MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reusq0 Structured version   Visualization version   GIF version

Theorem reusq0 15407
Description: A complex number is the square of exactly one complex number iff the given complex number is zero. (Contributed by AV, 21-Jun-2023.)
Assertion
Ref Expression
reusq0 (𝑋 ∈ ℂ → (∃!𝑥 ∈ ℂ (𝑥↑2) = 𝑋𝑋 = 0))
Distinct variable group:   𝑥,𝑋

Proof of Theorem reusq0
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 2a1 28 . . 3 (𝑋 = 0 → (𝑋 ∈ ℂ → (∃!𝑥 ∈ ℂ (𝑥↑2) = 𝑋𝑋 = 0)))
2 sqrtcl 15304 . . . . . . . 8 (𝑋 ∈ ℂ → (√‘𝑋) ∈ ℂ)
32adantr 480 . . . . . . 7 ((𝑋 ∈ ℂ ∧ ¬ 𝑋 = 0) → (√‘𝑋) ∈ ℂ)
42negcld 11496 . . . . . . . 8 (𝑋 ∈ ℂ → -(√‘𝑋) ∈ ℂ)
54adantr 480 . . . . . . 7 ((𝑋 ∈ ℂ ∧ ¬ 𝑋 = 0) → -(√‘𝑋) ∈ ℂ)
62eqnegd 11879 . . . . . . . . . 10 (𝑋 ∈ ℂ → ((√‘𝑋) = -(√‘𝑋) ↔ (√‘𝑋) = 0))
7 simpl 482 . . . . . . . . . . . 12 ((𝑋 ∈ ℂ ∧ (√‘𝑋) = 0) → 𝑋 ∈ ℂ)
8 simpr 484 . . . . . . . . . . . 12 ((𝑋 ∈ ℂ ∧ (√‘𝑋) = 0) → (√‘𝑋) = 0)
97, 8sqr00d 15386 . . . . . . . . . . 11 ((𝑋 ∈ ℂ ∧ (√‘𝑋) = 0) → 𝑋 = 0)
109ex 412 . . . . . . . . . 10 (𝑋 ∈ ℂ → ((√‘𝑋) = 0 → 𝑋 = 0))
116, 10sylbid 240 . . . . . . . . 9 (𝑋 ∈ ℂ → ((√‘𝑋) = -(√‘𝑋) → 𝑋 = 0))
1211necon3bd 2939 . . . . . . . 8 (𝑋 ∈ ℂ → (¬ 𝑋 = 0 → (√‘𝑋) ≠ -(√‘𝑋)))
1312imp 406 . . . . . . 7 ((𝑋 ∈ ℂ ∧ ¬ 𝑋 = 0) → (√‘𝑋) ≠ -(√‘𝑋))
143, 5, 133jca 1128 . . . . . 6 ((𝑋 ∈ ℂ ∧ ¬ 𝑋 = 0) → ((√‘𝑋) ∈ ℂ ∧ -(√‘𝑋) ∈ ℂ ∧ (√‘𝑋) ≠ -(√‘𝑋)))
15 sqrtth 15307 . . . . . . . 8 (𝑋 ∈ ℂ → ((√‘𝑋)↑2) = 𝑋)
16 sqneg 14056 . . . . . . . . . 10 ((√‘𝑋) ∈ ℂ → (-(√‘𝑋)↑2) = ((√‘𝑋)↑2))
172, 16syl 17 . . . . . . . . 9 (𝑋 ∈ ℂ → (-(√‘𝑋)↑2) = ((√‘𝑋)↑2))
1817, 15eqtrd 2764 . . . . . . . 8 (𝑋 ∈ ℂ → (-(√‘𝑋)↑2) = 𝑋)
1915, 18jca 511 . . . . . . 7 (𝑋 ∈ ℂ → (((√‘𝑋)↑2) = 𝑋 ∧ (-(√‘𝑋)↑2) = 𝑋))
2019adantr 480 . . . . . 6 ((𝑋 ∈ ℂ ∧ ¬ 𝑋 = 0) → (((√‘𝑋)↑2) = 𝑋 ∧ (-(√‘𝑋)↑2) = 𝑋))
