Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  evenprm2 Structured version   Visualization version   GIF version

Theorem evenprm2 43880
Description: A prime number is even iff it is 2. (Contributed by AV, 21-Jul-2020.)
Assertion
Ref Expression
evenprm2 (𝑃 ∈ ℙ → (𝑃 ∈ Even ↔ 𝑃 = 2))

Proof of Theorem evenprm2
StepHypRef Expression
1 2a1 28 . . 3 (𝑃 = 2 → (𝑃 ∈ ℙ → (𝑃 ∈ Even → 𝑃 = 2)))
2 df-ne 3017 . . . . . . . . 9 (𝑃 ≠ 2 ↔ ¬ 𝑃 = 2)
32biimpri 230 . . . . . . . 8 𝑃 = 2 → 𝑃 ≠ 2)
43anim2i 618 . . . . . . 7 ((𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2) → (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2))
54ancoms 461 . . . . . 6 ((¬ 𝑃 = 2 ∧ 𝑃 ∈ ℙ) → (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2))
6 eldifsn 4718 . . . . . 6 (𝑃 ∈ (ℙ ∖ {2}) ↔ (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2))
75, 6sylibr 236 . . . . 5 ((¬ 𝑃 = 2 ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ (ℙ ∖ {2}))
8 oddprmALTV 43853 . . . . 5 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ Odd )
9 oddneven 43810 . . . . . 6 (𝑃 ∈ Odd → ¬ 𝑃 ∈ Even )
109pm2.21d 121 . . . . 5 (𝑃 ∈ Odd → (𝑃 ∈ Even → 𝑃 = 2))
117, 8, 103syl 18 . . . 4 ((¬ 𝑃 = 2 ∧ 𝑃 ∈ ℙ) → (𝑃 ∈ Even → 𝑃 = 2))
1211ex 415 . . 3 𝑃 = 2 → (𝑃 ∈ ℙ → (𝑃 ∈ Even → 𝑃 = 2)))
131, 12pm2.61i 184 . 2 (𝑃 ∈ ℙ → (𝑃 ∈ Even → 𝑃 = 2))
14 2evenALTV 43858 . . 3 2 ∈ Even
15 eleq1 2900 . . 3 (𝑃 = 2 → (𝑃 ∈ Even ↔ 2 ∈ Even ))
1614, 15mpbiri 260 . 2 (𝑃 = 2 → 𝑃 ∈ Even )
1713, 16impbid1 227 1 (𝑃 ∈ ℙ → (𝑃 ∈ Even ↔ 𝑃 = 2))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wne 3016  cdif 3932  {csn 4566  2c2 11691  cprime 16014   Even ceven 43790   Odd codd 43791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-2o 8102  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-sup 8905  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-3 11700  df-n0 11897  df-z 11981  df-uz 12243  df-rp 12389  df-seq 13369  df-exp 13429  df-cj 14457  df-re 14458  df-im 14459  df-sqrt 14593  df-abs 14594  df-dvds 15607  df-prm 16015  df-even 43792  df-odd 43793
This theorem is referenced by:  oddprmne2  43881  sbgoldbaltlem1  43945
  Copyright terms: Public domain W3C validator