MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lcmf Structured version   Visualization version   GIF version

Theorem lcmf 16652
Description: Characterization of the least common multiple of a set of integers (without 0): A positiven integer is the least common multiple of a set of integers iff it divides each of the elements of the set and every integer which divides each of the elements of the set is greater than or equal to this integer. (Contributed by AV, 22-Aug-2020.)
Assertion
Ref Expression
lcmf ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → (𝐾 = (lcm𝑍) ↔ (∀𝑚𝑍 𝑚𝐾 ∧ ∀𝑘 ∈ ℕ (∀𝑚𝑍 𝑚𝑘𝐾𝑘))))
Distinct variable groups:   𝑘,𝐾,𝑚   𝑘,𝑍,𝑚

Proof of Theorem lcmf
StepHypRef Expression
1 dvdslcmf 16650 . . . . . 6 ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → ∀𝑚𝑍 𝑚 ∥ (lcm𝑍))
213adant3 1132 . . . . 5 ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) → ∀𝑚𝑍 𝑚 ∥ (lcm𝑍))
3 lcmfledvds 16651 . . . . . . 7 ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) → ((𝑘 ∈ ℕ ∧ ∀𝑚𝑍 𝑚𝑘) → (lcm𝑍) ≤ 𝑘))
43expdimp 452 . . . . . 6 (((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) ∧ 𝑘 ∈ ℕ) → (∀𝑚𝑍 𝑚𝑘 → (lcm𝑍) ≤ 𝑘))
54ralrimiva 3132 . . . . 5 ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) → ∀𝑘 ∈ ℕ (∀𝑚𝑍 𝑚𝑘 → (lcm𝑍) ≤ 𝑘))
62, 5jca 511 . . . 4 ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) → (∀𝑚𝑍 𝑚 ∥ (lcm𝑍) ∧ ∀𝑘 ∈ ℕ (∀𝑚𝑍 𝑚𝑘 → (lcm𝑍) ≤ 𝑘)))
76adantl 481 . . 3 ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → (∀𝑚𝑍 𝑚 ∥ (lcm𝑍) ∧ ∀𝑘 ∈ ℕ (∀𝑚𝑍 𝑚𝑘 → (lcm𝑍) ≤ 𝑘)))
8 breq2 5123 . . . . 5 (𝐾 = (lcm𝑍) → (𝑚𝐾𝑚 ∥ (lcm𝑍)))
98ralbidv 3163 . . . 4 (𝐾 = (lcm𝑍) → (∀𝑚𝑍 𝑚𝐾 ↔ ∀𝑚𝑍 𝑚 ∥ (lcm𝑍)))
10 breq1 5122 . . . . . 6 (𝐾 = (lcm𝑍) → (𝐾𝑘 ↔ (lcm𝑍) ≤ 𝑘))
1110imbi2d 340 . . . . 5 (𝐾 = (lcm𝑍) → ((∀𝑚𝑍 𝑚𝑘𝐾𝑘) ↔ (∀𝑚𝑍 𝑚𝑘 → (lcm𝑍) ≤ 𝑘)))
1211ralbidv 3163 . . . 4 (𝐾 = (lcm𝑍) → (∀𝑘 ∈ ℕ (∀𝑚𝑍 𝑚𝑘𝐾𝑘) ↔ ∀𝑘 ∈ ℕ (∀𝑚𝑍 𝑚𝑘 → (lcm𝑍) ≤ 𝑘)))
139, 12anbi12d 632 . . 3 (𝐾 = (lcm𝑍) → ((∀𝑚𝑍 𝑚𝐾 ∧ ∀𝑘 ∈ ℕ (∀𝑚𝑍 𝑚𝑘𝐾𝑘)) ↔ (∀𝑚𝑍 𝑚 ∥ (lcm𝑍) ∧ ∀𝑘 ∈ ℕ (∀𝑚𝑍 𝑚𝑘 → (lcm𝑍) ≤ 𝑘))))
147, 13syl5ibrcom 247 . 2 ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → (𝐾 = (lcm𝑍) → (∀𝑚𝑍 𝑚𝐾 ∧ ∀𝑘 ∈ ℕ (∀𝑚𝑍 𝑚𝑘𝐾𝑘))))
15 lcmfn0cl 16645 . . . . . 6 ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) → (lcm𝑍) ∈ ℕ)