21 oveq1 7376 . . . . . . . 8 (𝑥 = (√‘𝑋) → (𝑥↑2) = ((√‘𝑋)↑2))
2221eqeq1d 2731 . . . . . . 7 (𝑥 = (√‘𝑋) → ((𝑥↑2) = 𝑋 ↔ ((√‘𝑋)↑2) = 𝑋))
23 oveq1 7376 . . . . . . . 8 (𝑥 = -(√‘𝑋) → (𝑥↑2) = (-(√‘𝑋)↑2))
2423eqeq1d 2731 . . . . . . 7 (𝑥 = -(√‘𝑋) → ((𝑥↑2) = 𝑋 ↔ (-(√‘𝑋)↑2) = 𝑋))
2522, 242nreu 4403 . . . . . 6 (((√‘𝑋) ∈ ℂ ∧ -(√‘𝑋) ∈ ℂ ∧ (√‘𝑋) ≠ -(√‘𝑋)) → ((((√‘𝑋)↑2) = 𝑋 ∧ (-(√‘𝑋)↑2) = 𝑋) → ¬ ∃!𝑥 ∈ ℂ (𝑥↑2) = 𝑋))
2614, 20, 25sylc 65 . . . . 5 ((𝑋 ∈ ℂ ∧ ¬ 𝑋 = 0) → ¬ ∃!𝑥 ∈ ℂ (𝑥↑2) = 𝑋)
2726pm2.21d 121 . . . 4 ((𝑋 ∈ ℂ ∧ ¬ 𝑋 = 0) → (∃!𝑥 ∈ ℂ (𝑥↑2) = 𝑋𝑋 = 0))
2827expcom 413 . . 3 𝑋 = 0 → (𝑋 ∈ ℂ → (∃!𝑥 ∈ ℂ (𝑥↑2) = 𝑋𝑋 = 0)))
291, 28pm2.61i 182 . 2 (𝑋 ∈ ℂ → (∃!𝑥 ∈ ℂ (𝑥↑2) = 𝑋𝑋 = 0))
30 2nn 12235 . . . . . 6 2 ∈ ℕ
31 0cnd 11143 . . . . . . 7 (2 ∈ ℕ → 0 ∈ ℂ)
32 oveq1 7376 . . . . . . . . . 10 (𝑥 = 0 → (𝑥↑2) = (0↑2))
3332eqeq1d 2731 . . . . . . . . 9 (𝑥 = 0 → ((𝑥↑2) = 0 ↔ (0↑2) = 0))
34 eqeq1 2733 . . . . . . . . . . 11 (𝑥 = 0 → (𝑥 = 𝑦 ↔ 0 = 𝑦))
3534imbi2d 340 . . . . . . . . . 10 (𝑥 = 0 → (((𝑦↑2) = 0 → 𝑥 = 𝑦) ↔ ((𝑦↑2) = 0 → 0 = 𝑦)))
3635ralbidv 3156 . . . . . . . . 9 (𝑥 = 0 → (∀𝑦 ∈ ℂ ((𝑦↑2) = 0 → 𝑥 = 𝑦) ↔ ∀𝑦 ∈ ℂ ((𝑦↑2) = 0 → 0 = 𝑦)))
3733, 36anbi12d 632 . . . . . . . 8 (𝑥 = 0 → (((𝑥↑2) = 0 ∧ ∀𝑦 ∈ ℂ ((𝑦↑2) = 0 → 𝑥 = 𝑦)) ↔ ((0↑2) = 0 ∧ ∀𝑦 ∈ ℂ ((𝑦↑2) = 0 → 0 = 𝑦))))
3837adantl 481 . . . . . . 7 ((2 ∈ ℕ ∧ 𝑥 = 0) → (((𝑥↑2) = 0 ∧ ∀𝑦 ∈ ℂ ((𝑦↑2) = 0 → 𝑥 = 𝑦)) ↔ ((0↑2) = 0 ∧ ∀𝑦 ∈ ℂ ((𝑦↑2) = 0 → 0 = 𝑦))))
39 0exp 14038 . . . . . . . 8 (2 ∈ ℕ → (0↑2) = 0)
40 sqeq0 14061 . . . . . . . . . . . 12 (𝑦 ∈ ℂ → ((𝑦↑2) = 0 ↔ 𝑦 = 0))
4140biimpd 229 . . . . . . . . . . 11 (𝑦 ∈ ℂ → ((𝑦↑2) = 0 → 𝑦 = 0))
42 eqcom 2736 . . . . . . . . . . 11 (0 = 𝑦𝑦 = 0)
4341, 42imbitrrdi 252 . . . . . . . . . 10 (𝑦 ∈ ℂ → ((𝑦↑2) = 0 → 0 = 𝑦))
4443adantl 481 . . . . . . . . 9 ((2 ∈ ℕ ∧ 𝑦 ∈ ℂ) → ((𝑦↑2) = 0 → 0 = 𝑦))
4544ralrimiva 3125 . . . . . . . 8 (2 ∈ ℕ → ∀𝑦 ∈ ℂ ((𝑦↑2) = 0 → 0 = 𝑦))
