MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmgaplem5 Structured version   Visualization version   GIF version

Theorem prmgaplem5 16967
Description: Lemma for prmgap 16971: for each integer greater than 2 there is a smaller prime closest to this integer, i.e. there is a smaller prime and no other prime is between this prime and the integer. (Contributed by AV, 9-Aug-2020.)
Assertion
Ref Expression
prmgaplem5 (𝑁 ∈ (ℤ‘3) → ∃𝑝 ∈ ℙ (𝑝 < 𝑁 ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑁)𝑧 ∉ ℙ))
Distinct variable group:   𝑁,𝑝,𝑧

Proof of Theorem prmgaplem5
Dummy variables 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elrabi 3643 . . . 4 (𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁} → 𝑟 ∈ ℙ)
21ad2antlr 727 . . 3 (((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) ∧ ∀𝑧 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}𝑧𝑟) → 𝑟 ∈ ℙ)
3 breq1 5095 . . . . 5 (𝑝 = 𝑟 → (𝑝 < 𝑁𝑟 < 𝑁))
4 oveq1 7356 . . . . . . 7 (𝑝 = 𝑟 → (𝑝 + 1) = (𝑟 + 1))
54oveq1d 7364 . . . . . 6 (𝑝 = 𝑟 → ((𝑝 + 1)..^𝑁) = ((𝑟 + 1)..^𝑁))
65raleqdv 3289 . . . . 5 (𝑝 = 𝑟 → (∀𝑧 ∈ ((𝑝 + 1)..^𝑁)𝑧 ∉ ℙ ↔ ∀𝑧 ∈ ((𝑟 + 1)..^𝑁)𝑧 ∉ ℙ))
73, 6anbi12d 632 . . . 4 (𝑝 = 𝑟 → ((𝑝 < 𝑁 ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑁)𝑧 ∉ ℙ) ↔ (𝑟 < 𝑁 ∧ ∀𝑧 ∈ ((𝑟 + 1)..^𝑁)𝑧 ∉ ℙ)))
87adantl 481 . . 3 ((((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) ∧ ∀𝑧 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}𝑧𝑟) ∧ 𝑝 = 𝑟) → ((𝑝 < 𝑁 ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑁)𝑧 ∉ ℙ) ↔ (𝑟 < 𝑁 ∧ ∀𝑧 ∈ ((𝑟 + 1)..^𝑁)𝑧 ∉ ℙ)))
9 breq1 5095 . . . . . . 7 (𝑞 = 𝑟 → (𝑞 < 𝑁𝑟 < 𝑁))
109elrab 3648 . . . . . 6 (𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁} ↔ (𝑟 ∈ ℙ ∧ 𝑟 < 𝑁))
1110simprbi 496 . . . . 5 (𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁} → 𝑟 < 𝑁)
1211ad2antlr 727 . . . 4 (((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) ∧ ∀𝑧 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}𝑧𝑟) → 𝑟 < 𝑁)
13 elfzo2 13565 . . . . . . . 8 (𝑧 ∈ ((𝑟 + 1)..^𝑁) ↔ (𝑧 ∈ (ℤ‘(𝑟 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑧 < 𝑁))
14 breq1 5095 . . . . . . . . . . . . . 14 (𝑞 = 𝑧 → (𝑞 < 𝑁𝑧 < 𝑁))
15 simpl 482 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℙ ∧ (𝑧 ∈ (ℤ‘(𝑟 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑧 < 𝑁)) → 𝑧 ∈ ℙ)
16 simpr3 1197 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℙ ∧ (𝑧 ∈ (ℤ‘(𝑟 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑧 < 𝑁)) → 𝑧 < 𝑁)
1714, 15, 16elrabd 3650 . . . . . . . . . . . . 13 ((𝑧 ∈ ℙ ∧ (𝑧 ∈ (ℤ‘(𝑟 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑧 < 𝑁)) → 𝑧 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁})
1817adantrl 716 . . . . . . . . . . . 12 ((𝑧 ∈ ℙ ∧ ((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) ∧ (𝑧 ∈ (ℤ‘(𝑟 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑧 < 𝑁))) → 𝑧 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁})
19 eluz2 12741 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ (ℤ‘(𝑟 + 1)) ↔ ((𝑟 + 1) ∈ ℤ ∧ 𝑧 ∈ ℤ ∧ (𝑟 + 1) ≤ 𝑧))
20 prmz 16586 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑟 ∈ ℙ → 𝑟 ∈ ℤ)
