MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmgaplem5 Structured version   Visualization version   GIF version

Theorem prmgaplem5 16038
Description: Lemma for prmgap 16042: for each integer greater than 2 there is a smaller prime closest to this integer, i.e. there is a smaller prime and no other prime is between this prime and the integer. (Contributed by AV, 9-Aug-2020.)
Assertion
Ref Expression
prmgaplem5 (𝑁 ∈ (ℤ‘3) → ∃𝑝 ∈ ℙ (𝑝 < 𝑁 ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑁)𝑧 ∉ ℙ))
Distinct variable group:   𝑁,𝑝,𝑧

Proof of Theorem prmgaplem5
Dummy variables 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elrabi 3514 . . . 4 (𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁} → 𝑟 ∈ ℙ)
21ad2antlr 718 . . 3 (((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) ∧ ∀𝑧 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}𝑧𝑟) → 𝑟 ∈ ℙ)
3 breq1 4812 . . . . 5 (𝑝 = 𝑟 → (𝑝 < 𝑁𝑟 < 𝑁))
4 oveq1 6849 . . . . . . 7 (𝑝 = 𝑟 → (𝑝 + 1) = (𝑟 + 1))
54oveq1d 6857 . . . . . 6 (𝑝 = 𝑟 → ((𝑝 + 1)..^𝑁) = ((𝑟 + 1)..^𝑁))
65raleqdv 3292 . . . . 5 (𝑝 = 𝑟 → (∀𝑧 ∈ ((𝑝 + 1)..^𝑁)𝑧 ∉ ℙ ↔ ∀𝑧 ∈ ((𝑟 + 1)..^𝑁)𝑧 ∉ ℙ))
73, 6anbi12d 624 . . . 4 (𝑝 = 𝑟 → ((𝑝 < 𝑁 ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑁)𝑧 ∉ ℙ) ↔ (𝑟 < 𝑁 ∧ ∀𝑧 ∈ ((𝑟 + 1)..^𝑁)𝑧 ∉ ℙ)))
87adantl 473 . . 3 ((((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) ∧ ∀𝑧 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}𝑧𝑟) ∧ 𝑝 = 𝑟) → ((𝑝 < 𝑁 ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑁)𝑧 ∉ ℙ) ↔ (𝑟 < 𝑁 ∧ ∀𝑧 ∈ ((𝑟 + 1)..^𝑁)𝑧 ∉ ℙ)))
9 breq1 4812 . . . . . . 7 (𝑞 = 𝑟 → (𝑞 < 𝑁𝑟 < 𝑁))
109elrab 3519 . . . . . 6 (𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁} ↔ (𝑟 ∈ ℙ ∧ 𝑟 < 𝑁))
1110simprbi 490 . . . . 5 (𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁} → 𝑟 < 𝑁)
1211ad2antlr 718 . . . 4 (((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) ∧ ∀𝑧 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}𝑧𝑟) → 𝑟 < 𝑁)
13 elfzo2 12681 . . . . . . . 8 (𝑧 ∈ ((𝑟 + 1)..^𝑁) ↔ (𝑧 ∈ (ℤ‘(𝑟 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑧 < 𝑁))
14 simpl 474 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℙ ∧ (𝑧 ∈ (ℤ‘(𝑟 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑧 < 𝑁)) → 𝑧 ∈ ℙ)
15 simpr3 1252 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℙ ∧ (𝑧 ∈ (ℤ‘(𝑟 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑧 < 𝑁)) → 𝑧 < 𝑁)
16 breq1 4812 . . . . . . . . . . . . . . 15 (𝑞 = 𝑧 → (𝑞 < 𝑁𝑧 < 𝑁))
1716elrab 3519 . . . . . . . . . . . . . 14 (𝑧 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁} ↔ (𝑧 ∈ ℙ ∧ 𝑧 < 𝑁))
1814, 15, 17sylanbrc 578 . . . . . . . . . . . . 13 ((𝑧 ∈ ℙ ∧ (𝑧 ∈ (ℤ‘(𝑟 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑧 < 𝑁)) → 𝑧 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁})
1918adantrl 707 . . . . . . . . . . . 12 ((𝑧 ∈ ℙ ∧ ((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) ∧ (𝑧 ∈ (ℤ‘(𝑟 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑧 < 𝑁))) → 𝑧 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁})
20 eluz2 11892 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ (ℤ‘(𝑟 + 1)) ↔ ((𝑟 + 1) ∈ ℤ ∧ 𝑧 ∈ ℤ ∧ (𝑟 + 1) ≤ 𝑧))
21 prmz 15669 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑟 ∈ ℙ → 𝑟 ∈ ℤ)
22 zltp1le 11674 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑟 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (𝑟 < 𝑧 ↔ (𝑟 + 1) ≤ 𝑧))
