MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmgaplem5 Structured version   Visualization version   GIF version

Theorem prmgaplem5 17002
Description: Lemma for prmgap 17006: for each integer greater than 2 there is a smaller prime closest to this integer, i.e. there is a smaller prime and no other prime is between this prime and the integer. (Contributed by AV, 9-Aug-2020.)
Assertion
Ref Expression
prmgaplem5 (𝑁 ∈ (ℤ‘3) → ∃𝑝 ∈ ℙ (𝑝 < 𝑁 ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑁)𝑧 ∉ ℙ))
Distinct variable group:   𝑁,𝑝,𝑧

Proof of Theorem prmgaplem5
Dummy variables 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elrabi 3651 . . . 4 (𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁} → 𝑟 ∈ ℙ)
21ad2antlr 727 . . 3 (((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) ∧ ∀𝑧 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}𝑧𝑟) → 𝑟 ∈ ℙ)
3 breq1 5105 . . . . 5 (𝑝 = 𝑟 → (𝑝 < 𝑁𝑟 < 𝑁))
4 oveq1 7376 . . . . . . 7 (𝑝 = 𝑟 → (𝑝 + 1) = (𝑟 + 1))
54oveq1d 7384 . . . . . 6 (𝑝 = 𝑟 → ((𝑝 + 1)..^𝑁) = ((𝑟 + 1)..^𝑁))
65raleqdv 3296 . . . . 5 (𝑝 = 𝑟 → (∀𝑧 ∈ ((𝑝 + 1)..^𝑁)𝑧 ∉ ℙ ↔ ∀𝑧 ∈ ((𝑟 + 1)..^𝑁)𝑧 ∉ ℙ))
73, 6anbi12d 632 . . . 4 (𝑝 = 𝑟 → ((𝑝 < 𝑁 ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑁)𝑧 ∉ ℙ) ↔ (𝑟 < 𝑁 ∧ ∀𝑧 ∈ ((𝑟 + 1)..^𝑁)𝑧 ∉ ℙ)))
87adantl 481 . . 3 ((((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) ∧ ∀𝑧 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}𝑧𝑟) ∧ 𝑝 = 𝑟) → ((𝑝 < 𝑁 ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑁)𝑧 ∉ ℙ) ↔ (𝑟 < 𝑁 ∧ ∀𝑧 ∈ ((𝑟 + 1)..^𝑁)𝑧 ∉ ℙ)))
9 breq1 5105 . . . . . . 7 (𝑞 = 𝑟 → (𝑞 < 𝑁𝑟 < 𝑁))
109elrab 3656 . . . . . 6 (𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁} ↔ (𝑟 ∈ ℙ ∧ 𝑟 < 𝑁))
1110simprbi 496 . . . . 5 (𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁} → 𝑟 < 𝑁)
1211ad2antlr 727 . . . 4 (((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) ∧ ∀𝑧 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}𝑧𝑟) → 𝑟 < 𝑁)
13 elfzo2 13599 . . . . . . . 8 (𝑧 ∈ ((𝑟 + 1)..^𝑁) ↔ (𝑧 ∈ (ℤ‘(𝑟 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑧 < 𝑁))
14 breq1 5105 . . . . . . . . . . . . . 14 (𝑞 = 𝑧 → (𝑞 < 𝑁𝑧 < 𝑁))
15 simpl 482 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℙ ∧ (𝑧 ∈ (ℤ‘(𝑟 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑧 < 𝑁)) → 𝑧 ∈ ℙ)
16 simpr3 1197 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℙ ∧ (𝑧 ∈ (ℤ‘(𝑟 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑧 < 𝑁)) → 𝑧 < 𝑁)
1714, 15, 16elrabd 3658 . . . . . . . . . . . . 13 ((𝑧 ∈ ℙ ∧ (𝑧 ∈ (ℤ‘(𝑟 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑧 < 𝑁)) → 𝑧 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁})
1817adantrl 716 . . . . . . . . . . . 12 ((𝑧 ∈ ℙ ∧ ((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) ∧ (𝑧 ∈ (ℤ‘(𝑟 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑧 < 𝑁))) → 𝑧 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁})
19 eluz2 12775 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ (ℤ‘(𝑟 + 1)) ↔ ((𝑟 + 1) ∈ ℤ ∧ 𝑧 ∈ ℤ ∧ (𝑟 + 1) ≤ 𝑧))
20 prmz 16621 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑟 ∈ ℙ → 𝑟 ∈ ℤ)
