MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lcmf Structured version   Visualization version   GIF version

Theorem lcmf 16569
Description: Characterization of the least common multiple of a set of integers (without 0): A positiven integer is the least common multiple of a set of integers iff it divides each of the elements of the set and every integer which divides each of the elements of the set is greater than or equal to this integer. (Contributed by AV, 22-Aug-2020.)
Assertion
Ref Expression
lcmf ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → (𝐾 = (lcm𝑍) ↔ (∀𝑚𝑍 𝑚𝐾 ∧ ∀𝑘 ∈ ℕ (∀𝑚𝑍 𝑚𝑘𝐾𝑘))))
Distinct variable groups:   𝑘,𝐾,𝑚   𝑘,𝑍,𝑚

Proof of Theorem lcmf
StepHypRef Expression
1 dvdslcmf 16567 . . . . . 6 ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → ∀𝑚𝑍 𝑚 ∥ (lcm𝑍))
213adant3 1129 . . . . 5 ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) → ∀𝑚𝑍 𝑚 ∥ (lcm𝑍))
3 lcmfledvds 16568 . . . . . . 7 ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) → ((𝑘 ∈ ℕ ∧ ∀𝑚𝑍 𝑚𝑘) → (lcm𝑍) ≤ 𝑘))
43expdimp 452 . . . . . 6 (((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) ∧ 𝑘 ∈ ℕ) → (∀𝑚𝑍 𝑚𝑘 → (lcm𝑍) ≤ 𝑘))
54ralrimiva 3138 . . . . 5 ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) → ∀𝑘 ∈ ℕ (∀𝑚𝑍 𝑚𝑘 → (lcm𝑍) ≤ 𝑘))
62, 5jca 511 . . . 4 ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) → (∀𝑚𝑍 𝑚 ∥ (lcm𝑍) ∧ ∀𝑘 ∈ ℕ (∀𝑚𝑍 𝑚𝑘 → (lcm𝑍) ≤ 𝑘)))
76adantl 481 . . 3 ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → (∀𝑚𝑍 𝑚 ∥ (lcm𝑍) ∧ ∀𝑘 ∈ ℕ (∀𝑚𝑍 𝑚𝑘 → (lcm𝑍) ≤ 𝑘)))
8 breq2 5143 . . . . 5 (𝐾 = (lcm𝑍) → (𝑚𝐾𝑚 ∥ (lcm𝑍)))
98ralbidv 3169 . . . 4 (𝐾 = (lcm𝑍) → (∀𝑚𝑍 𝑚𝐾 ↔ ∀𝑚𝑍 𝑚 ∥ (lcm𝑍)))
10 breq1 5142 . . . . . 6 (𝐾 = (lcm𝑍) → (𝐾𝑘 ↔ (lcm𝑍) ≤ 𝑘))
1110imbi2d 340 . . . . 5 (𝐾 = (lcm𝑍) → ((∀𝑚𝑍 𝑚𝑘𝐾𝑘) ↔ (∀𝑚𝑍 𝑚𝑘 → (lcm𝑍) ≤ 𝑘)))
1211ralbidv 3169 . . . 4 (𝐾 = (lcm𝑍) → (∀𝑘 ∈ ℕ (∀𝑚𝑍 𝑚𝑘𝐾𝑘) ↔ ∀𝑘 ∈ ℕ (∀𝑚𝑍 𝑚𝑘 → (lcm𝑍) ≤ 𝑘)))
139, 12anbi12d 630 . . 3 (𝐾 = (lcm𝑍) → ((∀𝑚𝑍 𝑚𝐾 ∧ ∀𝑘 ∈ ℕ (∀𝑚𝑍 𝑚𝑘𝐾𝑘)) ↔ (∀𝑚𝑍 𝑚 ∥ (lcm𝑍) ∧ ∀𝑘 ∈ ℕ (∀𝑚𝑍 𝑚𝑘 → (lcm𝑍) ≤ 𝑘))))
147, 13syl5ibrcom 246 . 2 ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → (𝐾 = (lcm𝑍) → (∀𝑚𝑍 𝑚𝐾 ∧ ∀𝑘 ∈ ℕ (∀𝑚𝑍 𝑚𝑘𝐾𝑘))))
15 lcmfn0cl 16562 . . . . . 6 ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) → (lcm𝑍) ∈ ℕ)
1615adantl 481 . . . . 5 ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → (lcm𝑍) ∈ ℕ)
17 breq2 5143 . . . . . . . 8 (𝑘 = (lcm𝑍) → (𝑚𝑘𝑚 ∥ (lcm𝑍)))
1817ralbidv 3169 . . . . . . 7 (𝑘 = (lcm𝑍) → (∀𝑚𝑍 𝑚𝑘 ↔ ∀𝑚𝑍 𝑚 ∥ (lcm𝑍)))