21 zltp1le 12525 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑟 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (𝑟 < 𝑧 ↔ (𝑟 + 1) ≤ 𝑧))
2220, 21sylan 580 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑟 ∈ ℙ ∧ 𝑧 ∈ ℤ) → (𝑟 < 𝑧 ↔ (𝑟 + 1) ≤ 𝑧))
23 prmnn 16585 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑟 ∈ ℙ → 𝑟 ∈ ℕ)
2423nnred 12143 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑟 ∈ ℙ → 𝑟 ∈ ℝ)
25 zre 12475 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 ∈ ℤ → 𝑧 ∈ ℝ)
26 ltnle 11195 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑟 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑟 < 𝑧 ↔ ¬ 𝑧𝑟))
2726biimpd 229 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑟 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑟 < 𝑧 → ¬ 𝑧𝑟))
2824, 25, 27syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑟 ∈ ℙ ∧ 𝑧 ∈ ℤ) → (𝑟 < 𝑧 → ¬ 𝑧𝑟))
29 pm2.21 123 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑧𝑟 → (𝑧𝑟𝑧 ∉ ℙ))
3028, 29syl6 35 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑟 ∈ ℙ ∧ 𝑧 ∈ ℤ) → (𝑟 < 𝑧 → (𝑧𝑟𝑧 ∉ ℙ)))
3122, 30sylbird 260 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑟 ∈ ℙ ∧ 𝑧 ∈ ℤ) → ((𝑟 + 1) ≤ 𝑧 → (𝑧𝑟𝑧 ∉ ℙ)))
3231expcom 413 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ ℤ → (𝑟 ∈ ℙ → ((𝑟 + 1) ≤ 𝑧 → (𝑧𝑟𝑧 ∉ ℙ))))
3332com23 86 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ ℤ → ((𝑟 + 1) ≤ 𝑧 → (𝑟 ∈ ℙ → (𝑧𝑟𝑧 ∉ ℙ))))
3433a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝑟 + 1) ∈ ℤ → (𝑧 ∈ ℤ → ((𝑟 + 1) ≤ 𝑧 → (𝑟 ∈ ℙ → (𝑧𝑟𝑧 ∉ ℙ)))))
35343imp 1110 . . . . . . . . . . . . . . . . . 18 (((𝑟 + 1) ∈ ℤ ∧ 𝑧 ∈ ℤ ∧ (𝑟 + 1) ≤ 𝑧) → (𝑟 ∈ ℙ → (𝑧𝑟𝑧 ∉ ℙ)))
3619, 35sylbi 217 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ (ℤ‘(𝑟 + 1)) → (𝑟 ∈ ℙ → (𝑧𝑟𝑧 ∉ ℙ)))
37363ad2ant1 1133 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ (ℤ‘(𝑟 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑧 < 𝑁) → (𝑟 ∈ ℙ → (𝑧𝑟𝑧 ∉ ℙ)))
381, 37syl5com 31 . . . . . . . . . . . . . . 15 (𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁} → ((𝑧 ∈ (ℤ‘(𝑟 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑧 < 𝑁) → (𝑧𝑟𝑧 ∉ ℙ)))
3938adantl 481 . . . . . . . . . . . . . 14 ((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) → ((𝑧 ∈ (ℤ‘(𝑟 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑧 < 𝑁) → (𝑧𝑟𝑧 ∉ ℙ)))
4039imp 406 . . . . . . . . . . . . 13 (((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) ∧ (𝑧 ∈ (ℤ‘(𝑟 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑧 < 𝑁)) → (𝑧𝑟𝑧 ∉ ℙ))
4140adantl 481 . . . . . . . . . . . 12 ((𝑧 ∈ ℙ ∧ ((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) ∧ (𝑧 ∈ (ℤ‘(𝑟 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑧 < 𝑁))) → (𝑧𝑟𝑧 ∉ ℙ))
4218, 41embantd 59 . . . . . . . . . . 11 ((𝑧 ∈ ℙ ∧ ((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) ∧ (𝑧 ∈ (ℤ‘(𝑟 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑧 < 𝑁))) → ((𝑧 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁} → 𝑧𝑟) → 𝑧 ∉ ℙ))
4342ex 412 . . . . . . . . . 10 (𝑧 ∈ ℙ → (((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) ∧ (𝑧 ∈ (ℤ‘(𝑟 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑧 < 𝑁)) → ((𝑧 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁} → 𝑧𝑟) → 𝑧 ∉ ℙ)))
