MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqreultlem Structured version   Visualization version   GIF version

Theorem 2sqreultlem 27410
Description: Lemma for 2sqreult 27421. (Contributed by AV, 8-Jun-2023.) (Proposed by GL, 8-Jun-2023.)
Assertion
Ref Expression
2sqreultlem ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
Distinct variable group:   𝑃,𝑎,𝑏

Proof of Theorem 2sqreultlem
StepHypRef Expression
1 2sqreulem1 27409 . 2 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
2 oveq1 7412 . . . . . . . . . . . . . . 15 (𝑏 = 𝑎 → (𝑏↑2) = (𝑎↑2))
32oveq2d 7421 . . . . . . . . . . . . . 14 (𝑏 = 𝑎 → ((𝑎↑2) + (𝑏↑2)) = ((𝑎↑2) + (𝑎↑2)))
43adantr 480 . . . . . . . . . . . . 13 ((𝑏 = 𝑎 ∧ (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ 𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℕ0)) → ((𝑎↑2) + (𝑏↑2)) = ((𝑎↑2) + (𝑎↑2)))
5 nn0cn 12511 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ ℕ0𝑎 ∈ ℂ)
65sqcld 14162 . . . . . . . . . . . . . . . 16 (𝑎 ∈ ℕ0 → (𝑎↑2) ∈ ℂ)
7 2times 12376 . . . . . . . . . . . . . . . . 17 ((𝑎↑2) ∈ ℂ → (2 · (𝑎↑2)) = ((𝑎↑2) + (𝑎↑2)))
87eqcomd 2741 . . . . . . . . . . . . . . . 16 ((𝑎↑2) ∈ ℂ → ((𝑎↑2) + (𝑎↑2)) = (2 · (𝑎↑2)))
96, 8syl 17 . . . . . . . . . . . . . . 15 (𝑎 ∈ ℕ0 → ((𝑎↑2) + (𝑎↑2)) = (2 · (𝑎↑2)))
109adantl 481 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ 𝑎 ∈ ℕ0) → ((𝑎↑2) + (𝑎↑2)) = (2 · (𝑎↑2)))
1110ad2antrl 728 . . . . . . . . . . . . 13 ((𝑏 = 𝑎 ∧ (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ 𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℕ0)) → ((𝑎↑2) + (𝑎↑2)) = (2 · (𝑎↑2)))
124, 11eqtrd 2770 . . . . . . . . . . . 12 ((𝑏 = 𝑎 ∧ (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ 𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℕ0)) → ((𝑎↑2) + (𝑏↑2)) = (2 · (𝑎↑2)))
1312eqeq1d 2737 . . . . . . . . . . 11 ((𝑏 = 𝑎 ∧ (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ 𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℕ0)) → (((𝑎↑2) + (𝑏↑2)) = 𝑃 ↔ (2 · (𝑎↑2)) = 𝑃))
14 oveq1 7412 . . . . . . . . . . . . . . . . . . . 20 (𝑃 = (2 · (𝑎↑2)) → (𝑃 mod 4) = ((2 · (𝑎↑2)) mod 4))
1514eqeq1d 2737 . . . . . . . . . . . . . . . . . . 19 (𝑃 = (2 · (𝑎↑2)) → ((𝑃 mod 4) = 1 ↔ ((2 · (𝑎↑2)) mod 4) = 1))
16 eleq1 2822 . . . . . . . . . . . . . . . . . . 19 (𝑃 = (2 · (𝑎↑2)) → (𝑃 ∈ ℙ ↔ (2 · (𝑎↑2)) ∈ ℙ))
1715, 16anbi12d 632 . . . . . . . . . . . . . . . . . 18 (𝑃 = (2 · (𝑎↑2)) → (((𝑃 mod 4) = 1 ∧ 𝑃 ∈ ℙ) ↔ (((2 · (𝑎↑2)) mod 4) = 1 ∧ (2 · (𝑎↑2)) ∈ ℙ)))
18 nn0z 12613 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 ∈ ℕ0𝑎 ∈ ℤ)
19 2nn0 12518 . . . . . . . . . . . . . . . . . . . . . . 23 2 ∈ ℕ0
20 zexpcl 14094 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑎 ∈ ℤ ∧ 2 ∈ ℕ0) → (𝑎↑2) ∈ ℤ)
2118, 19, 20sylancl 586 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 ∈ ℕ0 → (𝑎↑2) ∈ ℤ)
