MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmgaplem5 Structured version   Visualization version   GIF version

Theorem prmgaplem5 16383
Description: Lemma for prmgap 16387: for each integer greater than 2 there is a smaller prime closest to this integer, i.e. there is a smaller prime and no other prime is between this prime and the integer. (Contributed by AV, 9-Aug-2020.)
Assertion
Ref Expression
prmgaplem5 (𝑁 ∈ (ℤ‘3) → ∃𝑝 ∈ ℙ (𝑝 < 𝑁 ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑁)𝑧 ∉ ℙ))
Distinct variable group:   𝑁,𝑝,𝑧

Proof of Theorem prmgaplem5
Dummy variables 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elrabi 3673 . . . 4 (𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁} → 𝑟 ∈ ℙ)
21ad2antlr 725 . . 3 (((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) ∧ ∀𝑧 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}𝑧𝑟) → 𝑟 ∈ ℙ)
3 breq1 5060 . . . . 5 (𝑝 = 𝑟 → (𝑝 < 𝑁𝑟 < 𝑁))
4 oveq1 7155 . . . . . . 7 (𝑝 = 𝑟 → (𝑝 + 1) = (𝑟 + 1))
54oveq1d 7163 . . . . . 6 (𝑝 = 𝑟 → ((𝑝 + 1)..^𝑁) = ((𝑟 + 1)..^𝑁))
65raleqdv 3414 . . . . 5 (𝑝 = 𝑟 → (∀𝑧 ∈ ((𝑝 + 1)..^𝑁)𝑧 ∉ ℙ ↔ ∀𝑧 ∈ ((𝑟 + 1)..^𝑁)𝑧 ∉ ℙ))
73, 6anbi12d 632 . . . 4 (𝑝 = 𝑟 → ((𝑝 < 𝑁 ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑁)𝑧 ∉ ℙ) ↔ (𝑟 < 𝑁 ∧ ∀𝑧 ∈ ((𝑟 + 1)..^𝑁)𝑧 ∉ ℙ)))
87adantl 484 . . 3 ((((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) ∧ ∀𝑧 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}𝑧𝑟) ∧ 𝑝 = 𝑟) → ((𝑝 < 𝑁 ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑁)𝑧 ∉ ℙ) ↔ (𝑟 < 𝑁 ∧ ∀𝑧 ∈ ((𝑟 + 1)..^𝑁)𝑧 ∉ ℙ)))
9 breq1 5060 . . . . . . 7 (𝑞 = 𝑟 → (𝑞 < 𝑁𝑟 < 𝑁))
109elrab 3678 . . . . . 6 (𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁} ↔ (𝑟 ∈ ℙ ∧ 𝑟 < 𝑁))
1110simprbi 499 . . . . 5 (𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁} → 𝑟 < 𝑁)
1211ad2antlr 725 . . . 4 (((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) ∧ ∀𝑧 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}𝑧𝑟) → 𝑟 < 𝑁)
13 elfzo2 13033 . . . . . . . 8 (𝑧 ∈ ((𝑟 + 1)..^𝑁) ↔ (𝑧 ∈ (ℤ‘(𝑟 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑧 < 𝑁))
14 breq1 5060 . . . . . . . . . . . . . 14 (𝑞 = 𝑧 → (𝑞 < 𝑁𝑧 < 𝑁))
15 simpl 485 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℙ ∧ (𝑧 ∈ (ℤ‘(𝑟 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑧 < 𝑁)) → 𝑧 ∈ ℙ)
16 simpr3 1190 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℙ ∧ (𝑧 ∈ (ℤ‘(𝑟 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑧 < 𝑁)) → 𝑧 < 𝑁)
1714, 15, 16elrabd 3680 . . . . . . . . . . . . 13 ((𝑧 ∈ ℙ ∧ (𝑧 ∈ (ℤ‘(𝑟 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑧 < 𝑁)) → 𝑧 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁})
1817adantrl 714 . . . . . . . . . . . 12 ((𝑧 ∈ ℙ ∧ ((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) ∧ (𝑧 ∈ (ℤ‘(𝑟 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑧 < 𝑁))) → 𝑧 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁})
19 eluz2 12241 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ (ℤ‘(𝑟 + 1)) ↔ ((𝑟 + 1) ∈ ℤ ∧ 𝑧 ∈ ℤ ∧ (𝑟 + 1) ≤ 𝑧))
20 prmz 16011 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑟 ∈ ℙ → 𝑟 ∈ ℤ)
21 zltp1le 12024 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑟 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (𝑟 < 𝑧 ↔ (𝑟 + 1) ≤ 𝑧))