2321, 22sylan 575 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑟 ∈ ℙ ∧ 𝑧 ∈ ℤ) → (𝑟 < 𝑧 ↔ (𝑟 + 1) ≤ 𝑧))
24 prmnn 15668 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑟 ∈ ℙ → 𝑟 ∈ ℕ)
2524nnred 11291 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑟 ∈ ℙ → 𝑟 ∈ ℝ)
26 zre 11628 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 ∈ ℤ → 𝑧 ∈ ℝ)
27 ltnle 10371 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑟 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑟 < 𝑧 ↔ ¬ 𝑧𝑟))
2827biimpd 220 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑟 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑟 < 𝑧 → ¬ 𝑧𝑟))
2925, 26, 28syl2an 589 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑟 ∈ ℙ ∧ 𝑧 ∈ ℤ) → (𝑟 < 𝑧 → ¬ 𝑧𝑟))
30 pm2.21 121 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑧𝑟 → (𝑧𝑟𝑧 ∉ ℙ))
3129, 30syl6 35 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑟 ∈ ℙ ∧ 𝑧 ∈ ℤ) → (𝑟 < 𝑧 → (𝑧𝑟𝑧 ∉ ℙ)))
3223, 31sylbird 251 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑟 ∈ ℙ ∧ 𝑧 ∈ ℤ) → ((𝑟 + 1) ≤ 𝑧 → (𝑧𝑟𝑧 ∉ ℙ)))
3332expcom 402 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ ℤ → (𝑟 ∈ ℙ → ((𝑟 + 1) ≤ 𝑧 → (𝑧𝑟𝑧 ∉ ℙ))))
3433com23 86 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ ℤ → ((𝑟 + 1) ≤ 𝑧 → (𝑟 ∈ ℙ → (𝑧𝑟𝑧 ∉ ℙ))))
3534a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝑟 + 1) ∈ ℤ → (𝑧 ∈ ℤ → ((𝑟 + 1) ≤ 𝑧 → (𝑟 ∈ ℙ → (𝑧𝑟𝑧 ∉ ℙ)))))
36353imp 1137 . . . . . . . . . . . . . . . . . 18 (((𝑟 + 1) ∈ ℤ ∧ 𝑧 ∈ ℤ ∧ (𝑟 + 1) ≤ 𝑧) → (𝑟 ∈ ℙ → (𝑧𝑟𝑧 ∉ ℙ)))
3720, 36sylbi 208 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ (ℤ‘(𝑟 + 1)) → (𝑟 ∈ ℙ → (𝑧𝑟𝑧 ∉ ℙ)))
38373ad2ant1 1163 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ (ℤ‘(𝑟 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑧 < 𝑁) → (𝑟 ∈ ℙ → (𝑧𝑟𝑧 ∉ ℙ)))
391, 38syl5com 31 . . . . . . . . . . . . . . 15 (𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁} → ((𝑧 ∈ (ℤ‘(𝑟 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑧 < 𝑁) → (𝑧𝑟𝑧 ∉ ℙ)))
4039adantl 473 . . . . . . . . . . . . . 14 ((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) → ((𝑧 ∈ (ℤ‘(𝑟 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑧 < 𝑁) → (𝑧𝑟𝑧 ∉ ℙ)))
4140imp 395 . . . . . . . . . . . . 13 (((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) ∧ (𝑧 ∈ (ℤ‘(𝑟 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑧 < 𝑁)) → (𝑧𝑟𝑧 ∉ ℙ))
4241adantl 473 . . . . . . . . . . . 12 ((𝑧 ∈ ℙ ∧ ((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) ∧ (𝑧 ∈ (ℤ‘(𝑟 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑧 < 𝑁))) → (𝑧𝑟𝑧 ∉ ℙ))
4319, 42embantd 59 . . . . . . . . . . 11 ((𝑧 ∈ ℙ ∧ ((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) ∧ (𝑧 ∈ (ℤ‘(𝑟 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑧 < 𝑁))) → ((𝑧 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁} → 𝑧𝑟) → 𝑧 ∉ ℙ))
4443ex 401 . . . . . . . . . 10 (𝑧 ∈ ℙ → (((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) ∧ (𝑧 ∈ (ℤ‘(𝑟 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑧 < 𝑁)) → ((𝑧 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁} → 𝑧𝑟) → 𝑧 ∉ ℙ)))
45 df-nel 3041 . . . . . . . . . . 11 (𝑧 ∉ ℙ ↔ ¬ 𝑧 ∈ ℙ)
46 ax-1 6 . . . . . . . . . . . 12 (𝑧 ∉ ℙ → ((𝑧 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁} → 𝑧𝑟) → 𝑧 ∉ ℙ))