4639, 45jca 511 . . . . . . 7 (2 ∈ ℕ → ((0↑2) = 0 ∧ ∀𝑦 ∈ ℂ ((𝑦↑2) = 0 → 0 = 𝑦)))
4731, 38, 46rspcedvd 3587 . . . . . 6 (2 ∈ ℕ → ∃𝑥 ∈ ℂ ((𝑥↑2) = 0 ∧ ∀𝑦 ∈ ℂ ((𝑦↑2) = 0 → 𝑥 = 𝑦)))
4830, 47mp1i 13 . . . . 5 (𝑋 = 0 → ∃𝑥 ∈ ℂ ((𝑥↑2) = 0 ∧ ∀𝑦 ∈ ℂ ((𝑦↑2) = 0 → 𝑥 = 𝑦)))
49 eqeq2 2741 . . . . . . 7 (𝑋 = 0 → ((𝑥↑2) = 𝑋 ↔ (𝑥↑2) = 0))
50 eqeq2 2741 . . . . . . . . 9 (𝑋 = 0 → ((𝑦↑2) = 𝑋 ↔ (𝑦↑2) = 0))
5150imbi1d 341 . . . . . . . 8 (𝑋 = 0 → (((𝑦↑2) = 𝑋𝑥 = 𝑦) ↔ ((𝑦↑2) = 0 → 𝑥 = 𝑦)))
5251ralbidv 3156 . . . . . . 7 (𝑋 = 0 → (∀𝑦 ∈ ℂ ((𝑦↑2) = 𝑋𝑥 = 𝑦) ↔ ∀𝑦 ∈ ℂ ((𝑦↑2) = 0 → 𝑥 = 𝑦)))
5349, 52anbi12d 632 . . . . . 6 (𝑋 = 0 → (((𝑥↑2) = 𝑋 ∧ ∀𝑦 ∈ ℂ ((𝑦↑2) = 𝑋𝑥 = 𝑦)) ↔ ((𝑥↑2) = 0 ∧ ∀𝑦 ∈ ℂ ((𝑦↑2) = 0 → 𝑥 = 𝑦))))
5453rexbidv 3157 . . . . 5 (𝑋 = 0 → (∃𝑥 ∈ ℂ ((𝑥↑2) = 𝑋 ∧ ∀𝑦 ∈ ℂ ((𝑦↑2) = 𝑋𝑥 = 𝑦)) ↔ ∃𝑥 ∈ ℂ ((𝑥↑2) = 0 ∧ ∀𝑦 ∈ ℂ ((𝑦↑2) = 0 → 𝑥 = 𝑦))))
5548, 54mpbird 257 . . . 4 (𝑋 = 0 → ∃𝑥 ∈ ℂ ((𝑥↑2) = 𝑋 ∧ ∀𝑦 ∈ ℂ ((𝑦↑2) = 𝑋𝑥 = 𝑦)))
5655a1i 11 . . 3 (𝑋 ∈ ℂ → (𝑋 = 0 → ∃𝑥 ∈ ℂ ((𝑥↑2) = 𝑋 ∧ ∀𝑦 ∈ ℂ ((𝑦↑2) = 𝑋𝑥 = 𝑦))))
57 oveq1 7376 . . . . 5 (𝑥 = 𝑦 → (𝑥↑2) = (𝑦↑2))
5857eqeq1d 2731 . . . 4 (𝑥 = 𝑦 → ((𝑥↑2) = 𝑋 ↔ (𝑦↑2) = 𝑋))
5958reu8 3701 . . 3 (∃!𝑥 ∈ ℂ (𝑥↑2) = 𝑋 ↔ ∃𝑥 ∈ ℂ ((𝑥↑2) = 𝑋 ∧ ∀𝑦 ∈ ℂ ((𝑦↑2) = 𝑋𝑥 = 𝑦)))
6056, 59imbitrrdi 252 . 2 (𝑋 ∈ ℂ → (𝑋 = 0 → ∃!𝑥 ∈ ℂ (𝑥↑2) = 𝑋))
6129, 60impbid 212 1 (𝑋 ∈ ℂ → (∃!𝑥 ∈ ℂ (𝑥↑2) = 𝑋𝑋 = 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  ∃!wreu 3349  cfv 6499  (class class class)co 7369  cc 11042  0cc0 11044  -cneg 11382  cn 12162  2c2 12217  cexp 14002  csqrt 15175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-sup 9369  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-seq 13943  df-exp 14003  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178
This theorem is referenced by:  addsq2reu  27327
  Copyright terms: Public domain W3C validator