22 2mulprm 16712 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎↑2) ∈ ℤ → ((2 · (𝑎↑2)) ∈ ℙ ↔ (𝑎↑2) = 1))
2321, 22syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 ∈ ℕ0 → ((2 · (𝑎↑2)) ∈ ℙ ↔ (𝑎↑2) = 1))
24 oveq2 7413 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑎↑2) = 1 → (2 · (𝑎↑2)) = (2 · 1))
25 2t1e2 12403 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (2 · 1) = 2
2624, 25eqtrdi 2786 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑎↑2) = 1 → (2 · (𝑎↑2)) = 2)
2726oveq1d 7420 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑎↑2) = 1 → ((2 · (𝑎↑2)) mod 4) = (2 mod 4))
28 2re 12314 . . . . . . . . . . . . . . . . . . . . . . . . 25 2 ∈ ℝ
29 4nn 12323 . . . . . . . . . . . . . . . . . . . . . . . . . 26 4 ∈ ℕ
30 nnrp 13020 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (4 ∈ ℕ → 4 ∈ ℝ+)
3129, 30ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . 25 4 ∈ ℝ+
32 0le2 12342 . . . . . . . . . . . . . . . . . . . . . . . . 25 0 ≤ 2
33 2lt4 12415 . . . . . . . . . . . . . . . . . . . . . . . . 25 2 < 4
34 modid 13913 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((2 ∈ ℝ ∧ 4 ∈ ℝ+) ∧ (0 ≤ 2 ∧ 2 < 4)) → (2 mod 4) = 2)
3528, 31, 32, 33, 34mp4an 693 . . . . . . . . . . . . . . . . . . . . . . . 24 (2 mod 4) = 2
3627, 35eqtrdi 2786 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑎↑2) = 1 → ((2 · (𝑎↑2)) mod 4) = 2)
3736eqeq1d 2737 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎↑2) = 1 → (((2 · (𝑎↑2)) mod 4) = 1 ↔ 2 = 1))
38 1ne2 12448 . . . . . . . . . . . . . . . . . . . . . . 23 1 ≠ 2
39 eqcom 2742 . . . . . . . . . . . . . . . . . . . . . . . 24 (2 = 1 ↔ 1 = 2)
40 eqneqall 2943 . . . . . . . . . . . . . . . . . . . . . . . . 25 (1 = 2 → (1 ≠ 2 → (𝑎𝑏𝑏𝑎)))
4140com12 32 . . . . . . . . . . . . . . . . . . . . . . . 24 (1 ≠ 2 → (1 = 2 → (𝑎𝑏𝑏𝑎)))
4239, 41biimtrid 242 . . . . . . . . . . . . . . . . . . . . . . 23 (1 ≠ 2 → (2 = 1 → (𝑎𝑏𝑏𝑎)))
4338, 42ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 (2 = 1 → (𝑎𝑏𝑏𝑎))
4437, 43biimtrdi 253 . . . . . . . . . . . . . . . . . . . . 21 ((𝑎↑2) = 1 → (((2 · (𝑎↑2)) mod 4) = 1 → (𝑎𝑏𝑏𝑎)))
4523, 44biimtrdi 253 . . . . . . . . . . . . . . . . . . . 20 (𝑎 ∈ ℕ0 → ((2 · (𝑎↑2)) ∈ ℙ → (((2 · (𝑎↑2)) mod 4) = 1 → (𝑎𝑏𝑏𝑎))))
4645impcomd 411 . . . . . . . . . . . . . . . . . . 19 (𝑎 ∈ ℕ0 → ((((2 · (𝑎↑2)) mod 4) = 1 ∧ (2 · (𝑎↑2)) ∈ ℙ) → (𝑎𝑏𝑏𝑎)))
4746com12 32 . . . . . . . . . . . . . . . . . 18 ((((2 · (𝑎↑2)) mod 4) = 1 ∧ (2 · (𝑎↑2)) ∈ ℙ) → (𝑎 ∈ ℕ0 → (𝑎𝑏𝑏𝑎)))
4817, 47biimtrdi 253 . . . . . . . . . . . . . . . . 17 (𝑃 = (2 · (𝑎↑2)) → (((𝑃 mod 4) = 1 ∧ 𝑃 ∈ ℙ) → (𝑎 ∈ ℕ0 → (𝑎𝑏𝑏𝑎))))
4948expd 415 . . . . . . . . . . . . . . . 16 (𝑃 = (2 · (𝑎↑2)) → ((𝑃 mod 4) = 1 → (𝑃 ∈ ℙ → (𝑎 ∈ ℕ0 → (𝑎𝑏𝑏𝑎)))))
5049com34 91 . . . . . . . . . . . . . . 15 (𝑃 = (2 · (𝑎↑2)) → ((𝑃 mod 4) = 1 → (𝑎 ∈ ℕ0 → (𝑃 ∈ ℙ → (𝑎𝑏𝑏𝑎)))))
5150eqcoms 2743 . . . . . . . . . . . . . 14 ((2 · (𝑎↑2)) = 𝑃 → ((𝑃 mod 4) = 1 → (𝑎 ∈ ℕ0 → (𝑃 ∈ ℙ → (𝑎𝑏𝑏𝑎)))))