44 df-nel 3030 . . . . . . . . . . 11 (𝑧 ∉ ℙ ↔ ¬ 𝑧 ∈ ℙ)
45 2a1 28 . . . . . . . . . . 11 (𝑧 ∉ ℙ → (((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) ∧ (𝑧 ∈ (ℤ‘(𝑟 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑧 < 𝑁)) → ((𝑧 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁} → 𝑧𝑟) → 𝑧 ∉ ℙ)))
4644, 45sylbir 235 . . . . . . . . . 10 𝑧 ∈ ℙ → (((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) ∧ (𝑧 ∈ (ℤ‘(𝑟 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑧 < 𝑁)) → ((𝑧 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁} → 𝑧𝑟) → 𝑧 ∉ ℙ)))
4743, 46pm2.61i 182 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) ∧ (𝑧 ∈ (ℤ‘(𝑟 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑧 < 𝑁)) → ((𝑧 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁} → 𝑧𝑟) → 𝑧 ∉ ℙ))
4847impancom 451 . . . . . . . 8 (((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) ∧ (𝑧 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁} → 𝑧𝑟)) → ((𝑧 ∈ (ℤ‘(𝑟 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑧 < 𝑁) → 𝑧 ∉ ℙ))
4913, 48biimtrid 242 . . . . . . 7 (((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) ∧ (𝑧 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁} → 𝑧𝑟)) → (𝑧 ∈ ((𝑟 + 1)..^𝑁) → 𝑧 ∉ ℙ))
5049ex 412 . . . . . 6 ((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) → ((𝑧 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁} → 𝑧𝑟) → (𝑧 ∈ ((𝑟 + 1)..^𝑁) → 𝑧 ∉ ℙ)))
5150ralimdv2 3138 . . . . 5 ((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) → (∀𝑧 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}𝑧𝑟 → ∀𝑧 ∈ ((𝑟 + 1)..^𝑁)𝑧 ∉ ℙ))
5251imp 406 . . . 4 (((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) ∧ ∀𝑧 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}𝑧𝑟) → ∀𝑧 ∈ ((𝑟 + 1)..^𝑁)𝑧 ∉ ℙ)
5312, 52jca 511 . . 3 (((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) ∧ ∀𝑧 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}𝑧𝑟) → (𝑟 < 𝑁 ∧ ∀𝑧 ∈ ((𝑟 + 1)..^𝑁)𝑧 ∉ ℙ))
542, 8, 53rspcedvd 3579 . 2 (((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) ∧ ∀𝑧 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}𝑧𝑟) → ∃𝑝 ∈ ℙ (𝑝 < 𝑁 ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑁)𝑧 ∉ ℙ))
55 eqid 2729 . . 3 {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁} = {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}
5655prmgaplem3 16965 . 2 (𝑁 ∈ (ℤ‘3) → ∃𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}∀𝑧 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}𝑧𝑟)
5754, 56r19.29a 3137 1 (𝑁 ∈ (ℤ‘3) → ∃𝑝 ∈ ℙ (𝑝 < 𝑁 ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑁)𝑧 ∉ ℙ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086  wcel 2109  wnel 3029  wral 3044  wrex 3053  {crab 3394   class class class wbr 5092  cfv 6482  (class class class)co 7349  cr 11008  1c1 11010   + caddc 11012   < clt 11149  cle 11150  3c3 12184  cz 12471  cuz 12735  ..^cfzo 13557  cprime 16582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-fz 13411  df-fzo 13558  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-dvds 16164  df-prm 16583
This theorem is referenced by:  prmgaplem7  16969
  Copyright terms: Public domain W3C validator