Step | Hyp | Ref
| Expression |
1 | | iccpartiun.p |
. . . 4
⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) |
2 | 1 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ∈ ((𝑃‘0)[,)(𝑃‘𝑀))) → 𝑃 ∈ (RePart‘𝑀)) |
3 | | iccpartiun.m |
. . . . 5
⊢ (𝜑 → 𝑀 ∈ ℕ) |
4 | | iccelpart 44837 |
. . . . 5
⊢ (𝑀 ∈ ℕ →
∀𝑝 ∈
(RePart‘𝑀)(𝑋 ∈ ((𝑝‘0)[,)(𝑝‘𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1))))) |
5 | 3, 4 | syl 17 |
. . . 4
⊢ (𝜑 → ∀𝑝 ∈ (RePart‘𝑀)(𝑋 ∈ ((𝑝‘0)[,)(𝑝‘𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1))))) |
6 | 5 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ∈ ((𝑃‘0)[,)(𝑃‘𝑀))) → ∀𝑝 ∈ (RePart‘𝑀)(𝑋 ∈ ((𝑝‘0)[,)(𝑝‘𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1))))) |
7 | | fveq1 6767 |
. . . . . . . . 9
⊢ (𝑝 = 𝑃 → (𝑝‘0) = (𝑃‘0)) |
8 | | fveq1 6767 |
. . . . . . . . 9
⊢ (𝑝 = 𝑃 → (𝑝‘𝑀) = (𝑃‘𝑀)) |
9 | 7, 8 | oveq12d 7286 |
. . . . . . . 8
⊢ (𝑝 = 𝑃 → ((𝑝‘0)[,)(𝑝‘𝑀)) = ((𝑃‘0)[,)(𝑃‘𝑀))) |
10 | 9 | eleq2d 2825 |
. . . . . . 7
⊢ (𝑝 = 𝑃 → (𝑋 ∈ ((𝑝‘0)[,)(𝑝‘𝑀)) ↔ 𝑋 ∈ ((𝑃‘0)[,)(𝑃‘𝑀)))) |
11 | | fveq1 6767 |
. . . . . . . . . 10
⊢ (𝑝 = 𝑃 → (𝑝‘𝑖) = (𝑃‘𝑖)) |
12 | | fveq1 6767 |
. . . . . . . . . 10
⊢ (𝑝 = 𝑃 → (𝑝‘(𝑖 + 1)) = (𝑃‘(𝑖 + 1))) |
13 | 11, 12 | oveq12d 7286 |
. . . . . . . . 9
⊢ (𝑝 = 𝑃 → ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1))) = ((𝑃‘𝑖)[,)(𝑃‘(𝑖 + 1)))) |
14 | 13 | eleq2d 2825 |
. . . . . . . 8
⊢ (𝑝 = 𝑃 → (𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1))) ↔ 𝑋 ∈ ((𝑃‘𝑖)[,)(𝑃‘(𝑖 + 1))))) |
15 | 14 | rexbidv 3227 |
. . . . . . 7
⊢ (𝑝 = 𝑃 → (∃𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1))) ↔ ∃𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑃‘𝑖)[,)(𝑃‘(𝑖 + 1))))) |
16 | 10, 15 | imbi12d 344 |
. . . . . 6
⊢ (𝑝 = 𝑃 → ((𝑋 ∈ ((𝑝‘0)[,)(𝑝‘𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1)))) ↔ (𝑋 ∈ ((𝑃‘0)[,)(𝑃‘𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑃‘𝑖)[,)(𝑃‘(𝑖 + 1)))))) |
17 | 16 | rspcva 3558 |
. . . . 5
⊢ ((𝑃 ∈ (RePart‘𝑀) ∧ ∀𝑝 ∈ (RePart‘𝑀)(𝑋 ∈ ((𝑝‘0)[,)(𝑝‘𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1))))) → (𝑋 ∈ ((𝑃‘0)[,)(𝑃‘𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑃‘𝑖)[,)(𝑃‘(𝑖 + 1))))) |
18 | 17 | adantld 490 |
. . . 4
⊢ ((𝑃 ∈ (RePart‘𝑀) ∧ ∀𝑝 ∈ (RePart‘𝑀)(𝑋 ∈ ((𝑝‘0)[,)(𝑝‘𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1))))) → ((𝜑 ∧ 𝑋 ∈ ((𝑃‘0)[,)(𝑃‘𝑀))) → ∃𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑃‘𝑖)[,)(𝑃‘(𝑖 + 1))))) |
19 | 18 | com12 32 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ∈ ((𝑃‘0)[,)(𝑃‘𝑀))) → ((𝑃 ∈ (RePart‘𝑀) ∧ ∀𝑝 ∈ (RePart‘𝑀)(𝑋 ∈ ((𝑝‘0)[,)(𝑝‘𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1))))) → ∃𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑃‘𝑖)[,)(𝑃‘(𝑖 + 1))))) |
