𝑃 mod 4) = 1 ↔ ((2 · (𝑎↑2)) mod 4) = 1))
16 eleq1 2816 . . . . . . . . . . . . . . . . . . 19 (𝑃 = (2 · (𝑎↑2)) → (𝑃 ∈ ℙ ↔ (2 · (𝑎↑2)) ∈ ℙ))
1715, 16anbi12d 632 . . . . . . . . . . . . . . . . . 18 (𝑃 = (2 · (𝑎↑2)) → (((𝑃 mod 4) = 1 ∧ 𝑃 ∈ ℙ) ↔ (((2 · (𝑎↑2)) mod 4) = 1 ∧ (2 · (𝑎↑2)) ∈ ℙ)))
18 nnz 12526 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 ∈ ℕ → 𝑎 ∈ ℤ)
19 2nn0 12435 . . . . . . . . . . . . . . . . . . . . . . 23 2 ∈ ℕ0
20 zexpcl 14017 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑎 ∈ ℤ ∧ 2 ∈ ℕ0) → (𝑎↑2) ∈ ℤ)
2118, 19, 20sylancl 586 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 ∈ ℕ → (𝑎↑2) ∈ ℤ)
22 2mulprm 16639 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎↑2) ∈ ℤ → ((2 · (𝑎↑2)) ∈ ℙ ↔ (𝑎↑2) = 1))
2321, 22syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 ∈ ℕ → ((2 · (𝑎↑2)) ∈ ℙ ↔ (𝑎↑2) = 1))
24 oveq2 7377 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑎↑2) = 1 → (2 · (𝑎↑2)) = (2 · 1))
25 2t1e2 12320 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (2 · 1) = 2
2624, 25eqtrdi 2780 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑎↑2) = 1 → (2 · (𝑎↑2)) = 2)
2726oveq1d 7384 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑎↑2) = 1 → ((2 · (𝑎↑2)) mod 4) = (2 mod 4))
28 2re 12236 . . . . . . . . . . . . . . . . . . . . . . . . 25 2 ∈ ℝ
29 4nn 12245 . . . . . . . . . . . . . . . . . . . . . . . . . 26 4 ∈ ℕ
30 nnrp 12939 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (4 ∈ ℕ → 4 ∈ ℝ+)
3129, 30ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . 25 4 ∈ ℝ+
32 0le2 12264 . . . . . . . . . . . . . . . . . . . . . . . . 25 0 ≤ 2
33 2lt4 12332 . . . . . . . . . . . . . . . . . . . . . . . . 25 2 < 4
34 modid 13834 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((2 ∈ ℝ ∧ 4 ∈ ℝ+) ∧ (0 ≤ 2 ∧ 2 < 4)) → (2 mod 4) = 2)
3528, 31, 32, 33, 34mp4an 693 . . . . . . . . . . . . . . . . . . . . . . . 24 (2 mod 4) = 2
3627, 35eqtrdi 2780 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑎↑2) = 1 → ((2 · (𝑎↑2)) mod 4) = 2)
3736eqeq1d 2731 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎↑2) = 1 → (((2 · (𝑎↑2)) mod 4) = 1 ↔ 2 = 1))
38 1ne2 12365 . . . . . . . . . . . . . . . . . . . . . . 23 1 ≠ 2
39 eqcom 2736 . . . . . . . . . . . . . . . . . . . . . . . 24 (2 = 1 ↔ 1 = 2)
40 eqneqall 2936 . . . . . . . . . . . . . . . . . . . . . . . . 25 (1 = 2 → (1 ≠ 2 → (𝑎𝑏𝑏𝑎)))
4140com12 32 . . . . . . . . . . . . . . . . . . . . . . . 24 (1 ≠ 2 → (1 = 2 → (𝑎𝑏𝑏𝑎)))
4239, 41biimtrid 242 . . . . . . . . . . . . . . . . . . . . . . 23 (1 ≠ 2 → (2 = 1 → (𝑎𝑏𝑏𝑎)))
4338, 42ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 (2 = 1 → (𝑎𝑏𝑏𝑎))
4437, 43biimtrdi 253 . . . . . . . . . . . . . . . . . . . . 21 ((𝑎↑2) = 1 → (((2 · (𝑎↑2)) mod 4) = 1 → (𝑎𝑏𝑏𝑎)))
4523, 44biimtrdi 253 . . . . . . . . . . . . . . . . . . . 20 (𝑎 ∈ ℕ → ((2 · (𝑎↑2)) ∈ ℙ → (((2 · (𝑎↑2)) mod 4) = 1 → (𝑎𝑏𝑏𝑎))))
