MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqreultlem Structured version   Visualization version   GIF version

Theorem 2sqreultlem 27385
Description: Lemma for 2sqreult 27396. (Contributed by AV, 8-Jun-2023.) (Proposed by GL, 8-Jun-2023.)
Assertion
Ref Expression
2sqreultlem ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
Distinct variable group:   𝑃,𝑎,𝑏

Proof of Theorem 2sqreultlem
StepHypRef Expression
1 2sqreulem1 27384 . 2 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
2 oveq1 7353 . . . . . . . . . . . . . . 15 (𝑏 = 𝑎 → (𝑏↑2) = (𝑎↑2))
32oveq2d 7362 . . . . . . . . . . . . . 14 (𝑏 = 𝑎 → ((𝑎↑2) + (𝑏↑2)) = ((𝑎↑2) + (𝑎↑2)))
43adantr 480 . . . . . . . . . . . . 13 ((𝑏 = 𝑎 ∧ (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ 𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℕ0)) → ((𝑎↑2) + (𝑏↑2)) = ((𝑎↑2) + (𝑎↑2)))
5 nn0cn 12391 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ ℕ0𝑎 ∈ ℂ)
65sqcld 14051 . . . . . . . . . . . . . . . 16 (𝑎 ∈ ℕ0 → (𝑎↑2) ∈ ℂ)
7 2times 12256 . . . . . . . . . . . . . . . . 17 ((𝑎↑2) ∈ ℂ → (2 · (𝑎↑2)) = ((𝑎↑2) + (𝑎↑2)))
87eqcomd 2737 . . . . . . . . . . . . . . . 16 ((𝑎↑2) ∈ ℂ → ((𝑎↑2) + (𝑎↑2)) = (2 · (𝑎↑2)))
96, 8syl 17 . . . . . . . . . . . . . . 15 (𝑎 ∈ ℕ0 → ((𝑎↑2) + (𝑎↑2)) = (2 · (𝑎↑2)))
109adantl 481 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ 𝑎 ∈ ℕ0) → ((𝑎↑2) + (𝑎↑2)) = (2 · (𝑎↑2)))
1110ad2antrl 728 . . . . . . . . . . . . 13 ((𝑏 = 𝑎 ∧ (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ 𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℕ0)) → ((𝑎↑2) + (𝑎↑2)) = (2 · (𝑎↑2)))
124, 11eqtrd 2766 . . . . . . . . . . . 12 ((𝑏 = 𝑎 ∧ (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ 𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℕ0)) → ((𝑎↑2) + (𝑏↑2)) = (2 · (𝑎↑2)))
1312eqeq1d 2733 . . . . . . . . . . 11 ((𝑏 = 𝑎 ∧ (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ 𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℕ0)) → (((𝑎↑2) + (𝑏↑2)) = 𝑃 ↔ (2 · (𝑎↑2)) = 𝑃))
14 oveq1 7353 . . . . . . . . . . . . . . . . . . . 20 (𝑃 = (2 · (𝑎↑2)) → (𝑃 mod 4) = ((2 · (𝑎↑2)) mod 4))
1514eqeq1d 2733 . . . . . . . . . . . . . . . . . . 19 (𝑃 = (2 · (𝑎↑2)) → ((𝑃 mod 4) = 1 ↔ ((2 · (𝑎↑2)) mod 4) = 1))
16 eleq1 2819 . . . . . . . . . . . . . . . . . . 19 (𝑃 = (2 · (𝑎↑2)) → (𝑃 ∈ ℙ ↔ (2 · (𝑎↑2)) ∈ ℙ))
1715, 16anbi12d 632 . . . . . . . . . . . . . . . . . 18 (𝑃 = (2 · (𝑎↑2)) → (((𝑃 mod 4) = 1 ∧ 𝑃 ∈ ℙ) ↔ (((2 · (𝑎↑2)) mod 4) = 1 ∧ (2 · (𝑎↑2)) ∈ ℙ)))
18 nn0z 12493 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 ∈ ℕ0𝑎 ∈ ℤ)
19 2nn0 12398 . . . . . . . . . . . . . . . . . . . . . . 23 2 ∈ ℕ0
20 zexpcl 13983 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑎 ∈ ℤ ∧ 2 ∈ ℕ0) → (𝑎↑2) ∈ ℤ)
2118, 19, 20sylancl 586 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 ∈ ℕ0 → (𝑎↑2) ∈ ℤ)
22 2mulprm 16604 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎↑2) ∈ ℤ → ((2 · (𝑎↑2)) ∈ ℙ ↔ (𝑎↑2) = 1))
2321, 22syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 ∈ ℕ0 → ((2 · (𝑎↑2)) ∈ ℙ ↔ (𝑎↑2) = 1))
24 oveq2 7354 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑎↑2) = 1 → (2 · (𝑎↑2)) = (2 · 1))
25 2t1e2 12283 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (2 · 1) = 2
2624, 25eqtrdi 2782 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑎↑2) = 1 → (2 · (𝑎↑2)) = 2)
2726oveq1d 7361 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑎↑2) = 1 → ((2 · (𝑎↑2)) mod 4) = (2 mod 4))
28 2re 12199 . . . . . . . . . . . . . . . . . . . . . . . . 25 2 ∈ ℝ
29 4nn 12208 . . . . . . . . . . . . . . . . . . . . . . . . . 26 4 ∈ ℕ
30 nnrp 12902 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (4 ∈ ℕ → 4 ∈ ℝ+)
3129, 30ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . 25 4 ∈ ℝ+