21 zltp1le 12559 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑟 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (𝑟 < 𝑧 ↔ (𝑟 + 1) ≤ 𝑧))
2220, 21sylan 580 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑟 ∈ ℙ ∧ 𝑧 ∈ ℤ) → (𝑟 < 𝑧 ↔ (𝑟 + 1) ≤ 𝑧))
23 prmnn 16620 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑟 ∈ ℙ → 𝑟 ∈ ℕ)
2423nnred 12177 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑟 ∈ ℙ → 𝑟 ∈ ℝ)
25 zre 12509 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 ∈ ℤ → 𝑧 ∈ ℝ)
26 ltnle 11229 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑟 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑟 < 𝑧 ↔ ¬ 𝑧𝑟))
2726biimpd 229 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑟 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑟 < 𝑧 → ¬ 𝑧𝑟))
2824, 25, 27syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑟 ∈ ℙ ∧ 𝑧 ∈ ℤ) → (𝑟 < 𝑧 → ¬ 𝑧𝑟))
29 pm2.21 123 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑧𝑟 → (𝑧𝑟𝑧 ∉ ℙ))
3028, 29syl6 35 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑟 ∈ ℙ ∧ 𝑧 ∈ ℤ) → (𝑟 < 𝑧 → (𝑧𝑟𝑧 ∉ ℙ)))
3122, 30sylbird 260 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑟 ∈ ℙ ∧ 𝑧 ∈ ℤ) → ((𝑟 + 1) ≤ 𝑧 → (𝑧𝑟𝑧 ∉ ℙ)))
3231expcom 413 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ ℤ → (𝑟 ∈ ℙ → ((𝑟 + 1) ≤ 𝑧 → (𝑧𝑟𝑧 ∉ ℙ))))
3332com23 86 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ ℤ → ((𝑟 + 1) ≤ 𝑧 → (𝑟 ∈ ℙ → (𝑧𝑟𝑧 ∉ ℙ))))
3433a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝑟 + 1) ∈ ℤ → (𝑧 ∈ ℤ → ((𝑟 + 1) ≤ 𝑧 → (𝑟 ∈ ℙ → (𝑧𝑟𝑧 ∉ ℙ)))))
35343imp 1110 . . . . . . . . . . . . . . . . . 18 (((𝑟 + 1) ∈ ℤ ∧ 𝑧 ∈ ℤ ∧ (𝑟 + 1) ≤ 𝑧) → (𝑟 ∈ ℙ → (𝑧𝑟𝑧 ∉ ℙ)))
3619, 35sylbi 217 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ (ℤ‘(𝑟 + 1)) → (𝑟 ∈ ℙ → (𝑧𝑟𝑧 ∉ ℙ)))
37363ad2ant1 1133 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ (ℤ‘(𝑟 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑧 < 𝑁) → (𝑟 ∈ ℙ → (𝑧𝑟𝑧 ∉ ℙ)))
381, 37syl5com 31 . . . . . . . . . . . . . . 15 (𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁} → ((𝑧 ∈ (ℤ‘(𝑟 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑧 < 𝑁) → (𝑧𝑟𝑧 ∉ ℙ)))
3938adantl 481 . . . . . . . . . . . . . 14 ((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) → ((𝑧 ∈ (ℤ‘(𝑟 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑧 < 𝑁) → (𝑧𝑟𝑧 ∉ ℙ)))
4039imp 406 . . . . . . . . . . . . 13 (((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) ∧ (𝑧 ∈ (ℤ‘(𝑟 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑧 < 𝑁)) → (𝑧𝑟𝑧 ∉ ℙ))
4140adantl 481 . . . . . . . . . . . 12 ((𝑧 ∈ ℙ ∧ ((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) ∧ (𝑧 ∈ (ℤ‘(𝑟 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑧 < 𝑁))) → (𝑧𝑟𝑧 ∉ ℙ))
4218, 41embantd 59 . . . . . . . . . . 11 ((𝑧 ∈ ℙ ∧ ((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) ∧ (𝑧 ∈ (ℤ‘(𝑟 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑧 < 𝑁))) → ((𝑧 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁} → 𝑧𝑟) → 𝑧 ∉ ℙ))
4342ex 412 . . . . . . . . . 10 (𝑧 ∈ ℙ → (((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) ∧ (𝑧 ∈ (ℤ‘(𝑟 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑧 < 𝑁)) → ((𝑧 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁} → 𝑧𝑟) → 𝑧 ∉ ℙ)))
