MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lcmf Structured version   Visualization version   GIF version

Theorem lcmf 16597
Description: Characterization of the least common multiple of a set of integers (without 0): A positiven integer is the least common multiple of a set of integers iff it divides each of the elements of the set and every integer which divides each of the elements of the set is greater than or equal to this integer. (Contributed by AV, 22-Aug-2020.)
Assertion
Ref Expression
lcmf ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → (𝐾 = (lcm𝑍) ↔ (∀𝑚𝑍 𝑚𝐾 ∧ ∀𝑘 ∈ ℕ (∀𝑚𝑍 𝑚𝑘𝐾𝑘))))
Distinct variable groups:   𝑘,𝐾,𝑚   𝑘,𝑍,𝑚

Proof of Theorem lcmf
StepHypRef Expression
1 dvdslcmf 16595 . . . . . 6 ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → ∀𝑚𝑍 𝑚 ∥ (lcm𝑍))
213adant3 1130 . . . . 5 ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) → ∀𝑚𝑍 𝑚 ∥ (lcm𝑍))
3 lcmfledvds 16596 . . . . . . 7 ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) → ((𝑘 ∈ ℕ ∧ ∀𝑚𝑍 𝑚𝑘) → (lcm𝑍) ≤ 𝑘))
43expdimp 452 . . . . . 6 (((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) ∧ 𝑘 ∈ ℕ) → (∀𝑚𝑍 𝑚𝑘 → (lcm𝑍) ≤ 𝑘))
54ralrimiva 3142 . . . . 5 ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) → ∀𝑘 ∈ ℕ (∀𝑚𝑍 𝑚𝑘 → (lcm𝑍) ≤ 𝑘))
62, 5jca 511 . . . 4 ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) → (∀𝑚𝑍 𝑚 ∥ (lcm𝑍) ∧ ∀𝑘 ∈ ℕ (∀𝑚𝑍 𝑚𝑘 → (lcm𝑍) ≤ 𝑘)))
76adantl 481 . . 3 ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → (∀𝑚𝑍 𝑚 ∥ (lcm𝑍) ∧ ∀𝑘 ∈ ℕ (∀𝑚𝑍 𝑚𝑘 → (lcm𝑍) ≤ 𝑘)))
8 breq2 5146 . . . . 5 (𝐾 = (lcm𝑍) → (𝑚𝐾𝑚 ∥ (lcm𝑍)))
98ralbidv 3173 . . . 4 (𝐾 = (lcm𝑍) → (∀𝑚𝑍 𝑚𝐾 ↔ ∀𝑚𝑍 𝑚 ∥ (lcm𝑍)))
10 breq1 5145 . . . . . 6 (𝐾 = (lcm𝑍) → (𝐾𝑘 ↔ (lcm𝑍) ≤ 𝑘))
1110imbi2d 340 . . . . 5 (𝐾 = (lcm𝑍) → ((∀𝑚𝑍 𝑚𝑘𝐾𝑘) ↔ (∀𝑚𝑍 𝑚𝑘 → (lcm𝑍) ≤ 𝑘)))
1211ralbidv 3173 . . . 4 (𝐾 = (lcm𝑍) → (∀𝑘 ∈ ℕ (∀𝑚𝑍 𝑚𝑘𝐾𝑘) ↔ ∀𝑘 ∈ ℕ (∀𝑚𝑍 𝑚𝑘 → (lcm𝑍) ≤ 𝑘)))
139, 12anbi12d 631 . . 3 (𝐾 = (lcm𝑍) → ((∀𝑚𝑍 𝑚𝐾 ∧ ∀𝑘 ∈ ℕ (∀𝑚𝑍 𝑚𝑘𝐾𝑘)) ↔ (∀𝑚𝑍 𝑚 ∥ (lcm𝑍) ∧ ∀𝑘 ∈ ℕ (∀𝑚𝑍 𝑚𝑘 → (lcm𝑍) ≤ 𝑘))))
147, 13syl5ibrcom 246 . 2 ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → (𝐾 = (lcm𝑍) → (∀𝑚𝑍 𝑚𝐾 ∧ ∀𝑘 ∈ ℕ (∀𝑚𝑍 𝑚𝑘𝐾𝑘))))
15 lcmfn0cl 16590 . . . . . 6 ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) → (lcm𝑍) ∈ ℕ)
1615adantl 481 . . . . 5 ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → (lcm𝑍) ∈ ℕ)