1615adantl 481 . . . . 5 ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → (lcm𝑍) ∈ ℕ)
17 breq2 5123 . . . . . . . 8 (𝑘 = (lcm𝑍) → (𝑚𝑘𝑚 ∥ (lcm𝑍)))
1817ralbidv 3163 . . . . . . 7 (𝑘 = (lcm𝑍) → (∀𝑚𝑍 𝑚𝑘 ↔ ∀𝑚𝑍 𝑚 ∥ (lcm𝑍)))
19 breq2 5123 . . . . . . 7 (𝑘 = (lcm𝑍) → (𝐾𝑘𝐾 ≤ (lcm𝑍)))
2018, 19imbi12d 344 . . . . . 6 (𝑘 = (lcm𝑍) → ((∀𝑚𝑍 𝑚𝑘𝐾𝑘) ↔ (∀𝑚𝑍 𝑚 ∥ (lcm𝑍) → 𝐾 ≤ (lcm𝑍))))
2120rspcv 3597 . . . . 5 ((lcm𝑍) ∈ ℕ → (∀𝑘 ∈ ℕ (∀𝑚𝑍 𝑚𝑘𝐾𝑘) → (∀𝑚𝑍 𝑚 ∥ (lcm𝑍) → 𝐾 ≤ (lcm𝑍))))
2216, 21syl 17 . . . 4 ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → (∀𝑘 ∈ ℕ (∀𝑚𝑍 𝑚𝑘𝐾𝑘) → (∀𝑚𝑍 𝑚 ∥ (lcm𝑍) → 𝐾 ≤ (lcm𝑍))))
2322adantld 490 . . 3 ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → ((∀𝑚𝑍 𝑚𝐾 ∧ ∀𝑘 ∈ ℕ (∀𝑚𝑍 𝑚𝑘𝐾𝑘)) → (∀𝑚𝑍 𝑚 ∥ (lcm𝑍) → 𝐾 ≤ (lcm𝑍))))
242adantl 481 . . . . 5 ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → ∀𝑚𝑍 𝑚 ∥ (lcm𝑍))
25 nnre 12247 . . . . . . 7 (𝐾 ∈ ℕ → 𝐾 ∈ ℝ)
2615nnred 12255 . . . . . . 7 ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) → (lcm𝑍) ∈ ℝ)
27 leloe 11321 . . . . . . 7 ((𝐾 ∈ ℝ ∧ (lcm𝑍) ∈ ℝ) → (𝐾 ≤ (lcm𝑍) ↔ (𝐾 < (lcm𝑍) ∨ 𝐾 = (lcm𝑍))))
2825, 26, 27syl2an 596 . . . . . 6 ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → (𝐾 ≤ (lcm𝑍) ↔ (𝐾 < (lcm𝑍) ∨ 𝐾 = (lcm𝑍))))
29 lcmfledvds 16651 . . . . . . . . . . . . 13 ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) → ((𝐾 ∈ ℕ ∧ ∀𝑚𝑍 𝑚𝐾) → (lcm𝑍) ≤ 𝐾))
3029expd 415 . . . . . . . . . . . 12 ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) → (𝐾 ∈ ℕ → (∀𝑚𝑍 𝑚𝐾 → (lcm𝑍) ≤ 𝐾)))
3130impcom 407 . . . . . . . . . . 11 ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → (∀𝑚𝑍 𝑚𝐾 → (lcm𝑍) ≤ 𝐾))
32 lenlt 11313 . . . . . . . . . . . . 13 (((lcm𝑍) ∈ ℝ ∧ 𝐾 ∈ ℝ) → ((lcm𝑍) ≤ 𝐾 ↔ ¬ 𝐾 < (lcm𝑍)))
3326, 25, 32syl2anr 597 . . . . . . . . . . . 12 ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → ((lcm𝑍) ≤ 𝐾 ↔ ¬ 𝐾 < (lcm𝑍)))
34 pm2.21 123 . . . . . . . . . . . 12 𝐾 < (lcm𝑍) → (𝐾 < (lcm𝑍) → 𝐾 = (lcm𝑍)))
3533, 34biimtrdi 253 . . . . . . . . . . 11 ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → ((lcm𝑍) ≤ 𝐾 → (𝐾 < (lcm𝑍) → 𝐾 = (lcm𝑍))))
3631, 35syldc 48 . . . . . . . . . 10 (∀𝑚𝑍 𝑚𝐾 → ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → (𝐾 < (lcm𝑍) → 𝐾 = (lcm𝑍))))
