MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmgaplem5 Structured version   Visualization version   GIF version

Theorem prmgaplem5 17026
Description: Lemma for prmgap 17030: for each integer greater than 2 there is a smaller prime closest to this integer, i.e. there is a smaller prime and no other prime is between this prime and the integer. (Contributed by AV, 9-Aug-2020.)
Assertion
Ref Expression
prmgaplem5 (𝑁 ∈ (ℤ‘3) → ∃𝑝 ∈ ℙ (𝑝 < 𝑁 ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑁)𝑧 ∉ ℙ))
Distinct variable group:   𝑁,𝑝,𝑧

Proof of Theorem prmgaplem5
Dummy variables 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elrabi 3654 . . . 4 (𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁} → 𝑟 ∈ ℙ)
21ad2antlr 727 . . 3 (((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) ∧ ∀𝑧 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}𝑧𝑟) → 𝑟 ∈ ℙ)
3 breq1 5110 . . . . 5 (𝑝 = 𝑟 → (𝑝 < 𝑁𝑟 < 𝑁))
4 oveq1 7394 . . . . . . 7 (𝑝 = 𝑟 → (𝑝 + 1) = (𝑟 + 1))
54oveq1d 7402 . . . . . 6 (𝑝 = 𝑟 → ((𝑝 + 1)..^𝑁) = ((𝑟 + 1)..^𝑁))
65raleqdv 3299 . . . . 5 (𝑝 = 𝑟 → (∀𝑧 ∈ ((𝑝 + 1)..^𝑁)𝑧 ∉ ℙ ↔ ∀𝑧 ∈ ((𝑟 + 1)..^𝑁)𝑧 ∉ ℙ))
73, 6anbi12d 632 . . . 4 (𝑝 = 𝑟 → ((𝑝 < 𝑁 ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑁)𝑧 ∉ ℙ) ↔ (𝑟 < 𝑁 ∧ ∀𝑧 ∈ ((𝑟 + 1)..^𝑁)𝑧 ∉ ℙ)))
87adantl 481 . . 3 ((((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) ∧ ∀𝑧 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}𝑧𝑟) ∧ 𝑝 = 𝑟) → ((𝑝 < 𝑁 ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑁)𝑧 ∉ ℙ) ↔ (𝑟 < 𝑁 ∧ ∀𝑧 ∈ ((𝑟 + 1)..^𝑁)𝑧 ∉ ℙ)))
9 breq1 5110 . . . . . . 7 (𝑞 = 𝑟 → (𝑞 < 𝑁𝑟 < 𝑁))
109elrab 3659 . . . . . 6 (𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁} ↔ (𝑟 ∈ ℙ ∧ 𝑟 < 𝑁))
1110simprbi 496 . . . . 5 (𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁} → 𝑟 < 𝑁)
1211ad2antlr 727 . . . 4 (((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) ∧ ∀𝑧 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}𝑧𝑟) → 𝑟 < 𝑁)
13 elfzo2 13623 . . . . . . . 8 (𝑧 ∈ ((𝑟 + 1)..^𝑁) ↔ (𝑧 ∈ (ℤ‘(𝑟 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑧 < 𝑁))
14 breq1 5110 . . . . . . . . . . . . . 14 (𝑞 = 𝑧 → (𝑞 < 𝑁𝑧 < 𝑁))
15 simpl 482 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℙ ∧ (𝑧 ∈ (ℤ‘(𝑟 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑧 < 𝑁)) → 𝑧 ∈ ℙ)
16 simpr3 1197 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℙ ∧ (𝑧 ∈ (ℤ‘(𝑟 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑧 < 𝑁)) → 𝑧 < 𝑁)
1714, 15, 16elrabd 3661 . . . . . . . . . . . . 13 ((𝑧 ∈ ℙ ∧ (𝑧 ∈ (ℤ‘(𝑟 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑧 < 𝑁)) → 𝑧 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁})
1817adantrl 716 . . . . . . . . . . . 12 ((𝑧 ∈ ℙ ∧ ((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) ∧ (𝑧 ∈ (ℤ‘(𝑟 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑧 < 𝑁))) → 𝑧 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁})
19 eluz2 12799 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ (ℤ‘(𝑟 + 1)) ↔ ((𝑟 + 1) ∈ ℤ ∧ 𝑧 ∈ ℤ ∧ (𝑟 + 1) ≤ 𝑧))
20 prmz 16645 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑟 ∈ ℙ → 𝑟 ∈ ℤ)