2220, 21sylan 582 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑟 ∈ ℙ ∧ 𝑧 ∈ ℤ) → (𝑟 < 𝑧 ↔ (𝑟 + 1) ≤ 𝑧))
23 prmnn 16010 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑟 ∈ ℙ → 𝑟 ∈ ℕ)
2423nnred 11645 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑟 ∈ ℙ → 𝑟 ∈ ℝ)
25 zre 11977 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 ∈ ℤ → 𝑧 ∈ ℝ)
26 ltnle 10712 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑟 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑟 < 𝑧 ↔ ¬ 𝑧𝑟))
2726biimpd 231 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑟 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑟 < 𝑧 → ¬ 𝑧𝑟))
2824, 25, 27syl2an 597 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑟 ∈ ℙ ∧ 𝑧 ∈ ℤ) → (𝑟 < 𝑧 → ¬ 𝑧𝑟))
29 pm2.21 123 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑧𝑟 → (𝑧𝑟𝑧 ∉ ℙ))
3028, 29syl6 35 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑟 ∈ ℙ ∧ 𝑧 ∈ ℤ) → (𝑟 < 𝑧 → (𝑧𝑟𝑧 ∉ ℙ)))
3122, 30sylbird 262 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑟 ∈ ℙ ∧ 𝑧 ∈ ℤ) → ((𝑟 + 1) ≤ 𝑧 → (𝑧𝑟𝑧 ∉ ℙ)))
3231expcom 416 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ ℤ → (𝑟 ∈ ℙ → ((𝑟 + 1) ≤ 𝑧 → (𝑧𝑟𝑧 ∉ ℙ))))
3332com23 86 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ ℤ → ((𝑟 + 1) ≤ 𝑧 → (𝑟 ∈ ℙ → (𝑧𝑟𝑧 ∉ ℙ))))
3433a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝑟 + 1) ∈ ℤ → (𝑧 ∈ ℤ → ((𝑟 + 1) ≤ 𝑧 → (𝑟 ∈ ℙ → (𝑧𝑟𝑧 ∉ ℙ)))))
35343imp 1105 . . . . . . . . . . . . . . . . . 18 (((𝑟 + 1) ∈ ℤ ∧ 𝑧 ∈ ℤ ∧ (𝑟 + 1) ≤ 𝑧) → (𝑟 ∈ ℙ → (𝑧𝑟𝑧 ∉ ℙ)))
3619, 35sylbi 219 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ (ℤ‘(𝑟 + 1)) → (𝑟 ∈ ℙ → (𝑧𝑟𝑧 ∉ ℙ)))
37363ad2ant1 1127 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ (ℤ‘(𝑟 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑧 < 𝑁) → (𝑟 ∈ ℙ → (𝑧𝑟𝑧 ∉ ℙ)))
381, 37syl5com 31 . . . . . . . . . . . . . . 15 (𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁} → ((𝑧 ∈ (ℤ‘(𝑟 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑧 < 𝑁) → (𝑧𝑟𝑧 ∉ ℙ)))
3938adantl 484 . . . . . . . . . . . . . 14 ((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) → ((𝑧 ∈ (ℤ‘(𝑟 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑧 < 𝑁) → (𝑧𝑟𝑧 ∉ ℙ)))
4039imp 409 . . . . . . . . . . . . 13 (((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) ∧ (𝑧 ∈ (ℤ‘(𝑟 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑧 < 𝑁)) → (𝑧𝑟𝑧 ∉ ℙ))
4140adantl 484 . . . . . . . . . . . 12 ((𝑧 ∈ ℙ ∧ ((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) ∧ (𝑧 ∈ (ℤ‘(𝑟 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑧 < 𝑁))) → (𝑧𝑟𝑧 ∉ ℙ))
4218, 41embantd 59 . . . . . . . . . . 11 ((𝑧 ∈ ℙ ∧ ((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) ∧ (𝑧 ∈ (ℤ‘(𝑟 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑧 < 𝑁))) → ((𝑧 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁} → 𝑧𝑟) → 𝑧 ∉ ℙ))
4342ex 415 . . . . . . . . . 10 (𝑧 ∈ ℙ → (((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) ∧ (𝑧 ∈ (ℤ‘(𝑟 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑧 < 𝑁)) → ((𝑧 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁} → 𝑧𝑟) → 𝑧 ∉ ℙ)))
44 df-nel 3122 . . . . . . . . . . 11 (𝑧 ∉ ℙ ↔ ¬ 𝑧 ∈ ℙ)