5251com14 96 . . . . . . . . . . . . 13 (𝑃 ∈ ℙ → ((𝑃 mod 4) = 1 → (𝑎 ∈ ℕ0 → ((2 · (𝑎↑2)) = 𝑃 → (𝑎𝑏𝑏𝑎)))))
5352imp31 417 . . . . . . . . . . . 12 (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ 𝑎 ∈ ℕ0) → ((2 · (𝑎↑2)) = 𝑃 → (𝑎𝑏𝑏𝑎)))
5453ad2antrl 728 . . . . . . . . . . 11 ((𝑏 = 𝑎 ∧ (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ 𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℕ0)) → ((2 · (𝑎↑2)) = 𝑃 → (𝑎𝑏𝑏𝑎)))
5513, 54sylbid 240 . . . . . . . . . 10 ((𝑏 = 𝑎 ∧ (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ 𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℕ0)) → (((𝑎↑2) + (𝑏↑2)) = 𝑃 → (𝑎𝑏𝑏𝑎)))
5655expimpd 453 . . . . . . . . 9 (𝑏 = 𝑎 → (((((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ 𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℕ0) ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → (𝑎𝑏𝑏𝑎)))
57 2a1 28 . . . . . . . . 9 (𝑏𝑎 → (((((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ 𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℕ0) ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → (𝑎𝑏𝑏𝑎)))
5856, 57pm2.61ine 3015 . . . . . . . 8 (((((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ 𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℕ0) ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → (𝑎𝑏𝑏𝑎))
5958pm4.71d 561 . . . . . . 7 (((((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ 𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℕ0) ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → (𝑎𝑏 ↔ (𝑎𝑏𝑏𝑎)))
60 nn0re 12510 . . . . . . . . . . 11 (𝑎 ∈ ℕ0𝑎 ∈ ℝ)
6160adantl 481 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ 𝑎 ∈ ℕ0) → 𝑎 ∈ ℝ)
62 nn0re 12510 . . . . . . . . . 10 (𝑏 ∈ ℕ0𝑏 ∈ ℝ)
63 ltlen 11336 . . . . . . . . . 10 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝑎 < 𝑏 ↔ (𝑎𝑏𝑏𝑎)))
6461, 62, 63syl2an 596 . . . . . . . . 9 ((((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ 𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℕ0) → (𝑎 < 𝑏 ↔ (𝑎𝑏𝑏𝑎)))
6564bibi2d 342 . . . . . . . 8 ((((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ 𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℕ0) → ((𝑎𝑏𝑎 < 𝑏) ↔ (𝑎𝑏 ↔ (𝑎𝑏𝑏𝑎))))
6665adantr 480 . . . . . . 7 (((((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ 𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℕ0) ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ((𝑎𝑏𝑎 < 𝑏) ↔ (𝑎𝑏 ↔ (𝑎𝑏𝑏𝑎))))
6759, 66mpbird 257 . . . . . 6 (((((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ 𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℕ0) ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → (𝑎𝑏𝑎 < 𝑏))
6867ex 412 . . . . 5 ((((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ 𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℕ0) → (((𝑎↑2) + (𝑏↑2)) = 𝑃 → (𝑎𝑏𝑎 < 𝑏)))
