MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reusq0 Structured version   Visualization version   GIF version

Theorem reusq0 15026
Description: A complex number is the square of exactly one complex number iff the given complex number is zero. (Contributed by AV, 21-Jun-2023.)
Assertion
Ref Expression
reusq0 (𝑋 ∈ ℂ → (∃!𝑥 ∈ ℂ (𝑥↑2) = 𝑋𝑋 = 0))
Distinct variable group:   𝑥,𝑋

Proof of Theorem reusq0
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 2a1 28 . . 3 (𝑋 = 0 → (𝑋 ∈ ℂ → (∃!𝑥 ∈ ℂ (𝑥↑2) = 𝑋𝑋 = 0)))
2 sqrtcl 14925 . . . . . . . 8 (𝑋 ∈ ℂ → (√‘𝑋) ∈ ℂ)
32adantr 484 . . . . . . 7 ((𝑋 ∈ ℂ ∧ ¬ 𝑋 = 0) → (√‘𝑋) ∈ ℂ)
42negcld 11176 . . . . . . . 8 (𝑋 ∈ ℂ → -(√‘𝑋) ∈ ℂ)
54adantr 484 . . . . . . 7 ((𝑋 ∈ ℂ ∧ ¬ 𝑋 = 0) → -(√‘𝑋) ∈ ℂ)
62eqnegd 11553 . . . . . . . . . 10 (𝑋 ∈ ℂ → ((√‘𝑋) = -(√‘𝑋) ↔ (√‘𝑋) = 0))
7 simpl 486 . . . . . . . . . . . 12 ((𝑋 ∈ ℂ ∧ (√‘𝑋) = 0) → 𝑋 ∈ ℂ)
8 simpr 488 . . . . . . . . . . . 12 ((𝑋 ∈ ℂ ∧ (√‘𝑋) = 0) → (√‘𝑋) = 0)
97, 8sqr00d 15005 . . . . . . . . . . 11 ((𝑋 ∈ ℂ ∧ (√‘𝑋) = 0) → 𝑋 = 0)
109ex 416 . . . . . . . . . 10 (𝑋 ∈ ℂ → ((√‘𝑋) = 0 → 𝑋 = 0))
116, 10sylbid 243 . . . . . . . . 9 (𝑋 ∈ ℂ → ((√‘𝑋) = -(√‘𝑋) → 𝑋 = 0))
1211necon3bd 2954 . . . . . . . 8 (𝑋 ∈ ℂ → (¬ 𝑋 = 0 → (√‘𝑋) ≠ -(√‘𝑋)))
1312imp 410 . . . . . . 7 ((𝑋 ∈ ℂ ∧ ¬ 𝑋 = 0) → (√‘𝑋) ≠ -(√‘𝑋))
143, 5, 133jca 1130 . . . . . 6 ((𝑋 ∈ ℂ ∧ ¬ 𝑋 = 0) → ((√‘𝑋) ∈ ℂ ∧ -(√‘𝑋) ∈ ℂ ∧ (√‘𝑋) ≠ -(√‘𝑋)))
15 sqrtth 14928 . . . . . . . 8 (𝑋 ∈ ℂ → ((√‘𝑋)↑2) = 𝑋)
16 sqneg 13688 . . . . . . . . . 10 ((√‘𝑋) ∈ ℂ → (-(√‘𝑋)↑2) = ((√‘𝑋)↑2))
172, 16syl 17 . . . . . . . . 9 (𝑋 ∈ ℂ → (-(√‘𝑋)↑2) = ((√‘𝑋)↑2))
1817, 15eqtrd 2777 . . . . . . . 8 (𝑋 ∈ ℂ → (-(√‘𝑋)↑2) = 𝑋)
1915, 18jca 515 . . . . . . 7 (𝑋 ∈ ℂ → (((√‘𝑋)↑2) = 𝑋 ∧ (-(√‘𝑋)↑2) = 𝑋))
2019adantr 484 . . . . . 6 ((𝑋 ∈ ℂ ∧ ¬ 𝑋 = 0) → (((√‘𝑋)↑2) = 𝑋 ∧ (-(√‘𝑋)↑2) = 𝑋))
21 oveq1 7220 . . . . . . . 8 (𝑥 = (√‘𝑋) → (𝑥↑2) = ((√‘𝑋)↑2))