21 zltp1le 12583 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑟 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (𝑟 < 𝑧 ↔ (𝑟 + 1) ≤ 𝑧))
2220, 21sylan 580 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑟 ∈ ℙ ∧ 𝑧 ∈ ℤ) → (𝑟 < 𝑧 ↔ (𝑟 + 1) ≤ 𝑧))
23 prmnn 16644 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑟 ∈ ℙ → 𝑟 ∈ ℕ)
2423nnred 12201 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑟 ∈ ℙ → 𝑟 ∈ ℝ)
25 zre 12533 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 ∈ ℤ → 𝑧 ∈ ℝ)
26 ltnle 11253 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑟 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑟 < 𝑧 ↔ ¬ 𝑧𝑟))
2726biimpd 229 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑟 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑟 < 𝑧 → ¬ 𝑧𝑟))
2824, 25, 27syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑟 ∈ ℙ ∧ 𝑧 ∈ ℤ) → (𝑟 < 𝑧 → ¬ 𝑧𝑟))
29 pm2.21 123 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑧𝑟 → (𝑧𝑟𝑧 ∉ ℙ))
3028, 29syl6 35 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑟 ∈ ℙ ∧ 𝑧 ∈ ℤ) → (𝑟 < 𝑧 → (𝑧𝑟𝑧 ∉ ℙ)))
3122, 30sylbird 260 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑟 ∈ ℙ ∧ 𝑧 ∈ ℤ) → ((𝑟 + 1) ≤ 𝑧 → (𝑧𝑟𝑧 ∉ ℙ)))
3231expcom 413 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ ℤ → (𝑟 ∈ ℙ → ((𝑟 + 1) ≤ 𝑧 → (𝑧𝑟𝑧 ∉ ℙ))))
3332com23 86 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ ℤ → ((𝑟 + 1) ≤ 𝑧 → (𝑟 ∈ ℙ → (𝑧𝑟𝑧 ∉ ℙ))))
3433a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝑟 + 1) ∈ ℤ → (𝑧 ∈ ℤ → ((𝑟 + 1) ≤ 𝑧 → (𝑟 ∈ ℙ → (𝑧𝑟𝑧 ∉ ℙ)))))
35343imp 1110 . . . . . . . . . . . . . . . . . 18 (((𝑟 + 1) ∈ ℤ ∧ 𝑧 ∈ ℤ ∧ (𝑟 + 1) ≤ 𝑧) → (𝑟 ∈ ℙ → (𝑧𝑟𝑧 ∉ ℙ)))
3619, 35sylbi 217 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ (ℤ‘(𝑟 + 1)) → (𝑟 ∈ ℙ → (𝑧𝑟𝑧 ∉ ℙ)))
37363ad2ant1 1133 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ (ℤ‘(𝑟 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑧 < 𝑁) → (𝑟 ∈ ℙ → (𝑧𝑟𝑧 ∉ ℙ)))
381, 37syl5com 31 . . . . . . . . . . . . . . 15 (𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁} → ((𝑧 ∈ (ℤ‘(𝑟 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑧 < 𝑁) → (𝑧𝑟𝑧 ∉ ℙ)))
3938adantl 481 . . . . . . . . . . . . . 14 ((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) → ((𝑧 ∈ (ℤ‘(𝑟 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑧 < 𝑁) → (𝑧𝑟𝑧 ∉ ℙ)))
4039imp 406 . . . . . . . . . . . . 13 (((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) ∧ (𝑧 ∈ (ℤ‘(𝑟 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑧 < 𝑁)) → (𝑧𝑟𝑧 ∉ ℙ))
4140adantl 481 . . . . . . . . . . . 12 ((𝑧 ∈ ℙ ∧ ((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) ∧ (𝑧 ∈ (ℤ‘(𝑟 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑧 < 𝑁))) → (𝑧𝑟𝑧 ∉ ℙ))
4218, 41embantd 59 . . . . . . . . . . 11 ((𝑧 ∈ ℙ ∧ ((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) ∧ (𝑧 ∈ (ℤ‘(𝑟 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑧 < 𝑁))) → ((𝑧 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁} → 𝑧𝑟) → 𝑧 ∉ ℙ))
4342ex 412 . . . . . . . . . 10 (𝑧 ∈ ℙ → (((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) ∧ (𝑧 ∈ (ℤ‘(𝑟 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑧 < 𝑁)) → ((𝑧 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁} → 𝑧𝑟) → 𝑧 ∉ ℙ)))
