MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reusq0 Structured version   Visualization version   GIF version

Theorem reusq0 15431
Description: A complex number is the square of exactly one complex number iff the given complex number is zero. (Contributed by AV, 21-Jun-2023.)
Assertion
Ref Expression
reusq0 (𝑋 ∈ ℂ → (∃!𝑥 ∈ ℂ (𝑥↑2) = 𝑋𝑋 = 0))
Distinct variable group:   𝑥,𝑋

Proof of Theorem reusq0
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 2a1 28 . . 3 (𝑋 = 0 → (𝑋 ∈ ℂ → (∃!𝑥 ∈ ℂ (𝑥↑2) = 𝑋𝑋 = 0)))
2 sqrtcl 15328 . . . . . . . 8 (𝑋 ∈ ℂ → (√‘𝑋) ∈ ℂ)
32adantr 480 . . . . . . 7 ((𝑋 ∈ ℂ ∧ ¬ 𝑋 = 0) → (√‘𝑋) ∈ ℂ)
42negcld 11520 . . . . . . . 8 (𝑋 ∈ ℂ → -(√‘𝑋) ∈ ℂ)
54adantr 480 . . . . . . 7 ((𝑋 ∈ ℂ ∧ ¬ 𝑋 = 0) → -(√‘𝑋) ∈ ℂ)
62eqnegd 11903 . . . . . . . . . 10 (𝑋 ∈ ℂ → ((√‘𝑋) = -(√‘𝑋) ↔ (√‘𝑋) = 0))
7 simpl 482 . . . . . . . . . . . 12 ((𝑋 ∈ ℂ ∧ (√‘𝑋) = 0) → 𝑋 ∈ ℂ)
8 simpr 484 . . . . . . . . . . . 12 ((𝑋 ∈ ℂ ∧ (√‘𝑋) = 0) → (√‘𝑋) = 0)
97, 8sqr00d 15410 . . . . . . . . . . 11 ((𝑋 ∈ ℂ ∧ (√‘𝑋) = 0) → 𝑋 = 0)
109ex 412 . . . . . . . . . 10 (𝑋 ∈ ℂ → ((√‘𝑋) = 0 → 𝑋 = 0))
116, 10sylbid 240 . . . . . . . . 9 (𝑋 ∈ ℂ → ((√‘𝑋) = -(√‘𝑋) → 𝑋 = 0))
1211necon3bd 2939 . . . . . . . 8 (𝑋 ∈ ℂ → (¬ 𝑋 = 0 → (√‘𝑋) ≠ -(√‘𝑋)))
1312imp 406 . . . . . . 7 ((𝑋 ∈ ℂ ∧ ¬ 𝑋 = 0) → (√‘𝑋) ≠ -(√‘𝑋))
143, 5, 133jca 1128 . . . . . 6 ((𝑋 ∈ ℂ ∧ ¬ 𝑋 = 0) → ((√‘𝑋) ∈ ℂ ∧ -(√‘𝑋) ∈ ℂ ∧ (√‘𝑋) ≠ -(√‘𝑋)))
15 sqrtth 15331 . . . . . . . 8 (𝑋 ∈ ℂ → ((√‘𝑋)↑2) = 𝑋)
16 sqneg 14080 . . . . . . . . . 10 ((√‘𝑋) ∈ ℂ → (-(√‘𝑋)↑2) = ((√‘𝑋)↑2))
172, 16syl 17 . . . . . . . . 9 (𝑋 ∈ ℂ → (-(√‘𝑋)↑2) = ((√‘𝑋)↑2))
1817, 15eqtrd 2764 . . . . . . . 8 (𝑋 ∈ ℂ → (-(√‘𝑋)↑2) = 𝑋)
1915, 18jca 511 . . . . . . 7 (𝑋 ∈ ℂ → (((√‘𝑋)↑2) = 𝑋 ∧ (-(√‘𝑋)↑2) = 𝑋))
2019adantr 480 . . . . . 6 ((𝑋 ∈ ℂ ∧ ¬ 𝑋 = 0) → (((√‘𝑋)↑2) = 𝑋 ∧ (-(√‘𝑋)↑2) = 𝑋))