2221eqeq1d 2739 . . . . . . 7 (𝑥 = (√‘𝑋) → ((𝑥↑2) = 𝑋 ↔ ((√‘𝑋)↑2) = 𝑋))
23 oveq1 7220 . . . . . . . 8 (𝑥 = -(√‘𝑋) → (𝑥↑2) = (-(√‘𝑋)↑2))
2423eqeq1d 2739 . . . . . . 7 (𝑥 = -(√‘𝑋) → ((𝑥↑2) = 𝑋 ↔ (-(√‘𝑋)↑2) = 𝑋))
2522, 242nreu 4356 . . . . . 6 (((√‘𝑋) ∈ ℂ ∧ -(√‘𝑋) ∈ ℂ ∧ (√‘𝑋) ≠ -(√‘𝑋)) → ((((√‘𝑋)↑2) = 𝑋 ∧ (-(√‘𝑋)↑2) = 𝑋) → ¬ ∃!𝑥 ∈ ℂ (𝑥↑2) = 𝑋))
2614, 20, 25sylc 65 . . . . 5 ((𝑋 ∈ ℂ ∧ ¬ 𝑋 = 0) → ¬ ∃!𝑥 ∈ ℂ (𝑥↑2) = 𝑋)
2726pm2.21d 121 . . . 4 ((𝑋 ∈ ℂ ∧ ¬ 𝑋 = 0) → (∃!𝑥 ∈ ℂ (𝑥↑2) = 𝑋𝑋 = 0))
2827expcom 417 . . 3 𝑋 = 0 → (𝑋 ∈ ℂ → (∃!𝑥 ∈ ℂ (𝑥↑2) = 𝑋𝑋 = 0)))
291, 28pm2.61i 185 . 2 (𝑋 ∈ ℂ → (∃!𝑥 ∈ ℂ (𝑥↑2) = 𝑋𝑋 = 0))
30 2nn 11903 . . . . . 6 2 ∈ ℕ
31 0cnd 10826 . . . . . . 7 (2 ∈ ℕ → 0 ∈ ℂ)
32 oveq1 7220 . . . . . . . . . 10 (𝑥 = 0 → (𝑥↑2) = (0↑2))
3332eqeq1d 2739 . . . . . . . . 9 (𝑥 = 0 → ((𝑥↑2) = 0 ↔ (0↑2) = 0))
34 eqeq1 2741 . . . . . . . . . . 11 (𝑥 = 0 → (𝑥 = 𝑦 ↔ 0 = 𝑦))
3534imbi2d 344 . . . . . . . . . 10 (𝑥 = 0 → (((𝑦↑2) = 0 → 𝑥 = 𝑦) ↔ ((𝑦↑2) = 0 → 0 = 𝑦)))
3635ralbidv 3118 . . . . . . . . 9 (𝑥 = 0 → (∀𝑦 ∈ ℂ ((𝑦↑2) = 0 → 𝑥 = 𝑦) ↔ ∀𝑦 ∈ ℂ ((𝑦↑2) = 0 → 0 = 𝑦)))
3733, 36anbi12d 634 . . . . . . . 8 (𝑥 = 0 → (((𝑥↑2) = 0 ∧ ∀𝑦 ∈ ℂ ((𝑦↑2) = 0 → 𝑥 = 𝑦)) ↔ ((0↑2) = 0 ∧ ∀𝑦 ∈ ℂ ((𝑦↑2) = 0 → 0 = 𝑦))))
3837adantl 485 . . . . . . 7 ((2 ∈ ℕ ∧ 𝑥 = 0) → (((𝑥↑2) = 0 ∧ ∀𝑦 ∈ ℂ ((𝑦↑2) = 0 → 𝑥 = 𝑦)) ↔ ((0↑2) = 0 ∧ ∀𝑦 ∈ ℂ ((𝑦↑2) = 0 → 0 = 𝑦))))
39 0exp 13670 . . . . . . . 8 (2 ∈ ℕ → (0↑2) = 0)
40 sqeq0 13692 . . . . . . . . . . . 12 (𝑦 ∈ ℂ → ((𝑦↑2) = 0 ↔ 𝑦 = 0))
4140biimpd 232 . . . . . . . . . . 11 (𝑦 ∈ ℂ → ((𝑦↑2) = 0 → 𝑦 = 0))
42 eqcom 2744 . . . . . . . . . . 11 (0 = 𝑦𝑦 = 0)
4341, 42syl6ibr 255 . . . . . . . . . 10 (𝑦 ∈ ℂ → ((𝑦↑2) = 0 → 0 = 𝑦))
4443adantl 485 . . . . . . . . 9 ((2 ∈ ℕ ∧ 𝑦 ∈ ℂ) → ((𝑦↑2) = 0 → 0 = 𝑦))
4544ralrimiva 3105 . . . . . . . 8 (2 ∈ ℕ → ∀𝑦 ∈ ℂ ((𝑦↑2) = 0 → 0 = 𝑦))