19 breq2 5143 . . . . . . 7 (𝑘 = (lcm𝑍) → (𝐾𝑘𝐾 ≤ (lcm𝑍)))
2018, 19imbi12d 344 . . . . . 6 (𝑘 = (lcm𝑍) → ((∀𝑚𝑍 𝑚𝑘𝐾𝑘) ↔ (∀𝑚𝑍 𝑚 ∥ (lcm𝑍) → 𝐾 ≤ (lcm𝑍))))
2120rspcv 3600 . . . . 5 ((lcm𝑍) ∈ ℕ → (∀𝑘 ∈ ℕ (∀𝑚𝑍 𝑚𝑘𝐾𝑘) → (∀𝑚𝑍 𝑚 ∥ (lcm𝑍) → 𝐾 ≤ (lcm𝑍))))
2216, 21syl 17 . . . 4 ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → (∀𝑘 ∈ ℕ (∀𝑚𝑍 𝑚𝑘𝐾𝑘) → (∀𝑚𝑍 𝑚 ∥ (lcm𝑍) → 𝐾 ≤ (lcm𝑍))))
2322adantld 490 . . 3 ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → ((∀𝑚𝑍 𝑚𝐾 ∧ ∀𝑘 ∈ ℕ (∀𝑚𝑍 𝑚𝑘𝐾𝑘)) → (∀𝑚𝑍 𝑚 ∥ (lcm𝑍) → 𝐾 ≤ (lcm𝑍))))
242adantl 481 . . . . 5 ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → ∀𝑚𝑍 𝑚 ∥ (lcm𝑍))
25 nnre 12217 . . . . . . 7 (𝐾 ∈ ℕ → 𝐾 ∈ ℝ)
2615nnred 12225 . . . . . . 7 ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) → (lcm𝑍) ∈ ℝ)
27 leloe 11298 . . . . . . 7 ((𝐾 ∈ ℝ ∧ (lcm𝑍) ∈ ℝ) → (𝐾 ≤ (lcm𝑍) ↔ (𝐾 < (lcm𝑍) ∨ 𝐾 = (lcm𝑍))))
2825, 26, 27syl2an 595 . . . . . 6 ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → (𝐾 ≤ (lcm𝑍) ↔ (𝐾 < (lcm𝑍) ∨ 𝐾 = (lcm𝑍))))
29 lcmfledvds 16568 . . . . . . . . . . . . 13 ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) → ((𝐾 ∈ ℕ ∧ ∀𝑚𝑍 𝑚𝐾) → (lcm𝑍) ≤ 𝐾))
3029expd 415 . . . . . . . . . . . 12 ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) → (𝐾 ∈ ℕ → (∀𝑚𝑍 𝑚𝐾 → (lcm𝑍) ≤ 𝐾)))
3130impcom 407 . . . . . . . . . . 11 ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → (∀𝑚𝑍 𝑚𝐾 → (lcm𝑍) ≤ 𝐾))
32 lenlt 11290 . . . . . . . . . . . . 13 (((lcm𝑍) ∈ ℝ ∧ 𝐾 ∈ ℝ) → ((lcm𝑍) ≤ 𝐾 ↔ ¬ 𝐾 < (lcm𝑍)))
3326, 25, 32syl2anr 596 . . . . . . . . . . . 12 ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → ((lcm𝑍) ≤ 𝐾 ↔ ¬ 𝐾 < (lcm𝑍)))
34 pm2.21 123 . . . . . . . . . . . 12 𝐾 < (lcm𝑍) → (𝐾 < (lcm𝑍) → 𝐾 = (lcm𝑍)))
3533, 34syl6bi 253 . . . . . . . . . . 11 ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → ((lcm𝑍) ≤ 𝐾 → (𝐾 < (lcm𝑍) → 𝐾 = (lcm𝑍))))
3631, 35syldc 48 . . . . . . . . . 10 (∀𝑚𝑍 𝑚𝐾 → ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → (𝐾 < (lcm𝑍) → 𝐾 = (lcm𝑍))))
3736adantr 480 . . . . . . . . 9 ((∀𝑚𝑍 𝑚𝐾 ∧ ∀𝑘 ∈ ℕ (∀𝑚𝑍 𝑚𝑘𝐾𝑘)) → ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → (𝐾 < (lcm𝑍) → 𝐾 = (lcm𝑍))))
3837com13 88 . . . . . . . 8 (𝐾 < (lcm𝑍) → ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → ((∀𝑚𝑍 𝑚𝐾 ∧ ∀𝑘 ∈ ℕ (∀𝑚𝑍 𝑚𝑘𝐾𝑘)) → 𝐾 = (lcm𝑍))))
39 2a1 28 . . . . . . . 8 (𝐾 = (lcm𝑍) → ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → ((∀𝑚𝑍 𝑚𝐾 ∧ ∀𝑘 ∈ ℕ (∀𝑚𝑍 𝑚𝑘𝐾𝑘)) → 𝐾 = (lcm𝑍))))