45 2a1 28 . . . . . . . . . . 11 (𝑧 ∉ ℙ → (((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) ∧ (𝑧 ∈ (ℤ‘(𝑟 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑧 < 𝑁)) → ((𝑧 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁} → 𝑧𝑟) → 𝑧 ∉ ℙ)))
4644, 45sylbir 237 . . . . . . . . . 10 𝑧 ∈ ℙ → (((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) ∧ (𝑧 ∈ (ℤ‘(𝑟 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑧 < 𝑁)) → ((𝑧 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁} → 𝑧𝑟) → 𝑧 ∉ ℙ)))
4743, 46pm2.61i 183 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) ∧ (𝑧 ∈ (ℤ‘(𝑟 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑧 < 𝑁)) → ((𝑧 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁} → 𝑧𝑟) → 𝑧 ∉ ℙ))
4847impancom 454 . . . . . . . 8 (((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) ∧ (𝑧 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁} → 𝑧𝑟)) → ((𝑧 ∈ (ℤ‘(𝑟 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑧 < 𝑁) → 𝑧 ∉ ℙ))
4913, 48syl5bi 244 . . . . . . 7 (((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) ∧ (𝑧 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁} → 𝑧𝑟)) → (𝑧 ∈ ((𝑟 + 1)..^𝑁) → 𝑧 ∉ ℙ))
5049ex 415 . . . . . 6 ((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) → ((𝑧 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁} → 𝑧𝑟) → (𝑧 ∈ ((𝑟 + 1)..^𝑁) → 𝑧 ∉ ℙ)))
5150ralimdv2 3174 . . . . 5 ((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) → (∀𝑧 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}𝑧𝑟 → ∀𝑧 ∈ ((𝑟 + 1)..^𝑁)𝑧 ∉ ℙ))
5251imp 409 . . . 4 (((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) ∧ ∀𝑧 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}𝑧𝑟) → ∀𝑧 ∈ ((𝑟 + 1)..^𝑁)𝑧 ∉ ℙ)
5312, 52jca 514 . . 3 (((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) ∧ ∀𝑧 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}𝑧𝑟) → (𝑟 < 𝑁 ∧ ∀𝑧 ∈ ((𝑟 + 1)..^𝑁)𝑧 ∉ ℙ))
542, 8, 53rspcedvd 3624 . 2 (((𝑁 ∈ (ℤ‘3) ∧ 𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}) ∧ ∀𝑧 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}𝑧𝑟) → ∃𝑝 ∈ ℙ (𝑝 < 𝑁 ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑁)𝑧 ∉ ℙ))
55 eqid 2819 . . 3 {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁} = {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}
5655prmgaplem3 16381 . 2 (𝑁 ∈ (ℤ‘3) → ∃𝑟 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}∀𝑧 ∈ {𝑞 ∈ ℙ ∣ 𝑞 < 𝑁}𝑧𝑟)
5754, 56r19.29a 3287 1 (𝑁 ∈ (ℤ‘3) → ∃𝑝 ∈ ℙ (𝑝 < 𝑁 ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑁)𝑧 ∉ ℙ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1081  wcel 2107  wnel 3121  wral 3136  wrex 3137  {crab 3140   class class class wbr 5057  cfv 6348  (class class class)co 7148  cr 10528  1c1 10530   + caddc 10532   < clt 10667  cle 10668  3c3 11685  cz 11973  cuz 12235  ..^cfzo 13025  cprime 16007
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-2o 8095  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-sup 8898  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-fz 12885  df-fzo 13026  df-seq 13362  df-exp 13422  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-dvds 15600  df-prm 16008
This theorem is referenced by:  prmgaplem7  16385
  Copyright terms: Public domain W3C validator