6968pm5.32rd 578 . . . 4 ((((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ 𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℕ0) → ((𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)))
7069reubidva 3375 . . 3 (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ 𝑎 ∈ ℕ0) → (∃!𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ ∃!𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)))
7170reubidva 3375 . 2 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → (∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ ∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)))
721, 71mpbid 232 1 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2932  ∃!wreu 3357   class class class wbr 5119  (class class class)co 7405  cc 11127  cr 11128  0cc0 11129  1c1 11130   + caddc 11132   · cmul 11134   < clt 11269  cle 11270  cn 12240  2c2 12295  4c4 12297  0cn0 12501  cz 12588  +crp 13008   mod cmo 13886  cexp 14079  cprime 16690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208  ax-mulf 11209
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-ofr 7672  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-er 8719  df-ec 8721  df-qs 8725  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-sup 9454  df-inf 9455  df-oi 9524  df-dju 9915  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-xnn0 12575  df-z 12589  df-dec 12709  df-uz 12853  df-q 12965  df-rp 13009  df-fz 13525  df-fzo 13672  df-fl 13809  df-mod 13887  df-seq 14020  df-exp 14080  df-hash 14349  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-dvds 16273  df-gcd 16514  df-prm 16691  df-phi 16785  df-pc 16857  df-gz 16950  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-hom 17295  df-cco 17296  df-0g 17455  df-gsum 17456  df-prds 17461  df-pws 17463  df-imas 17522  df-qus 17523  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-mhm 18761  df-submnd 18762  df-grp 18919  df-minusg 18920  df-sbg 18921  df-mulg 19051  df-subg 19106  df-nsg 19107  df-eqg 19108  df-ghm 19196  df-cntz 19300  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-srg 20147  df-ring 20195  df-cring 20196  df-oppr 20297  df-dvdsr 20317  df-unit 20318  df-invr 20348  df-dvr 20361  df-rhm 20432  df-nzr 20473  df-subrng 20506  df-subrg 20530  df-rlreg 20654  df-domn 20655  df-idom 20656  df-drng 20691  df-field 20692  df-lmod 20819  df-lss 20889  df-lsp 20929  df-sra 21131  df-rgmod 21132  df-lidl 21169  df-rsp 21170  df-2idl 21211  df-cnfld 21316  df-zring 21408  df-zrh 21464  df-zn 21467  df-assa 21813  df-asp 21814  df-ascl 21815  df-psr 21869  df-mvr 21870  df-mpl 21871  df-opsr 21873  df-evls 22032  df-evl 22033  df-psr1 22115  df-vr1 22116  df-ply1 22117  df-coe1 22118  df-evl1 22254  df-mdeg 26012  df-deg1 26013  df-mon1 26088  df-uc1p 26089  df-q1p 26090  df-r1p 26091  df-lgs 27258
This theorem is referenced by:  2sqreultblem  27411  2sqreult  27421
  Copyright terms: Public domain W3C validator