32 0le2 12227 . . . . . . . . . . . . . . . . . . . . . . . . 25 0 ≤ 2
33 2lt4 12295 . . . . . . . . . . . . . . . . . . . . . . . . 25 2 < 4
34 modid 13800 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((2 ∈ ℝ ∧ 4 ∈ ℝ+) ∧ (0 ≤ 2 ∧ 2 < 4)) → (2 mod 4) = 2)
3528, 31, 32, 33, 34mp4an 693 . . . . . . . . . . . . . . . . . . . . . . . 24 (2 mod 4) = 2
3627, 35eqtrdi 2782 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑎↑2) = 1 → ((2 · (𝑎↑2)) mod 4) = 2)
3736eqeq1d 2733 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎↑2) = 1 → (((2 · (𝑎↑2)) mod 4) = 1 ↔ 2 = 1))
38 1ne2 12328 . . . . . . . . . . . . . . . . . . . . . . 23 1 ≠ 2
39 eqcom 2738 . . . . . . . . . . . . . . . . . . . . . . . 24 (2 = 1 ↔ 1 = 2)
40 eqneqall 2939 . . . . . . . . . . . . . . . . . . . . . . . . 25 (1 = 2 → (1 ≠ 2 → (𝑎𝑏𝑏𝑎)))
4140com12 32 . . . . . . . . . . . . . . . . . . . . . . . 24 (1 ≠ 2 → (1 = 2 → (𝑎𝑏𝑏𝑎)))
4239, 41biimtrid 242 . . . . . . . . . . . . . . . . . . . . . . 23 (1 ≠ 2 → (2 = 1 → (𝑎𝑏𝑏𝑎)))
4338, 42ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 (2 = 1 → (𝑎𝑏𝑏𝑎))
4437, 43biimtrdi 253 . . . . . . . . . . . . . . . . . . . . 21 ((𝑎↑2) = 1 → (((2 · (𝑎↑2)) mod 4) = 1 → (𝑎𝑏𝑏𝑎)))
4523, 44biimtrdi 253 . . . . . . . . . . . . . . . . . . . 20 (𝑎 ∈ ℕ0 → ((2 · (𝑎↑2)) ∈ ℙ → (((2 · (𝑎↑2)) mod 4) = 1 → (𝑎𝑏𝑏𝑎))))
4645impcomd 411 . . . . . . . . . . . . . . . . . . 19 (𝑎 ∈ ℕ0 → ((((2 · (𝑎↑2)) mod 4) = 1 ∧ (2 · (𝑎↑2)) ∈ ℙ) → (𝑎𝑏𝑏𝑎)))
4746com12 32 . . . . . . . . . . . . . . . . . 18 ((((2 · (𝑎↑2)) mod 4) = 1 ∧ (2 · (𝑎↑2)) ∈ ℙ) → (𝑎 ∈ ℕ0 → (𝑎𝑏𝑏𝑎)))
4817, 47biimtrdi 253 . . . . . . . . . . . . . . . . 17 (𝑃 = (2 · (𝑎↑2)) → (((𝑃 mod 4) = 1 ∧ 𝑃 ∈ ℙ) → (𝑎 ∈ ℕ0 → (𝑎𝑏𝑏𝑎))))
4948expd 415 . . . . . . . . . . . . . . . 16 (𝑃 = (2 · (𝑎↑2)) → ((𝑃 mod 4) = 1 → (𝑃 ∈ ℙ → (𝑎 ∈ ℕ0 → (𝑎𝑏𝑏𝑎)))))
5049com34 91 . . . . . . . . . . . . . . 15 (𝑃 = (2 · (𝑎↑2)) → ((𝑃 mod 4) = 1 → (𝑎 ∈ ℕ0 → (𝑃 ∈ ℙ → (𝑎𝑏𝑏𝑎)))))
5150eqcoms 2739 . . . . . . . . . . . . . 14 ((2 · (𝑎↑2)) = 𝑃 → ((𝑃 mod 4) = 1 → (𝑎 ∈ ℕ0 → (𝑃 ∈ ℙ → (𝑎𝑏𝑏𝑎)))))
5251com14 96 . . . . . . . . . . . . 13 (𝑃 ∈ ℙ → ((𝑃 mod 4) = 1 → (𝑎 ∈ ℕ0 → ((2 · (𝑎↑2)) = 𝑃 → (𝑎𝑏𝑏𝑎)))))
5352imp31 417 . . . . . . . . . . . 12 (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ 𝑎 ∈ ℕ0) → ((2 · (𝑎↑2)) = 𝑃 → (𝑎𝑏𝑏𝑎)))
5453ad2antrl 728 . . . . . . . . . . 11 ((𝑏 = 𝑎 ∧ (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ 𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℕ0)) → ((2 · (𝑎↑2)) = 𝑃 → (𝑎𝑏𝑏𝑎)))
5513, 54sylbid 240 . . . . . . . . . 10 ((𝑏 = 𝑎 ∧ (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ 𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℕ0)) → (((𝑎↑2) + (𝑏↑2)) = 𝑃 → (𝑎𝑏𝑏𝑎)))
5655expimpd 453 . . . . . . . . 9 (𝑏 = 𝑎 → (((((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ 𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℕ0) ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → (𝑎𝑏𝑏𝑎)))
57 2a1 28 . . . . . . . . 9 (𝑏𝑎 → (((((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ 𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℕ0) ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → (𝑎𝑏𝑏𝑎)))
5856, 57pm2.61ine 3011 . . . . . . . 8 (((((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ 𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℕ0) ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → (𝑎𝑏𝑏𝑎))
5958pm4.71d 561 . . . . . . 7 (((((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ 𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℕ0) ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → (𝑎𝑏 ↔ (𝑎𝑏𝑏𝑎)))
60 nn0re 12390 . . . . . . . . . . 11 (𝑎 ∈ ℕ0𝑎 ∈ ℝ)
6160adantl 481 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ 𝑎 ∈ ℕ0) → 𝑎 ∈ ℝ)
62 nn0re 12390 . . . . . . . . . 10 (𝑏 ∈ ℕ0𝑏 ∈ ℝ)
63 ltlen 11214 . . . . . . . . . 10 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝑎 < 𝑏 ↔ (𝑎𝑏𝑏𝑎)))