3736adantr 480 . . . . . . . . 9 ((∀𝑚𝑍 𝑚𝐾 ∧ ∀𝑘 ∈ ℕ (∀𝑚𝑍 𝑚𝑘𝐾𝑘)) → ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → (𝐾 < (lcm𝑍) → 𝐾 = (lcm𝑍))))
3837com13 88 . . . . . . . 8 (𝐾 < (lcm𝑍) → ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → ((∀𝑚𝑍 𝑚𝐾 ∧ ∀𝑘 ∈ ℕ (∀𝑚𝑍 𝑚𝑘𝐾𝑘)) → 𝐾 = (lcm𝑍))))
39 2a1 28 . . . . . . . 8 (𝐾 = (lcm𝑍) → ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → ((∀𝑚𝑍 𝑚𝐾 ∧ ∀𝑘 ∈ ℕ (∀𝑚𝑍 𝑚𝑘𝐾𝑘)) → 𝐾 = (lcm𝑍))))
4038, 39jaoi 857 . . . . . . 7 ((𝐾 < (lcm𝑍) ∨ 𝐾 = (lcm𝑍)) → ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → ((∀𝑚𝑍 𝑚𝐾 ∧ ∀𝑘 ∈ ℕ (∀𝑚𝑍 𝑚𝑘𝐾𝑘)) → 𝐾 = (lcm𝑍))))
4140com12 32 . . . . . 6 ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → ((𝐾 < (lcm𝑍) ∨ 𝐾 = (lcm𝑍)) → ((∀𝑚𝑍 𝑚𝐾 ∧ ∀𝑘 ∈ ℕ (∀𝑚𝑍 𝑚𝑘𝐾𝑘)) → 𝐾 = (lcm𝑍))))
4228, 41sylbid 240 . . . . 5 ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → (𝐾 ≤ (lcm𝑍) → ((∀𝑚𝑍 𝑚𝐾 ∧ ∀𝑘 ∈ ℕ (∀𝑚𝑍 𝑚𝑘𝐾𝑘)) → 𝐾 = (lcm𝑍))))
4324, 42embantd 59 . . . 4 ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → ((∀𝑚𝑍 𝑚 ∥ (lcm𝑍) → 𝐾 ≤ (lcm𝑍)) → ((∀𝑚𝑍 𝑚𝐾 ∧ ∀𝑘 ∈ ℕ (∀𝑚𝑍 𝑚𝑘𝐾𝑘)) → 𝐾 = (lcm𝑍))))
4443com23 86 . . 3 ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → ((∀𝑚𝑍 𝑚𝐾 ∧ ∀𝑘 ∈ ℕ (∀𝑚𝑍 𝑚𝑘𝐾𝑘)) → ((∀𝑚𝑍 𝑚 ∥ (lcm𝑍) → 𝐾 ≤ (lcm𝑍)) → 𝐾 = (lcm𝑍))))
4523, 44mpdd 43 . 2 ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → ((∀𝑚𝑍 𝑚𝐾 ∧ ∀𝑘 ∈ ℕ (∀𝑚𝑍 𝑚𝑘𝐾𝑘)) → 𝐾 = (lcm𝑍)))
4614, 45impbid 212 1 ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → (𝐾 = (lcm𝑍) ↔ (∀𝑚𝑍 𝑚𝐾 ∧ ∀𝑘 ∈ ℕ (∀𝑚𝑍 𝑚𝑘𝐾𝑘))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2108  wnel 3036  wral 3051  wss 3926   class class class wbr 5119  cfv 6531  Fincfn 8959  cr 11128  0cc0 11129   < clt 11269  cle 11270  cn 12240  cz 12588  cdvds 16272  lcmclcmf 16608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-inf 9455  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-z 12589  df-uz 12853  df-rp 13009  df-fz 13525  df-fzo 13672  df-seq 14020  df-exp 14080  df-hash 14349  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-clim 15504  df-prod 15920  df-dvds 16273  df-lcmf 16610
This theorem is referenced by:  lcmftp  16655  lcmfunsnlem2lem2  16658
  Copyright terms: Public domain W3C validator