MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lcmf Structured version   Visualization version   GIF version

Theorem lcmf 16501
Description: Characterization of the least common multiple of a set of integers (without 0): A positiven integer is the least common multiple of a set of integers iff it divides each of the elements of the set and every integer which divides each of the elements of the set is greater than or equal to this integer. (Contributed by AV, 22-Aug-2020.)
Assertion
Ref Expression
lcmf ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → (𝐾 = (lcm𝑍) ↔ (∀𝑚𝑍 𝑚𝐾 ∧ ∀𝑘 ∈ ℕ (∀𝑚𝑍 𝑚𝑘𝐾𝑘))))
Distinct variable groups:   𝑘,𝐾,𝑚   𝑘,𝑍,𝑚

Proof of Theorem lcmf
StepHypRef Expression
1 dvdslcmf 16499 . . . . . 6 ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → ∀𝑚𝑍 𝑚 ∥ (lcm𝑍))
213adant3 1132 . . . . 5 ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) → ∀𝑚𝑍 𝑚 ∥ (lcm𝑍))
3 lcmfledvds 16500 . . . . . . 7 ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) → ((𝑘 ∈ ℕ ∧ ∀𝑚𝑍 𝑚𝑘) → (lcm𝑍) ≤ 𝑘))
43expdimp 453 . . . . . 6 (((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) ∧ 𝑘 ∈ ℕ) → (∀𝑚𝑍 𝑚𝑘 → (lcm𝑍) ≤ 𝑘))
54ralrimiva 3141 . . . . 5 ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) → ∀𝑘 ∈ ℕ (∀𝑚𝑍 𝑚𝑘 → (lcm𝑍) ≤ 𝑘))
62, 5jca 512 . . . 4 ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) → (∀𝑚𝑍 𝑚 ∥ (lcm𝑍) ∧ ∀𝑘 ∈ ℕ (∀𝑚𝑍 𝑚𝑘 → (lcm𝑍) ≤ 𝑘)))
76adantl 482 . . 3 ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → (∀𝑚𝑍 𝑚 ∥ (lcm𝑍) ∧ ∀𝑘 ∈ ℕ (∀𝑚𝑍 𝑚𝑘 → (lcm𝑍) ≤ 𝑘)))
8 breq2 5107 . . . . 5 (𝐾 = (lcm𝑍) → (𝑚𝐾𝑚 ∥ (lcm𝑍)))
98ralbidv 3172 . . . 4 (𝐾 = (lcm𝑍) → (∀𝑚𝑍 𝑚𝐾 ↔ ∀𝑚𝑍 𝑚 ∥ (lcm𝑍)))
10 breq1 5106 . . . . . 6 (𝐾 = (lcm𝑍) → (𝐾𝑘 ↔ (lcm𝑍) ≤ 𝑘))
1110imbi2d 340 . . . . 5 (𝐾 = (lcm𝑍) → ((∀𝑚𝑍 𝑚𝑘𝐾𝑘) ↔ (∀𝑚𝑍 𝑚𝑘 → (lcm𝑍) ≤ 𝑘)))
1211ralbidv 3172 . . . 4 (𝐾 = (lcm𝑍) → (∀𝑘 ∈ ℕ (∀𝑚𝑍 𝑚𝑘𝐾𝑘) ↔ ∀𝑘 ∈ ℕ (∀𝑚𝑍 𝑚𝑘 → (lcm𝑍) ≤ 𝑘)))
139, 12anbi12d 631 . . 3 (𝐾 = (lcm𝑍) → ((∀𝑚𝑍 𝑚𝐾 ∧ ∀𝑘 ∈ ℕ (∀𝑚𝑍 𝑚𝑘𝐾𝑘)) ↔ (∀𝑚𝑍 𝑚 ∥ (lcm𝑍) ∧ ∀𝑘 ∈ ℕ (∀𝑚𝑍 𝑚𝑘 → (lcm𝑍) ≤ 𝑘))))
147, 13syl5ibrcom 246 . 2 ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → (𝐾 = (lcm𝑍) → (∀𝑚𝑍 𝑚𝐾 ∧ ∀𝑘 ∈ ℕ (∀𝑚𝑍 𝑚𝑘𝐾𝑘))))
15 lcmfn0cl 16494 . . . . . 6 ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) → (lcm𝑍) ∈ ℕ)
1615adantl 482 . . . . 5 ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → (lcm𝑍) ∈ ℕ)
17 breq2 5107 . . . . . . . 8 (𝑘 = (lcm𝑍) → (𝑚𝑘𝑚 ∥ (lcm𝑍)))
1817ralbidv 3172 . . . . . . 7 (𝑘 = (lcm𝑍) → (∀𝑚𝑍 𝑚𝑘 ↔ ∀𝑚𝑍 𝑚 ∥ (lcm𝑍)))
19 breq2 5107 . . . . . . 7 (𝑘 = (lcm𝑍) → (𝐾𝑘𝐾 ≤ (lcm𝑍)))
2018, 19imbi12d 344 . . . . . 6 (𝑘 = (lcm𝑍) → ((∀𝑚𝑍 𝑚𝑘𝐾𝑘) ↔ (∀𝑚𝑍 𝑚 ∥ (lcm𝑍) → 𝐾 ≤ (lcm𝑍))))
2120rspcv 3575 . . . . 5 ((lcm𝑍) ∈ ℕ → (∀𝑘 ∈ ℕ (∀𝑚𝑍 𝑚𝑘𝐾𝑘) → (∀𝑚𝑍 𝑚 ∥ (lcm𝑍) → 𝐾 ≤ (lcm𝑍))))