4639, 45jca 515 . . . . . . 7 (2 ∈ ℕ → ((0↑2) = 0 ∧ ∀𝑦 ∈ ℂ ((𝑦↑2) = 0 → 0 = 𝑦)))
4731, 38, 46rspcedvd 3540 . . . . . 6 (2 ∈ ℕ → ∃𝑥 ∈ ℂ ((𝑥↑2) = 0 ∧ ∀𝑦 ∈ ℂ ((𝑦↑2) = 0 → 𝑥 = 𝑦)))
4830, 47mp1i 13 . . . . 5 (𝑋 = 0 → ∃𝑥 ∈ ℂ ((𝑥↑2) = 0 ∧ ∀𝑦 ∈ ℂ ((𝑦↑2) = 0 → 𝑥 = 𝑦)))
49 eqeq2 2749 . . . . . . 7 (𝑋 = 0 → ((𝑥↑2) = 𝑋 ↔ (𝑥↑2) = 0))
50 eqeq2 2749 . . . . . . . . 9 (𝑋 = 0 → ((𝑦↑2) = 𝑋 ↔ (𝑦↑2) = 0))
5150imbi1d 345 . . . . . . . 8 (𝑋 = 0 → (((𝑦↑2) = 𝑋𝑥 = 𝑦) ↔ ((𝑦↑2) = 0 → 𝑥 = 𝑦)))
5251ralbidv 3118 . . . . . . 7 (𝑋 = 0 → (∀𝑦 ∈ ℂ ((𝑦↑2) = 𝑋𝑥 = 𝑦) ↔ ∀𝑦 ∈ ℂ ((𝑦↑2) = 0 → 𝑥 = 𝑦)))
5349, 52anbi12d 634 . . . . . 6 (𝑋 = 0 → (((𝑥↑2) = 𝑋 ∧ ∀𝑦 ∈ ℂ ((𝑦↑2) = 𝑋𝑥 = 𝑦)) ↔ ((𝑥↑2) = 0 ∧ ∀𝑦 ∈ ℂ ((𝑦↑2) = 0 → 𝑥 = 𝑦))))
5453rexbidv 3216 . . . . 5 (𝑋 = 0 → (∃𝑥 ∈ ℂ ((𝑥↑2) = 𝑋 ∧ ∀𝑦 ∈ ℂ ((𝑦↑2) = 𝑋𝑥 = 𝑦)) ↔ ∃𝑥 ∈ ℂ ((𝑥↑2) = 0 ∧ ∀𝑦 ∈ ℂ ((𝑦↑2) = 0 → 𝑥 = 𝑦))))
5548, 54mpbird 260 . . . 4 (𝑋 = 0 → ∃𝑥 ∈ ℂ ((𝑥↑2) = 𝑋 ∧ ∀𝑦 ∈ ℂ ((𝑦↑2) = 𝑋𝑥 = 𝑦)))
5655a1i 11 . . 3 (𝑋 ∈ ℂ → (𝑋 = 0 → ∃𝑥 ∈ ℂ ((𝑥↑2) = 𝑋 ∧ ∀𝑦 ∈ ℂ ((𝑦↑2) = 𝑋𝑥 = 𝑦))))
57 oveq1 7220 . . . . 5 (𝑥 = 𝑦 → (𝑥↑2) = (𝑦↑2))
5857eqeq1d 2739 . . . 4 (𝑥 = 𝑦 → ((𝑥↑2) = 𝑋 ↔ (𝑦↑2) = 𝑋))
5958reu8 3646 . . 3 (∃!𝑥 ∈ ℂ (𝑥↑2) = 𝑋 ↔ ∃𝑥 ∈ ℂ ((𝑥↑2) = 𝑋 ∧ ∀𝑦 ∈ ℂ ((𝑦↑2) = 𝑋𝑥 = 𝑦)))
6056, 59syl6ibr 255 . 2 (𝑋 ∈ ℂ → (𝑋 = 0 → ∃!𝑥 ∈ ℂ (𝑥↑2) = 𝑋))
6129, 60impbid 215 1 (𝑋 ∈ ℂ → (∃!𝑥 ∈ ℂ (𝑥↑2) = 𝑋𝑋 = 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110  wne 2940  wral 3061  wrex 3062  ∃!wreu 3063  cfv 6380  (class class class)co 7213  cc 10727  0cc0 10729  -cneg 11063  cn 11830  2c2 11885  cexp 13635  csqrt 14796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-sup 9058  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-n0 12091  df-z 12177  df-uz 12439  df-rp 12587  df-seq 13575  df-exp 13636  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799
This theorem is referenced by:  addsq2reu  26321
  Copyright terms: Public domain W3C validator