20 | 2, 6, 19 | mp2and 695 |
. 2
⊢ ((𝜑 ∧ 𝑋 ∈ ((𝑃‘0)[,)(𝑃‘𝑀))) → ∃𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑃‘𝑖)[,)(𝑃‘(𝑖 + 1)))) |
21 | 3 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑀 ∈ ℕ) |
22 | 1 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑃 ∈ (RePart‘𝑀)) |
23 | | elfzofz 13384 |
. . . . . . . . . . 11
⊢ (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀)) |
24 | 23 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀)) |
25 | 21, 22, 24 | iccpartxr 44823 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑃‘𝑖) ∈
ℝ*) |
26 | | fzofzp1 13465 |
. . . . . . . . . . 11
⊢ (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀)) |
27 | 26 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀)) |
28 | 21, 22, 27 | iccpartxr 44823 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑃‘(𝑖 + 1)) ∈
ℝ*) |
29 | 25, 28 | jca 511 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑃‘𝑖) ∈ ℝ* ∧ (𝑃‘(𝑖 + 1)) ∈
ℝ*)) |
30 | 29 | adantrr 713 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → ((𝑃‘𝑖) ∈ ℝ* ∧ (𝑃‘(𝑖 + 1)) ∈
ℝ*)) |
31 | | elico1 13104 |
. . . . . . 7
⊢ (((𝑃‘𝑖) ∈ ℝ* ∧ (𝑃‘(𝑖 + 1)) ∈ ℝ*) →
(𝑋 ∈ ((𝑃‘𝑖)[,)(𝑃‘(𝑖 + 1))) ↔ (𝑋 ∈ ℝ* ∧ (𝑃‘𝑖) ≤ 𝑋 ∧ 𝑋 < (𝑃‘(𝑖 + 1))))) |
32 | 30, 31 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → (𝑋 ∈ ((𝑃‘𝑖)[,)(𝑃‘(𝑖 + 1))) ↔ (𝑋 ∈ ℝ* ∧ (𝑃‘𝑖) ≤ 𝑋 ∧ 𝑋 < (𝑃‘(𝑖 + 1))))) |
33 | 3 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) → 𝑀 ∈ ℕ) |
34 | 1 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) → 𝑃 ∈ (RePart‘𝑀)) |
35 | | elfzofz 13384 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ (0..^𝑀) → 𝑗 ∈ (0...𝑀)) |
36 | 35 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) → 𝑗 ∈ (0...𝑀)) |
37 | 33, 34, 36 | iccpartxr 44823 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) → (𝑃‘𝑗) ∈
ℝ*) |
38 | | fzofzp1 13465 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ (0..^𝑀) → (𝑗 + 1) ∈ (0...𝑀)) |
39 | 38 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) → (𝑗 + 1) ∈ (0...𝑀)) |
40 | 33, 34, 39 | iccpartxr 44823 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) → (𝑃‘(𝑗 + 1)) ∈
ℝ*) |
41 | 37, 40 | jca 511 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) → ((𝑃‘𝑗) ∈ ℝ* ∧ (𝑃‘(𝑗 + 1)) ∈
ℝ*)) |
42 | 41 | adantrl 712 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → ((𝑃‘𝑗) ∈ ℝ* ∧ (𝑃‘(𝑗 + 1)) ∈
ℝ*)) |
43 | | elico1 13104 |
. . . . . . 7
⊢ (((𝑃‘𝑗) ∈ ℝ* ∧ (𝑃‘(𝑗 + 1)) ∈ ℝ*) →
(𝑋 ∈ ((𝑃‘𝑗)[,)(𝑃‘(𝑗 + 1))) ↔ (𝑋 ∈ ℝ* ∧ (𝑃‘𝑗) ≤ 𝑋 ∧ 𝑋 < (𝑃‘(𝑗 + 1))))) |
44 | 42, 43 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → (𝑋 ∈ ((𝑃‘𝑗)[,)(𝑃‘(𝑗 + 1))) ↔ (𝑋 ∈ ℝ* ∧ (𝑃‘𝑗) ≤ 𝑋 ∧ 𝑋 < (𝑃‘(𝑗 + 1))))) |