44 df-nel 3030 . . . . . . . . . . 11 (𝑧 ∉ ℙ ↔ ¬ 𝑧 ∈ ℙ)
45 2a1 28 . . . . . . . . . . 11 (𝑧 ∉ ℙ → (((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) ∧ (𝑧 ∈ (ℤ‘(𝑟 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑧 < 𝑁)) → ((𝑧 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁} → 𝑧𝑟) → 𝑧 ∉ ℙ)))
4644, 45sylbir 235 . . . . . . . . . 10 𝑧 ∈ ℙ → (((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) ∧ (𝑧 ∈ (ℤ‘(𝑟 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑧 < 𝑁)) → ((𝑧 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁} → 𝑧𝑟) → 𝑧 ∉ ℙ)))
4743, 46pm2.61i 182 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) ∧ (𝑧 ∈ (ℤ‘(𝑟 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑧 < 𝑁)) → ((𝑧 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁} → 𝑧𝑟) → 𝑧 ∉ ℙ))
4847impancom 451 . . . . . . . 8 (((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) ∧ (𝑧 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁} → 𝑧𝑟)) → ((𝑧 ∈ (ℤ‘(𝑟 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑧 < 𝑁) → 𝑧 ∉ ℙ))
4913, 48biimtrid 242 . . . . . . 7 (((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) ∧ (𝑧 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁} → 𝑧𝑟)) → (𝑧 ∈ ((𝑟 + 1)..^𝑁) → 𝑧 ∉ ℙ))
5049ex 412 . . . . . 6 ((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) → ((𝑧 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁} → 𝑧𝑟) → (𝑧 ∈ ((𝑟 + 1)..^𝑁) → 𝑧 ∉ ℙ)))
5150ralimdv2 3142 . . . . 5 ((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) → (∀𝑧 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}𝑧𝑟 → ∀𝑧 ∈ ((𝑟 + 1)..^𝑁)𝑧 ∉ ℙ))
5251imp 406 . . . 4 (((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) ∧ ∀𝑧 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}𝑧𝑟) → ∀𝑧 ∈ ((𝑟 + 1)..^𝑁)𝑧 ∉ ℙ)
5312, 52jca 511 . . 3 (((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) ∧ ∀𝑧 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}𝑧𝑟) → (𝑟 < 𝑁 ∧ ∀𝑧 ∈ ((𝑟 + 1)..^𝑁)𝑧 ∉ ℙ))
542, 8, 53rspcedvd 3587 . 2 (((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) ∧ ∀𝑧 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}𝑧𝑟) → ∃𝑝 ∈ ℙ (𝑝 < 𝑁 ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑁)𝑧 ∉ ℙ))
55 eqid 2729 . . 3 {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁} = {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}
5655prmgaplem3 17000 . 2 (𝑁 ∈ (ℤ‘3) → ∃𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}∀𝑧 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}𝑧𝑟)
5754, 56r19.29a 3141 1 (𝑁 ∈ (ℤ‘3) → ∃𝑝 ∈ ℙ (𝑝 < 𝑁 ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑁)𝑧 ∉ ℙ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086  wcel 2109  wnel 3029  wral 3044  wrex 3053  {crab 3402   class class class wbr 5102  cfv 6499  (class class class)co 7369  cr 11043  1c1 11045   + caddc 11047   < clt 11184  cle 11185  3c3 12218  cz 12505  cuz 12769  ..^cfzo 13591  cprime 16617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-fz 13445  df-fzo 13592  df-seq 13943  df-exp 14003  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-dvds 16199  df-prm 16618
This theorem is referenced by:  prmgaplem7  17004
  Copyright terms: Public domain W3C validator