2216, 21syl 17 . . . 4 ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → (∀𝑘 ∈ ℕ (∀𝑚𝑍 𝑚𝑘𝐾𝑘) → (∀𝑚𝑍 𝑚 ∥ (lcm𝑍) → 𝐾 ≤ (lcm𝑍))))
2322adantld 491 . . 3 ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → ((∀𝑚𝑍 𝑚𝐾 ∧ ∀𝑘 ∈ ℕ (∀𝑚𝑍 𝑚𝑘𝐾𝑘)) → (∀𝑚𝑍 𝑚 ∥ (lcm𝑍) → 𝐾 ≤ (lcm𝑍))))
242adantl 482 . . . . 5 ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → ∀𝑚𝑍 𝑚 ∥ (lcm𝑍))
25 nnre 12156 . . . . . . 7 (𝐾 ∈ ℕ → 𝐾 ∈ ℝ)
2615nnred 12164 . . . . . . 7 ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) → (lcm𝑍) ∈ ℝ)
27 leloe 11237 . . . . . . 7 ((𝐾 ∈ ℝ ∧ (lcm𝑍) ∈ ℝ) → (𝐾 ≤ (lcm𝑍) ↔ (𝐾 < (lcm𝑍) ∨ 𝐾 = (lcm𝑍))))
2825, 26, 27syl2an 596 . . . . . 6 ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → (𝐾 ≤ (lcm𝑍) ↔ (𝐾 < (lcm𝑍) ∨ 𝐾 = (lcm𝑍))))
29 lcmfledvds 16500 . . . . . . . . . . . . 13 ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) → ((𝐾 ∈ ℕ ∧ ∀𝑚𝑍 𝑚𝐾) → (lcm𝑍) ≤ 𝐾))
3029expd 416 . . . . . . . . . . . 12 ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) → (𝐾 ∈ ℕ → (∀𝑚𝑍 𝑚𝐾 → (lcm𝑍) ≤ 𝐾)))
3130impcom 408 . . . . . . . . . . 11 ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → (∀𝑚𝑍 𝑚𝐾 → (lcm𝑍) ≤ 𝐾))
32 lenlt 11229 . . . . . . . . . . . . 13 (((lcm𝑍) ∈ ℝ ∧ 𝐾 ∈ ℝ) → ((lcm𝑍) ≤ 𝐾 ↔ ¬ 𝐾 < (lcm𝑍)))
3326, 25, 32syl2anr 597 . . . . . . . . . . . 12 ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → ((lcm𝑍) ≤ 𝐾 ↔ ¬ 𝐾 < (lcm𝑍)))
34 pm2.21 123 . . . . . . . . . . . 12 𝐾 < (lcm𝑍) → (𝐾 < (lcm𝑍) → 𝐾 = (lcm𝑍)))
3533, 34syl6bi 252 . . . . . . . . . . 11 ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → ((lcm𝑍) ≤ 𝐾 → (𝐾 < (lcm𝑍) → 𝐾 = (lcm𝑍))))
3631, 35syldc 48 . . . . . . . . . 10 (∀𝑚𝑍 𝑚𝐾 → ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → (𝐾 < (lcm𝑍) → 𝐾 = (lcm𝑍))))
3736adantr 481 . . . . . . . . 9 ((∀𝑚𝑍 𝑚𝐾 ∧ ∀𝑘 ∈ ℕ (∀𝑚𝑍 𝑚𝑘𝐾𝑘)) → ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → (𝐾 < (lcm𝑍) → 𝐾 = (lcm𝑍))))
3837com13 88 . . . . . . . 8 (𝐾 < (lcm𝑍) → ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → ((∀𝑚𝑍 𝑚𝐾 ∧ ∀𝑘 ∈ ℕ (∀𝑚𝑍 𝑚𝑘𝐾𝑘)) → 𝐾 = (lcm𝑍))))
39 2a1 28 . . . . . . . 8 (𝐾 = (lcm𝑍) → ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → ((∀𝑚𝑍 𝑚𝐾 ∧ ∀𝑘 ∈ ℕ (∀𝑚𝑍 𝑚𝑘𝐾𝑘)) → 𝐾 = (lcm𝑍))))
4038, 39jaoi 855 . . . . . . 7 ((𝐾 < (lcm𝑍) ∨ 𝐾 = (lcm𝑍)) → ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → ((∀𝑚𝑍 𝑚𝐾 ∧ ∀𝑘 ∈ ℕ (∀𝑚𝑍 𝑚𝑘𝐾𝑘)) → 𝐾 = (lcm𝑍))))
4140com12 32 . . . . . 6 ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → ((𝐾 < (lcm𝑍) ∨ 𝐾 = (lcm𝑍)) → ((∀𝑚𝑍 𝑚𝐾 ∧ ∀𝑘 ∈ ℕ (∀𝑚𝑍 𝑚𝑘𝐾𝑘)) → 𝐾 = (lcm𝑍))))
4228, 41sylbid 239 . . . . 5 ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → (𝐾 ≤ (lcm𝑍) → ((∀𝑚𝑍 𝑚𝐾 ∧ ∀𝑘 ∈ ℕ (∀𝑚𝑍 𝑚𝑘𝐾𝑘)) → 𝐾 = (lcm𝑍))))