4746a1d 25 . . . . . . . . . . 11 (𝑧 ∉ ℙ → (((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) ∧ (𝑧 ∈ (ℤ‘(𝑟 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑧 < 𝑁)) → ((𝑧 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁} → 𝑧𝑟) → 𝑧 ∉ ℙ)))
4845, 47sylbir 226 . . . . . . . . . 10 𝑧 ∈ ℙ → (((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) ∧ (𝑧 ∈ (ℤ‘(𝑟 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑧 < 𝑁)) → ((𝑧 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁} → 𝑧𝑟) → 𝑧 ∉ ℙ)))
4944, 48pm2.61i 176 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) ∧ (𝑧 ∈ (ℤ‘(𝑟 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑧 < 𝑁)) → ((𝑧 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁} → 𝑧𝑟) → 𝑧 ∉ ℙ))
5049impancom 443 . . . . . . . 8 (((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) ∧ (𝑧 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁} → 𝑧𝑟)) → ((𝑧 ∈ (ℤ‘(𝑟 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑧 < 𝑁) → 𝑧 ∉ ℙ))
5113, 50syl5bi 233 . . . . . . 7 (((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) ∧ (𝑧 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁} → 𝑧𝑟)) → (𝑧 ∈ ((𝑟 + 1)..^𝑁) → 𝑧 ∉ ℙ))
5251ex 401 . . . . . 6 ((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) → ((𝑧 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁} → 𝑧𝑟) → (𝑧 ∈ ((𝑟 + 1)..^𝑁) → 𝑧 ∉ ℙ)))
5352ralimdv2 3108 . . . . 5 ((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) → (∀𝑧 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}𝑧𝑟 → ∀𝑧 ∈ ((𝑟 + 1)..^𝑁)𝑧 ∉ ℙ))
5453imp 395 . . . 4 (((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) ∧ ∀𝑧 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}𝑧𝑟) → ∀𝑧 ∈ ((𝑟 + 1)..^𝑁)𝑧 ∉ ℙ)
5512, 54jca 507 . . 3 (((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) ∧ ∀𝑧 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}𝑧𝑟) → (𝑟 < 𝑁 ∧ ∀𝑧 ∈ ((𝑟 + 1)..^𝑁)𝑧 ∉ ℙ))
562, 8, 55rspcedvd 3468 . 2 (((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) ∧ ∀𝑧 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}𝑧𝑟) → ∃𝑝 ∈ ℙ (𝑝 < 𝑁 ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑁)𝑧 ∉ ℙ))
57 eqid 2765 . . 3 {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁} = {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}
5857prmgaplem3 16036 . 2 (𝑁 ∈ (ℤ‘3) → ∃𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}∀𝑧 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}𝑧𝑟)
5956, 58r19.29a 3225 1 (𝑁 ∈ (ℤ‘3) → ∃𝑝 ∈ ℙ (𝑝 < 𝑁 ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑁)𝑧 ∉ ℙ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wcel 2155  wnel 3040  wral 3055  wrex 3056  {crab 3059   class class class wbr 4809  cfv 6068  (class class class)co 6842  cr 10188  1c1 10190   + caddc 10192   < clt 10328  cle 10329  3c3 11328  cz 11624  cuz 11886  ..^cfzo 12673  cprime 15665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-2o 7765  df-er 7947  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-sup 8555  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-n0 11539  df-z 11625  df-uz 11887  df-rp 12029  df-fz 12534  df-fzo 12674  df-seq 13009  df-exp 13068  df-cj 14124  df-re 14125  df-im 14126  df-sqrt 14260  df-abs 14261  df-dvds 15266  df-prm 15666
This theorem is referenced by:  prmgaplem7  16040
  Copyright terms: Public domain W3C validator