4038, 39jaoi 854 . . . . . . 7 ((𝐾 < (lcm𝑍) ∨ 𝐾 = (lcm𝑍)) → ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → ((∀𝑚𝑍 𝑚𝐾 ∧ ∀𝑘 ∈ ℕ (∀𝑚𝑍 𝑚𝑘𝐾𝑘)) → 𝐾 = (lcm𝑍))))
4140com12 32 . . . . . 6 ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → ((𝐾 < (lcm𝑍) ∨ 𝐾 = (lcm𝑍)) → ((∀𝑚𝑍 𝑚𝐾 ∧ ∀𝑘 ∈ ℕ (∀𝑚𝑍 𝑚𝑘𝐾𝑘)) → 𝐾 = (lcm𝑍))))
4228, 41sylbid 239 . . . . 5 ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → (𝐾 ≤ (lcm𝑍) → ((∀𝑚𝑍 𝑚𝐾 ∧ ∀𝑘 ∈ ℕ (∀𝑚𝑍 𝑚𝑘𝐾𝑘)) → 𝐾 = (lcm𝑍))))
4324, 42embantd 59 . . . 4 ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → ((∀𝑚𝑍 𝑚 ∥ (lcm𝑍) → 𝐾 ≤ (lcm𝑍)) → ((∀𝑚𝑍 𝑚𝐾 ∧ ∀𝑘 ∈ ℕ (∀𝑚𝑍 𝑚𝑘𝐾𝑘)) → 𝐾 = (lcm𝑍))))
4443com23 86 . . 3 ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → ((∀𝑚𝑍 𝑚𝐾 ∧ ∀𝑘 ∈ ℕ (∀𝑚𝑍 𝑚𝑘𝐾𝑘)) → ((∀𝑚𝑍 𝑚 ∥ (lcm𝑍) → 𝐾 ≤ (lcm𝑍)) → 𝐾 = (lcm𝑍))))
4523, 44mpdd 43 . 2 ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → ((∀𝑚𝑍 𝑚𝐾 ∧ ∀𝑘 ∈ ℕ (∀𝑚𝑍 𝑚𝑘𝐾𝑘)) → 𝐾 = (lcm𝑍)))
4614, 45impbid 211 1 ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → (𝐾 = (lcm𝑍) ↔ (∀𝑚𝑍 𝑚𝐾 ∧ ∀𝑘 ∈ ℕ (∀𝑚𝑍 𝑚𝑘𝐾𝑘))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 844  w3a 1084   = wceq 1533  wcel 2098  wnel 3038  wral 3053  wss 3941   class class class wbr 5139  cfv 6534  Fincfn 8936  cr 11106  0cc0 11107   < clt 11246  cle 11247  cn 12210  cz 12556  cdvds 16196  lcmclcmf 16525
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-inf2 9633  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184  ax-pre-sup 11185
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-int 4942  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-se 5623  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-isom 6543  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-om 7850  df-1st 7969  df-2nd 7970  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8700  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-sup 9434  df-inf 9435  df-oi 9502  df-card 9931  df-pnf 11248  df-mnf 11249  df-xr 11250  df-ltxr 11251  df-le 11252  df-sub 11444  df-neg 11445  df-div 11870  df-nn 12211  df-2 12273  df-3 12274  df-n0 12471  df-z 12557  df-uz 12821  df-rp 12973  df-fz 13483  df-fzo 13626  df-seq 13965  df-exp 14026  df-hash 14289  df-cj 15044  df-re 15045  df-im 15046  df-sqrt 15180  df-abs 15181  df-clim 15430  df-prod 15848  df-dvds 16197  df-lcmf 16527
This theorem is referenced by:  lcmftp  16572  lcmfunsnlem2lem2  16575
  Copyright terms: Public domain W3C validator