21 oveq1 7394 . . . . . . . 8 (𝑥 = (√‘𝑋) → (𝑥↑2) = ((√‘𝑋)↑2))
2221eqeq1d 2731 . . . . . . 7 (𝑥 = (√‘𝑋) → ((𝑥↑2) = 𝑋 ↔ ((√‘𝑋)↑2) = 𝑋))
23 oveq1 7394 . . . . . . . 8 (𝑥 = -(√‘𝑋) → (𝑥↑2) = (-(√‘𝑋)↑2))
2423eqeq1d 2731 . . . . . . 7 (𝑥 = -(√‘𝑋) → ((𝑥↑2) = 𝑋 ↔ (-(√‘𝑋)↑2) = 𝑋))
2522, 242nreu 4407 . . . . . 6 (((√‘𝑋) ∈ ℂ ∧ -(√‘𝑋) ∈ ℂ ∧ (√‘𝑋) ≠ -(√‘𝑋)) → ((((√‘𝑋)↑2) = 𝑋 ∧ (-(√‘𝑋)↑2) = 𝑋) → ¬ ∃!𝑥 ∈ ℂ (𝑥↑2) = 𝑋))
2614, 20, 25sylc 65 . . . . 5 ((𝑋 ∈ ℂ ∧ ¬ 𝑋 = 0) → ¬ ∃!𝑥 ∈ ℂ (𝑥↑2) = 𝑋)
2726pm2.21d 121 . . . 4 ((𝑋 ∈ ℂ ∧ ¬ 𝑋 = 0) → (∃!𝑥 ∈ ℂ (𝑥↑2) = 𝑋𝑋 = 0))
2827expcom 413 . . 3 𝑋 = 0 → (𝑋 ∈ ℂ → (∃!𝑥 ∈ ℂ (𝑥↑2) = 𝑋𝑋 = 0)))
291, 28pm2.61i 182 . 2 (𝑋 ∈ ℂ → (∃!𝑥 ∈ ℂ (𝑥↑2) = 𝑋𝑋 = 0))
30 2nn 12259 . . . . . 6 2 ∈ ℕ
31 0cnd 11167 . . . . . . 7 (2 ∈ ℕ → 0 ∈ ℂ)
32 oveq1 7394 . . . . . . . . . 10 (𝑥 = 0 → (𝑥↑2) = (0↑2))
3332eqeq1d 2731 . . . . . . . . 9 (𝑥 = 0 → ((𝑥↑2) = 0 ↔ (0↑2) = 0))
34 eqeq1 2733 . . . . . . . . . . 11 (𝑥 = 0 → (𝑥 = 𝑦 ↔ 0 = 𝑦))
3534imbi2d 340 . . . . . . . . . 10 (𝑥 = 0 → (((𝑦↑2) = 0 → 𝑥 = 𝑦) ↔ ((𝑦↑2) = 0 → 0 = 𝑦)))
3635ralbidv 3156 . . . . . . . . 9 (𝑥 = 0 → (∀𝑦 ∈ ℂ ((𝑦↑2) = 0 → 𝑥 = 𝑦) ↔ ∀𝑦 ∈ ℂ ((𝑦↑2) = 0 → 0 = 𝑦)))
3733, 36anbi12d 632 . . . . . . . 8 (𝑥 = 0 → (((𝑥↑2) = 0 ∧ ∀𝑦 ∈ ℂ ((𝑦↑2) = 0 → 𝑥 = 𝑦)) ↔ ((0↑2) = 0 ∧ ∀𝑦 ∈ ℂ ((𝑦↑2) = 0 → 0 = 𝑦))))
3837adantl 481 . . . . . . 7 ((2 ∈ ℕ ∧ 𝑥 = 0) → (((𝑥↑2) = 0 ∧ ∀𝑦 ∈ ℂ ((𝑦↑2) = 0 → 𝑥 = 𝑦)) ↔ ((0↑2) = 0 ∧ ∀𝑦 ∈ ℂ ((𝑦↑2) = 0 → 0 = 𝑦))))
39 0exp 14062 . . . . . . . 8 (2 ∈ ℕ → (0↑2) = 0)
40 sqeq0 14085 . . . . . . . . . . . 12 (𝑦 ∈ ℂ → ((𝑦↑2) = 0 ↔ 𝑦 = 0))
4140biimpd 229 . . . . . . . . . . 11 (𝑦 ∈ ℂ → ((𝑦↑2) = 0 → 𝑦 = 0))
42 eqcom 2736 . . . . . . . . . . 11 (0 = 𝑦𝑦 = 0)
4341, 42imbitrrdi 252 . . . . . . . . . 10 (𝑦 ∈ ℂ → ((𝑦↑2) = 0 → 0 = 𝑦))
4443adantl 481 . . . . . . . . 9 ((2 ∈ ℕ ∧ 𝑦 ∈ ℂ) → ((𝑦↑2) = 0 → 0 = 𝑦))
4544ralrimiva 3125 . . . . . . . 8 (2 ∈ ℕ → ∀𝑦 ∈ ℂ ((𝑦↑2) = 0 → 0 = 𝑦))
4639, 45jca 511 . . . . . . 7 (2 ∈ ℕ → ((0↑2) = 0 ∧ ∀𝑦 ∈ ℂ ((𝑦↑2) = 0 → 0 = 𝑦)))
4731, 38, 46rspcedvd 3590 . . . . . 6 (2 ∈ ℕ → ∃𝑥 ∈ ℂ ((𝑥↑2) = 0 ∧ ∀𝑦 ∈ ℂ ((𝑦↑2) = 0 → 𝑥 = 𝑦)))
4830, 47mp1i 13 . . . . 5 (𝑋 = 0 → ∃𝑥 ∈ ℂ ((𝑥↑2) = 0 ∧ ∀𝑦 ∈ ℂ ((𝑦↑2) = 0 → 𝑥 = 𝑦)))
49 eqeq2 2741 . . . . . . 7 (𝑋 = 0 → ((𝑥↑2) = 𝑋 ↔ (𝑥↑2) = 0))
50 eqeq2 2741 . . . . . . . . 9 (𝑋 = 0 → ((𝑦↑2) = 𝑋 ↔ (𝑦↑2) = 0))
5150imbi1d 341 . . . . . . . 8 (𝑋 = 0 → (((𝑦↑2) = 𝑋𝑥 = 𝑦) ↔ ((𝑦↑2) = 0 → 𝑥 = 𝑦)))
5251ralbidv 3156 . . . . . . 7 (𝑋 = 0 → (∀𝑦 ∈ ℂ ((𝑦↑2) = 𝑋𝑥 = 𝑦) ↔ ∀𝑦 ∈ ℂ ((𝑦↑2) = 0 → 𝑥 = 𝑦)))
5349, 52anbi12d 632 . . . . . 6 (𝑋 = 0 → (((𝑥↑2) = 𝑋 ∧ ∀𝑦 ∈ ℂ ((𝑦↑2) = 𝑋𝑥 = 𝑦)) ↔ ((𝑥↑2) = 0 ∧ ∀𝑦 ∈ ℂ ((𝑦↑2) = 0 → 𝑥 = 𝑦))))
5453rexbidv 3157 . . . . 5 (𝑋 = 0 → (∃𝑥 ∈ ℂ ((𝑥↑2) = 𝑋 ∧ ∀𝑦 ∈ ℂ ((𝑦↑2) = 𝑋𝑥 = 𝑦)) ↔ ∃𝑥 ∈ ℂ ((𝑥↑2) = 0 ∧ ∀𝑦 ∈ ℂ ((𝑦↑2) = 0 → 𝑥 = 𝑦))))
5548, 54mpbird 257 . . . 4 (𝑋 = 0 → ∃𝑥 ∈ ℂ ((𝑥↑2) = 𝑋 ∧ ∀𝑦 ∈ ℂ ((𝑦↑2) = 𝑋𝑥 = 𝑦)))
5655a1i 11 . . 3 (𝑋 ∈ ℂ → (𝑋 = 0 → ∃𝑥 ∈ ℂ ((𝑥↑2) = 𝑋 ∧ ∀𝑦 ∈ ℂ ((𝑦↑2) = 𝑋𝑥 = 𝑦))))
57 oveq1 7394 . . . . 5 (𝑥 = 𝑦 → (𝑥↑2) = (𝑦↑2))
5857eqeq1d 2731 . . . 4 (𝑥 = 𝑦 → ((𝑥↑2) = 𝑋 ↔ (𝑦↑2) = 𝑋))
5958reu8 3704 . . 3 (∃!𝑥 ∈ ℂ (𝑥↑2) = 𝑋 ↔ ∃𝑥 ∈ ℂ ((𝑥↑2) = 𝑋 ∧ ∀𝑦 ∈ ℂ ((𝑦↑2) = 𝑋𝑥 = 𝑦)))
6056, 59imbitrrdi 252 . 2 (𝑋 ∈ ℂ → (𝑋 = 0 → ∃!𝑥 ∈ ℂ (𝑥↑2) = 𝑋))
6129, 60impbid 212 1 (𝑋 ∈ ℂ → (∃!𝑥 ∈ ℂ (𝑥↑2) = 𝑋𝑋 = 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  ∃!wreu 3352  cfv 6511  (class class class)co 7387  cc 11066  0cc0 11068  -cneg 11406  cn 12186  2c2 12241  cexp 14026  csqrt 15199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202
This theorem is referenced by:  addsq2reu  27351
  Copyright terms: Public domain W3C validator