45 | 32, 44 | anbi12d 630 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → ((𝑋 ∈ ((𝑃‘𝑖)[,)(𝑃‘(𝑖 + 1))) ∧ 𝑋 ∈ ((𝑃‘𝑗)[,)(𝑃‘(𝑗 + 1)))) ↔ ((𝑋 ∈ ℝ* ∧ (𝑃‘𝑖) ≤ 𝑋 ∧ 𝑋 < (𝑃‘(𝑖 + 1))) ∧ (𝑋 ∈ ℝ* ∧ (𝑃‘𝑗) ≤ 𝑋 ∧ 𝑋 < (𝑃‘(𝑗 + 1)))))) |
46 | | elfzoelz 13369 |
. . . . . . . . . 10
⊢ (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ ℤ) |
47 | 46 | zred 12408 |
. . . . . . . . 9
⊢ (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ ℝ) |
48 | | elfzoelz 13369 |
. . . . . . . . . 10
⊢ (𝑗 ∈ (0..^𝑀) → 𝑗 ∈ ℤ) |
49 | 48 | zred 12408 |
. . . . . . . . 9
⊢ (𝑗 ∈ (0..^𝑀) → 𝑗 ∈ ℝ) |
50 | 47, 49 | anim12i 612 |
. . . . . . . 8
⊢ ((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀)) → (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) |
51 | 50 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) |
52 | | lttri4 11043 |
. . . . . . 7
⊢ ((𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ) → (𝑖 < 𝑗 ∨ 𝑖 = 𝑗 ∨ 𝑗 < 𝑖)) |
53 | 51, 52 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → (𝑖 < 𝑗 ∨ 𝑖 = 𝑗 ∨ 𝑗 < 𝑖)) |
54 | 3, 1 | icceuelpartlem 44839 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀)) → (𝑖 < 𝑗 → (𝑃‘(𝑖 + 1)) ≤ (𝑃‘𝑗)))) |
55 | 54 | imp31 417 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) ∧ 𝑖 < 𝑗) → (𝑃‘(𝑖 + 1)) ≤ (𝑃‘𝑗)) |
56 | | simpl 482 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑋 ∈ ℝ*
∧ (𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀)))) → 𝑋 ∈
ℝ*) |
57 | 28 | adantrr 713 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → (𝑃‘(𝑖 + 1)) ∈
ℝ*) |
58 | 57 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑋 ∈ ℝ*
∧ (𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀)))) → (𝑃‘(𝑖 + 1)) ∈
ℝ*) |
59 | 37 | adantrl 712 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → (𝑃‘𝑗) ∈
ℝ*) |
60 | 59 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑋 ∈ ℝ*
∧ (𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀)))) → (𝑃‘𝑗) ∈
ℝ*) |
61 | | nltle2tri 44757 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑋 ∈ ℝ*
∧ (𝑃‘(𝑖 + 1)) ∈
ℝ* ∧ (𝑃‘𝑗) ∈ ℝ*) → ¬
(𝑋 < (𝑃‘(𝑖 + 1)) ∧ (𝑃‘(𝑖 + 1)) ≤ (𝑃‘𝑗) ∧ (𝑃‘𝑗) ≤ 𝑋)) |
62 | 56, 58, 60, 61 | syl3anc 1369 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑋 ∈ ℝ*
∧ (𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀)))) → ¬ (𝑋 < (𝑃‘(𝑖 + 1)) ∧ (𝑃‘(𝑖 + 1)) ≤ (𝑃‘𝑗) ∧ (𝑃‘𝑗) ≤ 𝑋)) |
63 | 62 | pm2.21d 121 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑋 ∈ ℝ*
∧ (𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀)))) → ((𝑋 < (𝑃‘(𝑖 + 1)) ∧ (𝑃‘(𝑖 + 1)) ≤ (𝑃‘𝑗) ∧ (𝑃‘𝑗) ≤ 𝑋) → 𝑖 = 𝑗)) |
64 | 63 | 3expd 1351 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑋 ∈ ℝ*