44 df-nel 3030 . . . . . . . . . . 11 (𝑧 ∉ ℙ ↔ ¬ 𝑧 ∈ ℙ)
45 2a1 28 . . . . . . . . . . 11 (𝑧 ∉ ℙ → (((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) ∧ (𝑧 ∈ (ℤ‘(𝑟 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑧 < 𝑁)) → ((𝑧 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁} → 𝑧𝑟) → 𝑧 ∉ ℙ)))
4644, 45sylbir 235 . . . . . . . . . 10 𝑧 ∈ ℙ → (((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) ∧ (𝑧 ∈ (ℤ‘(𝑟 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑧 < 𝑁)) → ((𝑧 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁} → 𝑧𝑟) → 𝑧 ∉ ℙ)))
4743, 46pm2.61i 182 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) ∧ (𝑧 ∈ (ℤ‘(𝑟 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑧 < 𝑁)) → ((𝑧 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁} → 𝑧𝑟) → 𝑧 ∉ ℙ))
4847impancom 451 . . . . . . . 8 (((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) ∧ (𝑧 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁} → 𝑧𝑟)) → ((𝑧 ∈ (ℤ‘(𝑟 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑧 < 𝑁) → 𝑧 ∉ ℙ))
4913, 48biimtrid 242 . . . . . . 7 (((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) ∧ (𝑧 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁} → 𝑧𝑟)) → (𝑧 ∈ ((𝑟 + 1)..^𝑁) → 𝑧 ∉ ℙ))
5049ex 412 . . . . . 6 ((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) → ((𝑧 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁} → 𝑧𝑟) → (𝑧 ∈ ((𝑟 + 1)..^𝑁) → 𝑧 ∉ ℙ)))
5150ralimdv2 3142 . . . . 5 ((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) → (∀𝑧 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}𝑧𝑟 → ∀𝑧 ∈ ((𝑟 + 1)..^𝑁)𝑧 ∉ ℙ))
5251imp 406 . . . 4 (((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) ∧ ∀𝑧 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}𝑧𝑟) → ∀𝑧 ∈ ((𝑟 + 1)..^𝑁)𝑧 ∉ ℙ)
5312, 52jca 511 . . 3 (((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) ∧ ∀𝑧 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}𝑧𝑟) → (𝑟 < 𝑁 ∧ ∀𝑧 ∈ ((𝑟 + 1)..^𝑁)𝑧 ∉ ℙ))
542, 8, 53rspcedvd 3590 . 2 (((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) ∧ ∀𝑧 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}𝑧𝑟) → ∃𝑝 ∈ ℙ (𝑝 < 𝑁 ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑁)𝑧 ∉ ℙ))
55 eqid 2729 . . 3 {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁} = {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}
5655prmgaplem3 17024 . 2 (𝑁 ∈ (ℤ‘3) → ∃𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}∀𝑧 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}𝑧𝑟)
5754, 56r19.29a 3141 1 (𝑁 ∈ (ℤ‘3) → ∃𝑝 ∈ ℙ (𝑝 < 𝑁 ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑁)𝑧 ∉ ℙ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086  wcel 2109  wnel 3029  wral 3044  wrex 3053  {crab 3405   class class class wbr 5107  cfv 6511  (class class class)co 7387  cr 11067  1c1 11069   + caddc 11071   < clt 11208  cle 11209  3c3 12242  cz 12529  cuz 12793  ..^cfzo 13615  cprime 16641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-fz 13469  df-fzo 13616  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-dvds 16223  df-prm 16642
This theorem is referenced by:  prmgaplem7  17028
  Copyright terms: Public domain W3C validator