17 breq2 5146 . . . . . . . 8 (𝑘 = (lcm𝑍) → (𝑚𝑘𝑚 ∥ (lcm𝑍)))
1817ralbidv 3173 . . . . . . 7 (𝑘 = (lcm𝑍) → (∀𝑚𝑍 𝑚𝑘 ↔ ∀𝑚𝑍 𝑚 ∥ (lcm𝑍)))
19 breq2 5146 . . . . . . 7 (𝑘 = (lcm𝑍) → (𝐾𝑘𝐾 ≤ (lcm𝑍)))
2018, 19imbi12d 344 . . . . . 6 (𝑘 = (lcm𝑍) → ((∀𝑚𝑍 𝑚𝑘𝐾𝑘) ↔ (∀𝑚𝑍 𝑚 ∥ (lcm𝑍) → 𝐾 ≤ (lcm𝑍))))
2120rspcv 3604 . . . . 5 ((lcm𝑍) ∈ ℕ → (∀𝑘 ∈ ℕ (∀𝑚𝑍 𝑚𝑘𝐾𝑘) → (∀𝑚𝑍 𝑚 ∥ (lcm𝑍) → 𝐾 ≤ (lcm𝑍))))
2216, 21syl 17 . . . 4 ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → (∀𝑘 ∈ ℕ (∀𝑚𝑍 𝑚𝑘𝐾𝑘) → (∀𝑚𝑍 𝑚 ∥ (lcm𝑍) → 𝐾 ≤ (lcm𝑍))))
2322adantld 490 . . 3 ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → ((∀𝑚𝑍 𝑚𝐾 ∧ ∀𝑘 ∈ ℕ (∀𝑚𝑍 𝑚𝑘𝐾𝑘)) → (∀𝑚𝑍 𝑚 ∥ (lcm𝑍) → 𝐾 ≤ (lcm𝑍))))
242adantl 481 . . . . 5 ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → ∀𝑚𝑍 𝑚 ∥ (lcm𝑍))
25 nnre 12243 . . . . . . 7 (𝐾 ∈ ℕ → 𝐾 ∈ ℝ)
2615nnred 12251 . . . . . . 7 ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) → (lcm𝑍) ∈ ℝ)
27 leloe 11324 . . . . . . 7 ((𝐾 ∈ ℝ ∧ (lcm𝑍) ∈ ℝ) → (𝐾 ≤ (lcm𝑍) ↔ (𝐾 < (lcm𝑍) ∨ 𝐾 = (lcm𝑍))))
2825, 26, 27syl2an 595 . . . . . 6 ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → (𝐾 ≤ (lcm𝑍) ↔ (𝐾 < (lcm𝑍) ∨ 𝐾 = (lcm𝑍))))
29 lcmfledvds 16596 . . . . . . . . . . . . 13 ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) → ((𝐾 ∈ ℕ ∧ ∀𝑚𝑍 𝑚𝐾) → (lcm𝑍) ≤ 𝐾))
3029expd 415 . . . . . . . . . . . 12 ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) → (𝐾 ∈ ℕ → (∀𝑚𝑍 𝑚𝐾 → (lcm𝑍) ≤ 𝐾)))
3130impcom 407 . . . . . . . . . . 11 ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → (∀𝑚𝑍 𝑚𝐾 → (lcm𝑍) ≤ 𝐾))
32 lenlt 11316 . . . . . . . . . . . . 13 (((lcm𝑍) ∈ ℝ ∧ 𝐾 ∈ ℝ) → ((lcm𝑍) ≤ 𝐾 ↔ ¬ 𝐾 < (lcm𝑍)))
3326, 25, 32syl2anr 596 . . . . . . . . . . . 12 ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → ((lcm𝑍) ≤ 𝐾 ↔ ¬ 𝐾 < (lcm𝑍)))
34 pm2.21 123 . . . . . . . . . . . 12 𝐾 < (lcm𝑍) → (𝐾 < (lcm𝑍) → 𝐾 = (lcm𝑍)))
3533, 34biimtrdi 252 . . . . . . . . . . 11 ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → ((lcm𝑍) ≤ 𝐾 → (𝐾 < (lcm𝑍) → 𝐾 = (lcm𝑍))))
3631, 35syldc 48 . . . . . . . . . 10 (∀𝑚𝑍 𝑚𝐾 → ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → (𝐾 < (lcm𝑍) → 𝐾 = (lcm𝑍))))
3736adantr 480 . . . . . . . . 9 ((∀𝑚𝑍 𝑚𝐾 ∧ ∀𝑘 ∈ ℕ (∀𝑚𝑍 𝑚𝑘𝐾𝑘)) → ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → (𝐾 < (lcm𝑍) → 𝐾 = (lcm𝑍))))