∧ (𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀)))) → (𝑋 < (𝑃‘(𝑖 + 1)) → ((𝑃‘(𝑖 + 1)) ≤ (𝑃‘𝑗) → ((𝑃‘𝑗) ≤ 𝑋 → 𝑖 = 𝑗)))) |
65 | 64 | ex 412 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑋 ∈ ℝ*
→ ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → (𝑋 < (𝑃‘(𝑖 + 1)) → ((𝑃‘(𝑖 + 1)) ≤ (𝑃‘𝑗) → ((𝑃‘𝑗) ≤ 𝑋 → 𝑖 = 𝑗))))) |
66 | 65 | com23 86 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑋 ∈ ℝ*
→ (𝑋 < (𝑃‘(𝑖 + 1)) → ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → ((𝑃‘(𝑖 + 1)) ≤ (𝑃‘𝑗) → ((𝑃‘𝑗) ≤ 𝑋 → 𝑖 = 𝑗))))) |
67 | 66 | com25 99 |
. . . . . . . . . . . . . . . 16
⊢ (𝑋 ∈ ℝ*
→ ((𝑃‘𝑗) ≤ 𝑋 → ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → ((𝑃‘(𝑖 + 1)) ≤ (𝑃‘𝑗) → (𝑋 < (𝑃‘(𝑖 + 1)) → 𝑖 = 𝑗))))) |
68 | 67 | imp4b 421 |
. . . . . . . . . . . . . . 15
⊢ ((𝑋 ∈ ℝ*
∧ (𝑃‘𝑗) ≤ 𝑋) → (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) ∧ (𝑃‘(𝑖 + 1)) ≤ (𝑃‘𝑗)) → (𝑋 < (𝑃‘(𝑖 + 1)) → 𝑖 = 𝑗))) |
69 | 68 | com23 86 |
. . . . . . . . . . . . . 14
⊢ ((𝑋 ∈ ℝ*
∧ (𝑃‘𝑗) ≤ 𝑋) → (𝑋 < (𝑃‘(𝑖 + 1)) → (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) ∧ (𝑃‘(𝑖 + 1)) ≤ (𝑃‘𝑗)) → 𝑖 = 𝑗))) |
70 | 69 | 3adant3 1130 |
. . . . . . . . . . . . 13
⊢ ((𝑋 ∈ ℝ*
∧ (𝑃‘𝑗) ≤ 𝑋 ∧ 𝑋 < (𝑃‘(𝑗 + 1))) → (𝑋 < (𝑃‘(𝑖 + 1)) → (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) ∧ (𝑃‘(𝑖 + 1)) ≤ (𝑃‘𝑗)) → 𝑖 = 𝑗))) |
71 | 70 | com12 32 |
. . . . . . . . . . . 12
⊢ (𝑋 < (𝑃‘(𝑖 + 1)) → ((𝑋 ∈ ℝ* ∧ (𝑃‘𝑗) ≤ 𝑋 ∧ 𝑋 < (𝑃‘(𝑗 + 1))) → (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) ∧ (𝑃‘(𝑖 + 1)) ≤ (𝑃‘𝑗)) → 𝑖 = 𝑗))) |
72 | 71 | 3ad2ant3 1133 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ ℝ*
∧ (𝑃‘𝑖) ≤ 𝑋 ∧ 𝑋 < (𝑃‘(𝑖 + 1))) → ((𝑋 ∈ ℝ* ∧ (𝑃‘𝑗) ≤ 𝑋 ∧ 𝑋 < (𝑃‘(𝑗 + 1))) → (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) ∧ (𝑃‘(𝑖 + 1)) ≤ (𝑃‘𝑗)) → 𝑖 = 𝑗))) |
73 | 72 | imp 406 |
. . . . . . . . . 10
⊢ (((𝑋 ∈ ℝ*
∧ (𝑃‘𝑖) ≤ 𝑋 ∧ 𝑋 < (𝑃‘(𝑖 + 1))) ∧ (𝑋 ∈ ℝ* ∧ (𝑃‘𝑗) ≤ 𝑋 ∧ 𝑋 < (𝑃‘(𝑗 + 1)))) → (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) ∧ (𝑃‘(𝑖 + 1)) ≤ (𝑃‘𝑗)) → 𝑖 = 𝑗)) |
74 | 73 | com12 32 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) ∧ (𝑃‘(𝑖 + 1)) ≤ (𝑃‘𝑗)) → (((𝑋 ∈ ℝ* ∧ (𝑃‘𝑖) ≤ 𝑋 ∧ 𝑋 < (𝑃‘(𝑖 + 1))) ∧ (𝑋 ∈ ℝ* ∧ (𝑃‘𝑗) ≤ 𝑋 ∧ 𝑋 < (𝑃‘(𝑗 + 1)))) → 𝑖 = 𝑗)) |
75 | 55, 74 | syldan 590 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) ∧ 𝑖 < 𝑗) → (((𝑋 ∈ ℝ* ∧ (𝑃‘𝑖) ≤ 𝑋 ∧ 𝑋 < (𝑃‘(𝑖 + 1))) ∧ (𝑋 ∈ ℝ* ∧ (𝑃‘𝑗) ≤ 𝑋 ∧ 𝑋 < (𝑃‘(𝑗 + 1)))) → 𝑖 = 𝑗)) |
76 | 75 | expcom 413 |
. . . . . . 7
⊢ (𝑖 < 𝑗 → ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → (((𝑋 ∈ ℝ* ∧ (𝑃‘𝑖) ≤ 𝑋 ∧ 𝑋 < (𝑃‘(𝑖 + 1))) ∧ (𝑋 ∈ ℝ* ∧ (𝑃‘𝑗) ≤ 𝑋 ∧ 𝑋 < (𝑃‘(𝑗 + 1)))) → 𝑖 = 𝑗))) |
77 | | 2a1 28 |
. . . . . . 7
⊢ (𝑖 = 𝑗 → ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → (((𝑋 ∈ ℝ* ∧ (𝑃‘𝑖) ≤ 𝑋 ∧ 𝑋 < (𝑃‘(𝑖 + 1))) ∧ (𝑋 ∈ ℝ* ