MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqreultlem Structured version   Visualization version   GIF version

Theorem 2sqreultlem 27396
Description: Lemma for 2sqreult 27407. (Contributed by AV, 8-Jun-2023.) (Proposed by GL, 8-Jun-2023.)
Assertion
Ref Expression
2sqreultlem ((๐‘ƒ โˆˆ โ„™ โˆง (๐‘ƒ mod 4) = 1) โ†’ โˆƒ!๐‘Ž โˆˆ โ„•0 โˆƒ!๐‘ โˆˆ โ„•0 (๐‘Ž < ๐‘ โˆง ((๐‘Žโ†‘2) + (๐‘โ†‘2)) = ๐‘ƒ))
Distinct variable group:   ๐‘ƒ,๐‘Ž,๐‘

Proof of Theorem 2sqreultlem
StepHypRef Expression
1 2sqreulem1 27395 . 2 ((๐‘ƒ โˆˆ โ„™ โˆง (๐‘ƒ mod 4) = 1) โ†’ โˆƒ!๐‘Ž โˆˆ โ„•0 โˆƒ!๐‘ โˆˆ โ„•0 (๐‘Ž โ‰ค ๐‘ โˆง ((๐‘Žโ†‘2) + (๐‘โ†‘2)) = ๐‘ƒ))
2 oveq1 7422 . . . . . . . . . . . . . . 15 (๐‘ = ๐‘Ž โ†’ (๐‘โ†‘2) = (๐‘Žโ†‘2))
32oveq2d 7431 . . . . . . . . . . . . . 14 (๐‘ = ๐‘Ž โ†’ ((๐‘Žโ†‘2) + (๐‘โ†‘2)) = ((๐‘Žโ†‘2) + (๐‘Žโ†‘2)))
43adantr 479 . . . . . . . . . . . . 13 ((๐‘ = ๐‘Ž โˆง (((๐‘ƒ โˆˆ โ„™ โˆง (๐‘ƒ mod 4) = 1) โˆง ๐‘Ž โˆˆ โ„•0) โˆง ๐‘ โˆˆ โ„•0)) โ†’ ((๐‘Žโ†‘2) + (๐‘โ†‘2)) = ((๐‘Žโ†‘2) + (๐‘Žโ†‘2)))
5 nn0cn 12510 . . . . . . . . . . . . . . . . 17 (๐‘Ž โˆˆ โ„•0 โ†’ ๐‘Ž โˆˆ โ„‚)
65sqcld 14138 . . . . . . . . . . . . . . . 16 (๐‘Ž โˆˆ โ„•0 โ†’ (๐‘Žโ†‘2) โˆˆ โ„‚)
7 2times 12376 . . . . . . . . . . . . . . . . 17 ((๐‘Žโ†‘2) โˆˆ โ„‚ โ†’ (2 ยท (๐‘Žโ†‘2)) = ((๐‘Žโ†‘2) + (๐‘Žโ†‘2)))
87eqcomd 2731 . . . . . . . . . . . . . . . 16 ((๐‘Žโ†‘2) โˆˆ โ„‚ โ†’ ((๐‘Žโ†‘2) + (๐‘Žโ†‘2)) = (2 ยท (๐‘Žโ†‘2)))
96, 8syl 17 . . . . . . . . . . . . . . 15 (๐‘Ž โˆˆ โ„•0 โ†’ ((๐‘Žโ†‘2) + (๐‘Žโ†‘2)) = (2 ยท (๐‘Žโ†‘2)))
109adantl 480 . . . . . . . . . . . . . 14 (((๐‘ƒ โˆˆ โ„™ โˆง (๐‘ƒ mod 4) = 1) โˆง ๐‘Ž โˆˆ โ„•0) โ†’ ((๐‘Žโ†‘2) + (๐‘Žโ†‘2)) = (2 ยท (๐‘Žโ†‘2)))
1110ad2antrl 726 . . . . . . . . . . . . 13 ((๐‘ = ๐‘Ž โˆง (((๐‘ƒ โˆˆ โ„™ โˆง (๐‘ƒ mod 4) = 1) โˆง ๐‘Ž โˆˆ โ„•0) โˆง ๐‘ โˆˆ โ„•0)) โ†’ ((๐‘Žโ†‘2) + (๐‘Žโ†‘2)) = (2 ยท (๐‘Žโ†‘2)))
124, 11eqtrd 2765 . . . . . . . . . . . 12 ((๐‘ = ๐‘Ž โˆง (((๐‘ƒ โˆˆ โ„™ โˆง (๐‘ƒ mod 4) = 1) โˆง ๐‘Ž โˆˆ โ„•0) โˆง ๐‘ โˆˆ โ„•0)) โ†’ ((๐‘Žโ†‘2) + (๐‘โ†‘2)) = (2 ยท (๐‘Žโ†‘2)))
1312eqeq1d 2727 . . . . . . . . . . 11 ((๐‘ = ๐‘Ž โˆง (((๐‘ƒ โˆˆ โ„™ โˆง (๐‘ƒ mod 4) = 1) โˆง ๐‘Ž โˆˆ โ„•0) โˆง ๐‘ โˆˆ โ„•0)) โ†’ (((๐‘Žโ†‘2) + (๐‘โ†‘2)) = ๐‘ƒ โ†” (2 ยท (๐‘Žโ†‘2)) = ๐‘ƒ))
14 oveq1 7422 . . . . . . . . . . . . . . . . . . . 20 (๐‘ƒ = (2 ยท (๐‘Žโ†‘2)) โ†’ (๐‘ƒ mod 4) = ((2 ยท (๐‘Žโ†‘2)) mod 4))
1514eqeq1d 2727 . . . . . . . . . . . . . . . . . . 19 (๐‘ƒ = (2 ยท (๐‘Žโ†‘2)) โ†’ ((๐‘ƒ mod 4) = 1 โ†” ((2 ยท (๐‘Žโ†‘2)) mod 4) = 1))
16 eleq1 2813 . . . . . . . . . . . . . . . . . . 19 (๐‘ƒ = (2 ยท (๐‘Žโ†‘2)) โ†’ (๐‘ƒ โˆˆ โ„™ โ†” (2 ยท (๐‘Žโ†‘2)) โˆˆ โ„™))
1715, 16anbi12d 630 . . . . . . . . . . . . . . . . . 18 (๐‘ƒ = (2 ยท (๐‘Žโ†‘2)) โ†’ (((๐‘ƒ mod 4) = 1 โˆง ๐‘ƒ โˆˆ โ„™) โ†” (((2 ยท (๐‘Žโ†‘2)) mod 4) = 1 โˆง (2 ยท (๐‘Žโ†‘2)) โˆˆ โ„™)))
18 nn0z 12611 . . . . . . . . . . . . . . . . . . . . . . 23 (๐‘Ž โˆˆ โ„•0 โ†’ ๐‘Ž โˆˆ โ„ค)
19 2nn0 12517 . . . . . . . . . . . . . . . . . . . . . . 23 2 โˆˆ โ„•0
20 zexpcl 14071 . . . . . . . . . . . . . . . . . . . . . . 23 ((๐‘Ž โˆˆ โ„ค โˆง 2 โˆˆ โ„•0) โ†’ (๐‘Žโ†‘2) โˆˆ โ„ค)
2118, 19, 20sylancl 584 . . . . . . . . . . . . . . . . . . . . . 22 (๐‘Ž โˆˆ โ„•0 โ†’ (๐‘Žโ†‘2) โˆˆ โ„ค)
22 2mulprm 16661 . . . . . . . . . . . . . . . . . . . . . 22 ((๐‘Žโ†‘2) โˆˆ โ„ค โ†’ ((2 ยท (๐‘Žโ†‘2)) โˆˆ โ„™ โ†” (๐‘Žโ†‘2) = 1))
2321, 22syl 17 . . . . . . . . . . . . . . . . . . . . 21 (๐‘Ž โˆˆ โ„•0 โ†’ ((2 ยท (๐‘Žโ†‘2)) โˆˆ โ„™ โ†” (๐‘Žโ†‘2) = 1))
24 oveq2 7423 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((๐‘Žโ†‘2) = 1 โ†’ (2 ยท (๐‘Žโ†‘2)) = (2 ยท 1))
25 2t1e2 12403 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (2 ยท 1) = 2
2624, 25eqtrdi 2781 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((๐‘Žโ†‘2) = 1 โ†’ (2 ยท (๐‘Žโ†‘2)) = 2)
2726oveq1d 7430 . . . . . . . . . . . . . . . . . . . . . . . 24 ((๐‘Žโ†‘2) = 1 โ†’ ((2 ยท (๐‘Žโ†‘2)) mod 4) = (2 mod 4))
28 2re 12314 . . . . . . . . . . . . . . . . . . . . . . . . 25 2 โˆˆ โ„
29 4nn 12323 . . . . . . . . . . . . . . . . . . . . . . . . . 26 4 โˆˆ โ„•
30 nnrp 13015 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (4 โˆˆ โ„• โ†’ 4 โˆˆ โ„+)
3129, 30ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . 25 4 โˆˆ โ„+
32 0le2 12342 . . . . . . . . . . . . . . . . . . . . . . . . 25 0 โ‰ค 2
33 2lt4 12415 . . . . . . . . . . . . . . . . . . . . . . . . 25 2 < 4
34 modid 13891 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((2 โˆˆ โ„ โˆง 4 โˆˆ โ„+) โˆง (0 โ‰ค 2 โˆง 2 < 4)) โ†’ (2 mod 4) = 2)
3528, 31, 32, 33, 34mp4an 691 . . . . . . . . . . . . . . . . . . . . . . . 24 (2 mod 4) = 2
3627, 35eqtrdi 2781 . . . . . . . . . . . . . . . . . . . . . . 23 ((๐‘Žโ†‘2) = 1 โ†’ ((2 ยท (๐‘Žโ†‘2)) mod 4) = 2)
3736eqeq1d 2727 . . . . . . . . . . . . . . . . . . . . . 22 ((๐‘Žโ†‘2) = 1 โ†’ (((2 ยท (๐‘Žโ†‘2)) mod 4) = 1 โ†” 2 = 1))
38 1ne2 12448 . . . . . . . . . . . . . . . . . . . . . . 23 1 โ‰  2
39 eqcom 2732 . . . . . . . . . . . . . . . . . . . . . . . 24 (2 = 1 โ†” 1 = 2)
40 eqneqall 2941 . . . . . . . . . . . . . . . . . . . . . . . . 25 (1 = 2 โ†’ (1 โ‰  2 โ†’ (๐‘Ž โ‰ค ๐‘ โ†’ ๐‘ โ‰  ๐‘Ž)))
4140com12 32 . . . . . . . . . . . . . . . . . . . . . . . 24 (1 โ‰  2 โ†’ (1 = 2 โ†’ (๐‘Ž โ‰ค ๐‘ โ†’ ๐‘ โ‰  ๐‘Ž)))
4239, 41biimtrid 241 . . . . . . . . . . . . . . . . . . . . . . 23 (1 โ‰  2 โ†’ (2 = 1 โ†’ (๐‘Ž โ‰ค ๐‘ โ†’ ๐‘ โ‰  ๐‘Ž)))
4338, 42ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 (2 = 1 โ†’ (๐‘Ž โ‰ค ๐‘ โ†’ ๐‘ โ‰  ๐‘Ž))
4437, 43biimtrdi 252 . . . . . . . . . . . . . . . . . . . . 21 ((๐‘Žโ†‘2) = 1 โ†’ (((2 ยท (๐‘Žโ†‘2)) mod 4) = 1 โ†’ (๐‘Ž โ‰ค ๐‘ โ†’ ๐‘ โ‰  ๐‘Ž)))
4523, 44biimtrdi 252 . . . . . . . . . . . . . . . . . . . 20 (๐‘Ž โˆˆ โ„•0 โ†’ ((2 ยท (๐‘Žโ†‘2)) โˆˆ โ„™ โ†’ (((2 ยท (๐‘Žโ†‘2)) mod 4) = 1 โ†’ (๐‘Ž โ‰ค ๐‘ โ†’ ๐‘ โ‰  ๐‘Ž))))
4645impcomd 410 . . . . . . . . . . . . . . . . . . 19 (๐‘Ž โˆˆ โ„•0 โ†’ ((((2 ยท (๐‘Žโ†‘2)) mod 4) = 1 โˆง (2 ยท (๐‘Žโ†‘2)) โˆˆ โ„™) โ†’ (๐‘Ž โ‰ค ๐‘ โ†’ ๐‘ โ‰  ๐‘Ž)))
4746com12 32 . . . . . . . . . . . . . . . . . 18 ((((2 ยท (๐‘Žโ†‘2)) mod 4) = 1 โˆง (2 ยท (๐‘Žโ†‘2)) โˆˆ โ„™) โ†’ (๐‘Ž โˆˆ โ„•0 โ†’ (๐‘Ž โ‰ค ๐‘ โ†’ ๐‘ โ‰  ๐‘Ž)))
4817, 47biimtrdi 252 . . . . . . . . . . . . . . . . 17 (๐‘ƒ = (2 ยท (๐‘Žโ†‘2)) โ†’ (((๐‘ƒ mod 4) = 1 โˆง ๐‘ƒ โˆˆ โ„™) โ†’ (๐‘Ž โˆˆ โ„•0 โ†’ (๐‘Ž โ‰ค ๐‘ โ†’ ๐‘ โ‰  ๐‘Ž))))
4948expd 414 . . . . . . . . . . . . . . . 16 (๐‘ƒ = (2 ยท (๐‘Žโ†‘2)) โ†’ ((๐‘ƒ mod 4) = 1 โ†’ (๐‘ƒ โˆˆ โ„™ โ†’ (๐‘Ž โˆˆ โ„•0 โ†’ (๐‘Ž โ‰ค ๐‘ โ†’ ๐‘ โ‰  ๐‘Ž)))))
5049com34 91 . . . . . . . . . . . . . . 15 (๐‘ƒ = (2 ยท (๐‘Žโ†‘2)) โ†’ ((๐‘ƒ mod 4) = 1 โ†’ (๐‘Ž โˆˆ โ„•0 โ†’ (๐‘ƒ โˆˆ โ„™ โ†’ (๐‘Ž โ‰ค ๐‘ โ†’ ๐‘ โ‰  ๐‘Ž)))))
5150eqcoms 2733 . . . . . . . . . . . . . 14 ((2 ยท (๐‘Žโ†‘2)) = ๐‘ƒ โ†’ ((๐‘ƒ mod 4) = 1 โ†’ (๐‘Ž โˆˆ โ„•0 โ†’ (๐‘ƒ โˆˆ โ„™ โ†’ (๐‘Ž โ‰ค ๐‘ โ†’ ๐‘ โ‰  ๐‘Ž)))))
5251com14 96 . . . . . . . . . . . . 13 (๐‘ƒ โˆˆ โ„™ โ†’ ((๐‘ƒ mod 4) = 1 โ†’ (๐‘Ž โˆˆ โ„•0 โ†’ ((2 ยท (๐‘Žโ†‘2)) = ๐‘ƒ โ†’ (๐‘Ž โ‰ค ๐‘ โ†’ ๐‘ โ‰  ๐‘Ž)))))
5352imp31 416 . . . . . . . . . . . 12 (((๐‘ƒ โˆˆ โ„™ โˆง (๐‘ƒ mod 4) = 1) โˆง ๐‘Ž โˆˆ โ„•0) โ†’ ((2 ยท (๐‘Žโ†‘2)) = ๐‘ƒ โ†’ (๐‘Ž โ‰ค ๐‘ โ†’ ๐‘ โ‰  ๐‘Ž)))
5453ad2antrl 726 . . . . . . . . . . 11 ((๐‘ = ๐‘Ž โˆง (((๐‘ƒ โˆˆ โ„™ โˆง (๐‘ƒ mod 4) = 1) โˆง ๐‘Ž โˆˆ โ„•0) โˆง ๐‘ โˆˆ โ„•0)) โ†’ ((2 ยท (๐‘Žโ†‘2)) = ๐‘ƒ โ†’ (๐‘Ž โ‰ค ๐‘ โ†’ ๐‘ โ‰  ๐‘Ž)))
5513, 54sylbid 239 . . . . . . . . . 10 ((๐‘ = ๐‘Ž โˆง (((๐‘ƒ โˆˆ โ„™ โˆง (๐‘ƒ mod 4) = 1) โˆง ๐‘Ž โˆˆ โ„•0) โˆง ๐‘ โˆˆ โ„•0)) โ†’ (((๐‘Žโ†‘2) + (๐‘โ†‘2)) = ๐‘ƒ โ†’ (๐‘Ž โ‰ค ๐‘ โ†’ ๐‘ โ‰  ๐‘Ž)))
5655expimpd 452 . . . . . . . . 9 (๐‘ = ๐‘Ž โ†’ (((((๐‘ƒ โˆˆ โ„™ โˆง (๐‘ƒ mod 4) = 1) โˆง ๐‘Ž โˆˆ โ„•0) โˆง ๐‘ โˆˆ โ„•0) โˆง ((๐‘Žโ†‘2) + (๐‘โ†‘2)) = ๐‘ƒ) โ†’ (๐‘Ž โ‰ค ๐‘ โ†’ ๐‘ โ‰  ๐‘Ž)))