3837com13 88 . . . . . . . 8 (𝐾 < (lcm𝑍) → ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → ((∀𝑚𝑍 𝑚𝐾 ∧ ∀𝑘 ∈ ℕ (∀𝑚𝑍 𝑚𝑘𝐾𝑘)) → 𝐾 = (lcm𝑍))))
39 2a1 28 . . . . . . . 8 (𝐾 = (lcm𝑍) → ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → ((∀𝑚𝑍 𝑚𝐾 ∧ ∀𝑘 ∈ ℕ (∀𝑚𝑍 𝑚𝑘𝐾𝑘)) → 𝐾 = (lcm𝑍))))
4038, 39jaoi 856 . . . . . . 7 ((𝐾 < (lcm𝑍) ∨ 𝐾 = (lcm𝑍)) → ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → ((∀𝑚𝑍 𝑚𝐾 ∧ ∀𝑘 ∈ ℕ (∀𝑚𝑍 𝑚𝑘𝐾𝑘)) → 𝐾 = (lcm𝑍))))
4140com12 32 . . . . . 6 ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → ((𝐾 < (lcm𝑍) ∨ 𝐾 = (lcm𝑍)) → ((∀𝑚𝑍 𝑚𝐾 ∧ ∀𝑘 ∈ ℕ (∀𝑚𝑍 𝑚𝑘𝐾𝑘)) → 𝐾 = (lcm𝑍))))
4228, 41sylbid 239 . . . . 5 ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → (𝐾 ≤ (lcm𝑍) → ((∀𝑚𝑍 𝑚𝐾 ∧ ∀𝑘 ∈ ℕ (∀𝑚𝑍 𝑚𝑘𝐾𝑘)) → 𝐾 = (lcm𝑍))))
4324, 42embantd 59 . . . 4 ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → ((∀𝑚𝑍 𝑚 ∥ (lcm𝑍) → 𝐾 ≤ (lcm𝑍)) → ((∀𝑚𝑍 𝑚𝐾 ∧ ∀𝑘 ∈ ℕ (∀𝑚𝑍 𝑚𝑘𝐾𝑘)) → 𝐾 = (lcm𝑍))))
4443com23 86 . . 3 ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → ((∀𝑚𝑍 𝑚𝐾 ∧ ∀𝑘 ∈ ℕ (∀𝑚𝑍 𝑚𝑘𝐾𝑘)) → ((∀𝑚𝑍 𝑚 ∥ (lcm𝑍) → 𝐾 ≤ (lcm𝑍)) → 𝐾 = (lcm𝑍))))
4523, 44mpdd 43 . 2 ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → ((∀𝑚𝑍 𝑚𝐾 ∧ ∀𝑘 ∈ ℕ (∀𝑚𝑍 𝑚𝑘𝐾𝑘)) → 𝐾 = (lcm𝑍)))
4614, 45impbid 211 1 ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → (𝐾 = (lcm𝑍) ↔ (∀𝑚𝑍 𝑚𝐾 ∧ ∀𝑘 ∈ ℕ (∀𝑚𝑍 𝑚𝑘𝐾𝑘))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 846  w3a 1085   = wceq 1534  wcel 2099  wnel 3042  wral 3057  wss 3945   class class class wbr 5142  cfv 6542  Fincfn 8957  cr 11131  0cc0 11132   < clt 11272  cle 11273  cn 12236  cz 12582  cdvds 16224  lcmclcmf 16553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-inf2 9658  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209  ax-pre-sup 11210
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-sup 9459  df-inf 9460  df-oi 9527  df-card 9956  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-div 11896  df-nn 12237  df-2 12299  df-3 12300  df-n0 12497  df-z 12583  df-uz 12847  df-rp 13001  df-fz 13511  df-fzo 13654  df-seq 13993  df-exp 14053  df-hash 14316  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15458  df-prod 15876  df-dvds 16225  df-lcmf 16555
This theorem is referenced by:  lcmftp  16600  lcmfunsnlem2lem2  16603
  Copyright terms: Public domain W3C validator