4324, 42embantd 59 . . . 4 ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → ((∀𝑚𝑍 𝑚 ∥ (lcm𝑍) → 𝐾 ≤ (lcm𝑍)) → ((∀𝑚𝑍 𝑚𝐾 ∧ ∀𝑘 ∈ ℕ (∀𝑚𝑍 𝑚𝑘𝐾𝑘)) → 𝐾 = (lcm𝑍))))
4443com23 86 . . 3 ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → ((∀𝑚𝑍 𝑚𝐾 ∧ ∀𝑘 ∈ ℕ (∀𝑚𝑍 𝑚𝑘𝐾𝑘)) → ((∀𝑚𝑍 𝑚 ∥ (lcm𝑍) → 𝐾 ≤ (lcm𝑍)) → 𝐾 = (lcm𝑍))))
4523, 44mpdd 43 . 2 ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → ((∀𝑚𝑍 𝑚𝐾 ∧ ∀𝑘 ∈ ℕ (∀𝑚𝑍 𝑚𝑘𝐾𝑘)) → 𝐾 = (lcm𝑍)))
4614, 45impbid 211 1 ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → (𝐾 = (lcm𝑍) ↔ (∀𝑚𝑍 𝑚𝐾 ∧ ∀𝑘 ∈ ℕ (∀𝑚𝑍 𝑚𝑘𝐾𝑘))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106  wnel 3047  wral 3062  wss 3908   class class class wbr 5103  cfv 6493  Fincfn 8879  cr 11046  0cc0 11047   < clt 11185  cle 11186  cn 12149  cz 12495  cdvds 16128  lcmclcmf 16457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5240  ax-sep 5254  ax-nul 5261  ax-pow 5318  ax-pr 5382  ax-un 7668  ax-inf2 9573  ax-cnex 11103  ax-resscn 11104  ax-1cn 11105  ax-icn 11106  ax-addcl 11107  ax-addrcl 11108  ax-mulcl 11109  ax-mulrcl 11110  ax-mulcom 11111  ax-addass 11112  ax-mulass 11113  ax-distr 11114  ax-i2m1 11115  ax-1ne0 11116  ax-1rid 11117  ax-rnegex 11118  ax-rrecex 11119  ax-cnre 11120  ax-pre-lttri 11121  ax-pre-lttrn 11122  ax-pre-ltadd 11123  ax-pre-mulgt0 11124  ax-pre-sup 11125
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3738  df-csb 3854  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4281  df-if 4485  df-pw 4560  df-sn 4585  df-pr 4587  df-op 4591  df-uni 4864  df-int 4906  df-iun 4954  df-br 5104  df-opab 5166  df-mpt 5187  df-tr 5221  df-id 5529  df-eprel 5535  df-po 5543  df-so 5544  df-fr 5586  df-se 5587  df-we 5588  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6251  df-ord 6318  df-on 6319  df-lim 6320  df-suc 6321  df-iota 6445  df-fun 6495  df-fn 6496  df-f 6497  df-f1 6498  df-fo 6499  df-f1o 6500  df-fv 6501  df-isom 6502  df-riota 7309  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7799  df-1st 7917  df-2nd 7918  df-frecs 8208  df-wrecs 8239  df-recs 8313  df-rdg 8352  df-1o 8408  df-er 8644  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9374  df-inf 9375  df-oi 9442  df-card 9871  df-pnf 11187  df-mnf 11188  df-xr 11189  df-ltxr 11190  df-le 11191  df-sub 11383  df-neg 11384  df-div 11809  df-nn 12150  df-2 12212  df-3 12213  df-n0 12410  df-z 12496  df-uz 12760  df-rp 12908  df-fz 13417  df-fzo 13560  df-seq 13899  df-exp 13960  df-hash 14223  df-cj 14976  df-re 14977  df-im 14978  df-sqrt 15112  df-abs 15113  df-clim 15362  df-prod 15781  df-dvds 16129  df-lcmf 16459
This theorem is referenced by:  lcmftp  16504  lcmfunsnlem2lem2  16507
  Copyright terms: Public domain W3C validator