4645impcomd 411 . . . . . . . . . . . . . . . . . . 19 (𝑎 ∈ ℕ → ((((2 · (𝑎↑2)) mod 4) = 1 ∧ (2 · (𝑎↑2)) ∈ ℙ) → (𝑎𝑏𝑏𝑎)))
4746com12 32 . . . . . . . . . . . . . . . . . 18 ((((2 · (𝑎↑2)) mod 4) = 1 ∧ (2 · (𝑎↑2)) ∈ ℙ) → (𝑎 ∈ ℕ → (𝑎𝑏𝑏𝑎)))
4817, 47biimtrdi 253 . . . . . . . . . . . . . . . . 17 (𝑃 = (2 · (𝑎↑2)) → (((𝑃 mod 4) = 1 ∧ 𝑃 ∈ ℙ) → (𝑎 ∈ ℕ → (𝑎𝑏𝑏𝑎))))
4948expd 415 . . . . . . . . . . . . . . . 16 (𝑃 = (2 · (𝑎↑2)) → ((𝑃 mod 4) = 1 → (𝑃 ∈ ℙ → (𝑎 ∈ ℕ → (𝑎𝑏𝑏𝑎)))))
5049com34 91 . . . . . . . . . . . . . . 15 (𝑃 = (2 · (𝑎↑2)) → ((𝑃 mod 4) = 1 → (𝑎 ∈ ℕ → (𝑃 ∈ ℙ → (𝑎𝑏𝑏𝑎)))))
5150eqcoms 2737 . . . . . . . . . . . . . 14 ((2 · (𝑎↑2)) = 𝑃 → ((𝑃 mod 4) = 1 → (𝑎 ∈ ℕ → (𝑃 ∈ ℙ → (𝑎𝑏𝑏𝑎)))))
5251com14 96 . . . . . . . . . . . . 13 (𝑃 ∈ ℙ → ((𝑃 mod 4) = 1 → (𝑎 ∈ ℕ → ((2 · (𝑎↑2)) = 𝑃 → (𝑎𝑏𝑏𝑎)))))
5352imp31 417 . . . . . . . . . . . 12 (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ 𝑎 ∈ ℕ) → ((2 · (𝑎↑2)) = 𝑃 → (𝑎𝑏𝑏𝑎)))
5453ad2antrl 728 . . . . . . . . . . 11 ((𝑏 = 𝑎 ∧ (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ 𝑎 ∈ ℕ) ∧ 𝑏 ∈ ℕ)) → ((2 · (𝑎↑2)) = 𝑃 → (𝑎𝑏𝑏𝑎)))
5513, 54sylbid 240 . . . . . . . . . 10 ((𝑏 = 𝑎 ∧ (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ 𝑎 ∈ ℕ) ∧ 𝑏 ∈ ℕ)) → (((𝑎↑2) + (𝑏↑2)) = 𝑃 → (𝑎𝑏𝑏𝑎)))
5655expimpd 453 . . . . . . . . 9 (𝑏 = 𝑎 → (((((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ 𝑎 ∈ ℕ) ∧ 𝑏 ∈ ℕ) ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → (𝑎𝑏𝑏𝑎)))
57 2a1 28 . . . . . . . . 9 (𝑏𝑎 → (((((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ 𝑎 ∈ ℕ) ∧ 𝑏 ∈ ℕ) ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → (𝑎𝑏𝑏𝑎)))
5856, 57pm2.61ine 3008 . . . . . . . 8 (((((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ 𝑎 ∈ ℕ) ∧ 𝑏 ∈ ℕ) ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → (𝑎𝑏𝑏𝑎))
5958pm4.71d 561 . . . . . . 7 (((((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ 𝑎 ∈ ℕ) ∧ 𝑏 ∈ ℕ) ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → (𝑎𝑏 ↔ (𝑎𝑏𝑏𝑎)))
60 nnre 12169 . . . . . . . . . . 11 (𝑎 ∈ ℕ → 𝑎 ∈ ℝ)
6160adantl 481 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ 𝑎 ∈ ℕ) → 𝑎 ∈ ℝ)
62 nnre 12169 . . . . . . . . . 10 (𝑏 ∈ ℕ → 𝑏 ∈ ℝ)
63 ltlen 11251 . . . . . . . . . 10 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝑎 < 𝑏 ↔ (𝑎𝑏𝑏𝑎)))
6461, 62, 63syl2an 596 . . . . . . . . 9 ((((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ 𝑎 ∈ ℕ) ∧ 𝑏 ∈ ℕ) → (𝑎 < 𝑏 ↔ (𝑎𝑏𝑏𝑎)))
6564bibi2d 342 . . . . . . . 8 ((((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ 𝑎 ∈ ℕ) ∧ 𝑏 ∈ ℕ) → ((𝑎𝑏𝑎 < 𝑏) ↔ (𝑎𝑏 ↔ (𝑎𝑏𝑏𝑎))))
6665adantr 480 . . . . . . 7 (((((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ 𝑎 ∈ ℕ) ∧ 𝑏 ∈ ℕ) ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ((𝑎𝑏𝑎 < 𝑏) ↔ (𝑎𝑏 ↔ (𝑎𝑏𝑏𝑎))))
6759, 66mpbird 257 . . . . . 6 (((((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ 𝑎 ∈ ℕ) ∧ 𝑏 ∈ ℕ) ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → (𝑎𝑏𝑎 < 𝑏))
