![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > evenprm2 | Structured version Visualization version GIF version |
Description: A prime number is even iff it is 2. (Contributed by AV, 21-Jul-2020.) |
Ref | Expression |
---|---|
evenprm2 | ⊢ (𝑃 ∈ ℙ → (𝑃 ∈ Even ↔ 𝑃 = 2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2a1 28 | . . 3 ⊢ (𝑃 = 2 → (𝑃 ∈ ℙ → (𝑃 ∈ Even → 𝑃 = 2))) | |
2 | df-ne 2933 | . . . . . . . . 9 ⊢ (𝑃 ≠ 2 ↔ ¬ 𝑃 = 2) | |
3 | 2 | biimpri 227 | . . . . . . . 8 ⊢ (¬ 𝑃 = 2 → 𝑃 ≠ 2) |
4 | 3 | anim2i 616 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2) → (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2)) |
5 | 4 | ancoms 458 | . . . . . 6 ⊢ ((¬ 𝑃 = 2 ∧ 𝑃 ∈ ℙ) → (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2)) |
6 | eldifsn 4783 | . . . . . 6 ⊢ (𝑃 ∈ (ℙ ∖ {2}) ↔ (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2)) | |
7 | 5, 6 | sylibr 233 | . . . . 5 ⊢ ((¬ 𝑃 = 2 ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ (ℙ ∖ {2})) |
8 | oddprmALTV 46900 | . . . . 5 ⊢ (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ Odd ) | |
9 | oddneven 46857 | . . . . . 6 ⊢ (𝑃 ∈ Odd → ¬ 𝑃 ∈ Even ) | |
10 | 9 | pm2.21d 121 | . . . . 5 ⊢ (𝑃 ∈ Odd → (𝑃 ∈ Even → 𝑃 = 2)) |
11 | 7, 8, 10 | 3syl 18 | . . . 4 ⊢ ((¬ 𝑃 = 2 ∧ 𝑃 ∈ ℙ) → (𝑃 ∈ Even → 𝑃 = 2)) |
12 | 11 | ex 412 | . . 3 ⊢ (¬ 𝑃 = 2 → (𝑃 ∈ ℙ → (𝑃 ∈ Even → 𝑃 = 2))) |
13 | 1, 12 | pm2.61i 182 | . 2 ⊢ (𝑃 ∈ ℙ → (𝑃 ∈ Even → 𝑃 = 2)) |
14 | 2evenALTV 46905 | . . 3 ⊢ 2 ∈ Even | |
15 | eleq1 2813 | . . 3 ⊢ (𝑃 = 2 → (𝑃 ∈ Even ↔ 2 ∈ Even )) | |
16 | 14, 15 | mpbiri 258 | . 2 ⊢ (𝑃 = 2 → 𝑃 ∈ Even ) |
17 | 13, 16 | impbid1 224 | 1 ⊢ (𝑃 ∈ ℙ → (𝑃 ∈ Even ↔ 𝑃 = 2)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ≠ wne 2932 ∖ cdif 3938 {csn 4621 2c2 12266 ℙcprime 16611 Even ceven 46837 Odd codd 46838 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 ax-pre-sup 11185 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-om 7850 df-2nd 7970 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-2o 8463 df-er 8700 df-en 8937 df-dom 8938 df-sdom 8939 df-fin 8940 df-sup 9434 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-3 12275 df-n0 12472 df-z 12558 df-uz 12822 df-rp 12976 df-seq 13968 df-exp 14029 df-cj 15048 df-re 15049 df-im 15050 df-sqrt 15184 df-abs 15185 df-dvds 16201 df-prm 16612 df-even 46839 df-odd 46840 |
This theorem is referenced by: oddprmne2 46928 sbgoldbaltlem1 46992 |
Copyright terms: Public domain | W3C validator |