57 2a1 28 . . . . . . . . 9 (๐‘ โ‰  ๐‘Ž โ†’ (((((๐‘ƒ โˆˆ โ„™ โˆง (๐‘ƒ mod 4) = 1) โˆง ๐‘Ž โˆˆ โ„•0) โˆง ๐‘ โˆˆ โ„•0) โˆง ((๐‘Žโ†‘2) + (๐‘โ†‘2)) = ๐‘ƒ) โ†’ (๐‘Ž โ‰ค ๐‘ โ†’ ๐‘ โ‰  ๐‘Ž)))
5856, 57pm2.61ine 3015 . . . . . . . 8 (((((๐‘ƒ โˆˆ โ„™ โˆง (๐‘ƒ mod 4) = 1) โˆง ๐‘Ž โˆˆ โ„•0) โˆง ๐‘ โˆˆ โ„•0) โˆง ((๐‘Žโ†‘2) + (๐‘โ†‘2)) = ๐‘ƒ) โ†’ (๐‘Ž โ‰ค ๐‘ โ†’ ๐‘ โ‰  ๐‘Ž))
5958pm4.71d 560 . . . . . . 7 (((((๐‘ƒ โˆˆ โ„™ โˆง (๐‘ƒ mod 4) = 1) โˆง ๐‘Ž โˆˆ โ„•0) โˆง ๐‘ โˆˆ โ„•0) โˆง ((๐‘Žโ†‘2) + (๐‘โ†‘2)) = ๐‘ƒ) โ†’ (๐‘Ž โ‰ค ๐‘ โ†” (๐‘Ž โ‰ค ๐‘ โˆง ๐‘ โ‰  ๐‘Ž)))
60 nn0re 12509 . . . . . . . . . . 11 (๐‘Ž โˆˆ โ„•0 โ†’ ๐‘Ž โˆˆ โ„)
6160adantl 480 . . . . . . . . . 10 (((๐‘ƒ โˆˆ โ„™ โˆง (๐‘ƒ mod 4) = 1) โˆง ๐‘Ž โˆˆ โ„•0) โ†’ ๐‘Ž โˆˆ โ„)
62 nn0re 12509 . . . . . . . . . 10 (๐‘ โˆˆ โ„•0 โ†’ ๐‘ โˆˆ โ„)
63 ltlen 11343 . . . . . . . . . 10 ((๐‘Ž โˆˆ โ„ โˆง ๐‘ โˆˆ โ„) โ†’ (๐‘Ž < ๐‘ โ†” (๐‘Ž โ‰ค ๐‘ โˆง ๐‘ โ‰  ๐‘Ž)))
6461, 62, 63syl2an 594 . . . . . . . . 9 ((((๐‘ƒ โˆˆ โ„™ โˆง (๐‘ƒ mod 4) = 1) โˆง ๐‘Ž โˆˆ โ„•0) โˆง ๐‘ โˆˆ โ„•0) โ†’ (๐‘Ž < ๐‘ โ†” (๐‘Ž โ‰ค ๐‘ โˆง ๐‘ โ‰  ๐‘Ž)))
6564bibi2d 341 . . . . . . . 8 ((((๐‘ƒ โˆˆ โ„™ โˆง (๐‘ƒ mod 4) = 1) โˆง ๐‘Ž โˆˆ โ„•0) โˆง ๐‘ โˆˆ โ„•0) โ†’ ((๐‘Ž โ‰ค ๐‘ โ†” ๐‘Ž < ๐‘) โ†” (๐‘Ž โ‰ค ๐‘ โ†” (๐‘Ž โ‰ค ๐‘ โˆง ๐‘ โ‰  ๐‘Ž))))
6665adantr 479 . . . . . . 7 (((((๐‘ƒ โˆˆ โ„™ โˆง (๐‘ƒ mod 4) = 1) โˆง ๐‘Ž โˆˆ โ„•0) โˆง ๐‘ โˆˆ โ„•0) โˆง ((๐‘Žโ†‘2) + (๐‘โ†‘2)) = ๐‘ƒ) โ†’ ((๐‘Ž โ‰ค ๐‘ โ†” ๐‘Ž < ๐‘) โ†” (๐‘Ž โ‰ค ๐‘ โ†” (๐‘Ž โ‰ค ๐‘ โˆง ๐‘ โ‰  ๐‘Ž))))
6759, 66mpbird 256 . . . . . 6 (((((๐‘ƒ โˆˆ โ„™ โˆง (๐‘ƒ mod 4) = 1) โˆง ๐‘Ž โˆˆ โ„•0) โˆง ๐‘ โˆˆ โ„•0) โˆง ((๐‘Žโ†‘2) + (๐‘โ†‘2)) = ๐‘ƒ) โ†’ (๐‘Ž โ‰ค ๐‘ โ†” ๐‘Ž < ๐‘))
6867ex 411 . . . . 5 ((((๐‘ƒ โˆˆ โ„™ โˆง (๐‘ƒ mod 4) = 1) โˆง ๐‘Ž โˆˆ โ„•0) โˆง ๐‘ โˆˆ โ„•0) โ†’ (((๐‘Žโ†‘2) + (๐‘โ†‘2)) = ๐‘ƒ โ†’ (๐‘Ž โ‰ค ๐‘ โ†” ๐‘Ž < ๐‘)))
6968pm5.32rd 576 . . . 4 ((((๐‘ƒ โˆˆ โ„™ โˆง (๐‘ƒ mod 4) = 1) โˆง ๐‘Ž โˆˆ โ„•0) โˆง ๐‘ โˆˆ โ„•0) โ†’ ((๐‘Ž โ‰ค ๐‘ โˆง ((๐‘Žโ†‘2) + (๐‘โ†‘2)) = ๐‘ƒ) โ†” (๐‘Ž < ๐‘ โˆง ((๐‘Žโ†‘2) + (๐‘โ†‘2)) = ๐‘ƒ)))
7069reubidva 3380 . . 3 (((๐‘ƒ โˆˆ โ„™ โˆง (๐‘ƒ mod 4) = 1) โˆง ๐‘Ž โˆˆ โ„•0) โ†’ (โˆƒ!๐‘ โˆˆ โ„•0 (๐‘Ž โ‰ค ๐‘ โˆง ((๐‘Žโ†‘2) + (๐‘โ†‘2)) = ๐‘ƒ) โ†” โˆƒ!๐‘ โˆˆ โ„•0 (๐‘Ž < ๐‘ โˆง ((๐‘Žโ†‘2) + (๐‘โ†‘2)) = ๐‘ƒ)))
7170reubidva 3380 . 2 ((๐‘ƒ โˆˆ โ„™ โˆง (๐‘ƒ mod 4) = 1) โ†’ (โˆƒ!๐‘Ž โˆˆ โ„•0 โˆƒ!๐‘ โˆˆ โ„•0 (๐‘Ž โ‰ค ๐‘ โˆง ((๐‘Žโ†‘2) + (๐‘โ†‘2)) = ๐‘ƒ) โ†” โˆƒ!๐‘Ž โˆˆ โ„•0 โˆƒ!๐‘ โˆˆ โ„•0 (๐‘Ž < ๐‘ โˆง ((๐‘Žโ†‘2) + (๐‘โ†‘2)) = ๐‘ƒ)))
721, 71mpbid 231 1 ((๐‘ƒ โˆˆ โ„™ โˆง (๐‘ƒ mod 4) = 1) โ†’ โˆƒ!๐‘Ž โˆˆ โ„•0 โˆƒ!๐‘ โˆˆ โ„•0 (๐‘Ž < ๐‘ โˆง ((๐‘Žโ†‘2) + (๐‘โ†‘2)) = ๐‘ƒ))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โ†” wb 205   โˆง wa 394   = wceq 1533   โˆˆ wcel 2098   โ‰  wne 2930  โˆƒ!wreu 3362   class class class wbr 5143  (class class class)co 7415  โ„‚cc 11134  โ„cr 11135  0cc0 11136  1c1 11137   + caddc 11139   ยท cmul 11141   < clt 11276   โ‰ค cle 11277  โ„•cn 12240  2c2 12295  4c4 12297  โ„•0cn0 12500  โ„คcz 12586  โ„+crp 13004   mod cmo 13864  โ†‘cexp 14056  โ„™cprime 16639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7737  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213  ax-pre-sup 11214  ax-addf 11215  ax-mulf 11216
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3960  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-of 7681  df-ofr 7682  df-om 7868  df-1st 7989  df-2nd 7990  df-supp 8162  df-tpos 8228  df-frecs 8283  df-wrecs 8314  df-recs 8388  df-rdg 8427  df-1o 8483  df-2o 8484  df-oadd 8487  df-er 8721  df-ec 8723  df-qs 8727  df-map 8843  df-pm 8844  df-ixp 8913  df-en 8961  df-dom 8962  df-sdom 8963  df-fin 8964  df-fsupp 9384  df-sup 9463  df-inf 9464  df-oi 9531  df-dju 9922  df-card 9960  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11474  df-neg 11475  df-div 11900  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12501  df-xnn0 12573  df-z 12587  df-dec 12706  df-uz 12851  df-q 12961  df-rp 13005  df-fz 13515  df-fzo 13658  df-fl 13787  df-mod 13865  df-seq 13997  df-exp 14057  df-hash 14320  df-cj 15076  df-re 15077  df-im 15078  df-sqrt 15212  df-abs 15213  df-dvds 16229  df-gcd 16467  df-prm 16640  df-phi 16732  df-pc 16803  df-gz 16896  df-struct 17113  df-sets 17130  df-slot 17148  df-ndx 17160  df-base 17178  df-ress 17207  df-plusg 17243  df-mulr 17244  df-starv 17245  df-sca 17246  df-vsca 17247  df-ip 17248  df-tset 17249  df-ple 17250  df-ds 17252  df-unif 17253  df-hom 17254  df-cco 17255  df-0g 17420  df-gsum 17421  df-prds 17426  df-pws 17428  df-imas 17487  df-qus 17488  df-mre 17563  df-mrc 17564  df-acs 17566  df-mgm 18597  df-sgrp 18676  df-mnd 18692  df-mhm 18737  df-submnd 18738  df-grp 18895  df-minusg 18896  df-sbg 18897  df-mulg 19026  df-subg 19080  df-nsg 19081  df-eqg 19082  df-ghm 19170  df-cntz 19270  df-cmn 19739  df-abl 19740  df-mgp 20077  df-rng 20095  df-ur 20124  df-srg 20129  df-ring 20177  df-cring 20178  df-oppr 20275  df-dvdsr 20298  df-unit 20299  df-invr 20329  df-dvr 20342  df-rhm 20413  df-nzr 20454  df-subrng 20485  df-subrg 20510  df-drng 20628  df-field 20629  df-lmod 20747  df-lss 20818  df-lsp 20858  df-sra 21060  df-rgmod 21061  df-lidl 21106  df-rsp 21107  df-2idl 21146  df-rlreg 21232  df-domn 21233  df-idom 21234  df-cnfld 21282  df-zring 21375  df-zrh 21431  df-zn 21434  df-assa 21789  df-asp 21790  df-ascl 21791  df-psr 21844  df-mvr 21845  df-mpl 21846  df-opsr 21848  df-evls 22023  df-evl 22024  df-psr1 22105  df-vr1 22106  df-ply1 22107  df-coe1 22108  df-evl1 22242  df-mdeg 26004  df-deg1 26005  df-mon1 26082  df-uc1p 26083  df-q1p 26084  df-r1p 26085  df-lgs 27244
This theorem is referenced by:  2sqreultblem  27397  2sqreult  27407
  Copyright terms: Public domain W3C validator