6461, 62, 63syl2an 596 . . . . . . . . 9 ((((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ 𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℕ0) → (𝑎 < 𝑏 ↔ (𝑎𝑏𝑏𝑎)))
6564bibi2d 342 . . . . . . . 8 ((((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ 𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℕ0) → ((𝑎𝑏𝑎 < 𝑏) ↔ (𝑎𝑏 ↔ (𝑎𝑏𝑏𝑎))))
6665adantr 480 . . . . . . 7 (((((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ 𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℕ0) ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ((𝑎𝑏𝑎 < 𝑏) ↔ (𝑎𝑏 ↔ (𝑎𝑏𝑏𝑎))))
6759, 66mpbird 257 . . . . . 6 (((((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ 𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℕ0) ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → (𝑎𝑏𝑎 < 𝑏))
6867ex 412 . . . . 5 ((((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ 𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℕ0) → (((𝑎↑2) + (𝑏↑2)) = 𝑃 → (𝑎𝑏𝑎 < 𝑏)))
6968pm5.32rd 578 . . . 4 ((((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ 𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℕ0) → ((𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)))
7069reubidva 3360 . . 3 (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ 𝑎 ∈ ℕ0) → (∃!𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ ∃!𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)))
7170reubidva 3360 . 2 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → (∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ ∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)))
721, 71mpbid 232 1 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  ∃!wreu 3344   class class class wbr 5089  (class class class)co 7346  cc 11004  cr 11005  0cc0 11006  1c1 11007   + caddc 11009   · cmul 11011   < clt 11146  cle 11147  cn 12125  2c2 12180  4c4 12182  0cn0 12381  cz 12468  +crp 12890   mod cmo 13773  cexp 13968  cprime 16582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085  ax-mulf 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-ofr 7611  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-er 8622  df-ec 8624  df-qs 8628  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-inf 9327  df-oi 9396  df-dju 9794  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-xnn0 12455  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-fz 13408  df-fzo 13555  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-dvds 16164  df-gcd 16406  df-prm 16583  df-phi 16677  df-pc 16749  df-gz 16842  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-imas 17412  df-qus 17413  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-submnd 18692  df-grp 18849  df-minusg 18850  df-sbg 18851  df-mulg 18981  df-subg 19036  df-nsg 19037  df-eqg 19038  df-ghm 19125  df-cntz 19229  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-srg 20105  df-ring 20153  df-cring 20154  df-oppr 20255  df-dvdsr 20275  df-unit 20276  df-invr 20306  df-dvr 20319  df-rhm 20390  df-nzr 20428  df-subrng 20461  df-subrg 20485  df-rlreg 20609  df-domn 20610  df-idom 20611  df-drng 20646  df-field 20647  df-lmod 20795  df-lss 20865  df-lsp 20905  df-sra 21107  df-rgmod 21108  df-lidl 21145  df-rsp 21146  df-2idl 21187  df-cnfld 21292  df-zring 21384  df-zrh 21440  df-zn 21443  df-assa 21790  df-asp 21791  df-ascl 21792  df-psr 21846  df-mvr 21847  df-mpl 21848  df-opsr 21850  df-evls 22009  df-evl 22010  df-psr1 22092  df-vr1 22093  df-ply1 22094  df-coe1 22095  df-evl1 22231  df-mdeg 25987  df-deg1 25988  df-mon1 26063  df-uc1p 26064  df-q1p 26065  df-r1p 26066  df-lgs 27233
This theorem is referenced by:  2sqreultblem  27386  2sqreult  27396
  Copyright terms: Public domain W3C validator