6867ex 412 . . . . 5 ((((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ 𝑎 ∈ ℕ) ∧ 𝑏 ∈ ℕ) → (((𝑎↑2) + (𝑏↑2)) = 𝑃 → (𝑎𝑏𝑎 < 𝑏)))
6968pm5.32rd 578 . . . 4 ((((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ 𝑎 ∈ ℕ) ∧ 𝑏 ∈ ℕ) → ((𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)))
7069reubidva 3367 . . 3 (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ 𝑎 ∈ ℕ) → (∃!𝑏 ∈ ℕ (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ ∃!𝑏 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)))
7170reubidva 3367 . 2 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → (∃!𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ ∃!𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)))
721, 71mpbid 232 1 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃!𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  ∃!wreu 3349   class class class wbr 5102  (class class class)co 7369  cc 11042  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049   < clt 11184  cle 11185  cn 12162  2c2 12217  4c4 12219  0cn0 12418  cz 12505  +crp 12927   mod cmo 13807  cexp 14002  cprime 16617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123  ax-mulf 11124
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-ofr 7634  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-er 8648  df-ec 8650  df-qs 8654  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-sup 9369  df-inf 9370  df-oi 9439  df-dju 9830  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-xnn0 12492  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-dvds 16199  df-gcd 16441  df-prm 16618  df-phi 16712  df-pc 16784  df-gz 16877  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-0g 17380  df-gsum 17381  df-prds 17386  df-pws 17388  df-imas 17447  df-qus 17448  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-mhm 18692  df-submnd 18693  df-grp 18850  df-minusg 18851  df-sbg 18852  df-mulg 18982  df-subg 19037  df-nsg 19038  df-eqg 19039  df-ghm 19127  df-cntz 19231  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-srg 20107  df-ring 20155  df-cring 20156  df-oppr 20257  df-dvdsr 20277  df-unit 20278  df-invr 20308  df-dvr 20321  df-rhm 20392  df-nzr 20433  df-subrng 20466  df-subrg 20490  df-rlreg 20614  df-domn 20615  df-idom 20616  df-drng 20651  df-field 20652  df-lmod 20800  df-lss 20870  df-lsp 20910  df-sra 21112  df-rgmod 21113  df-lidl 21150  df-rsp 21151  df-2idl 21192  df-cnfld 21297  df-zring 21389  df-zrh 21445  df-zn 21448  df-assa 21795  df-asp 21796  df-ascl 21797  df-psr 21851  df-mvr 21852  df-mpl 21853  df-opsr 21855  df-evls 22014  df-evl 22015  df-psr1 22097  df-vr1 22098  df-ply1 22099  df-coe1 22100  df-evl1 22236  df-mdeg 25993  df-deg1 25994  df-mon1 26069  df-uc1p 26070  df-q1p 26071  df-r1p 26072  df-lgs 27239
This theorem is referenced by:  2sqreunnltblem  27395  2sqreunnlt  27404
  Copyright terms: Public domain W3C validator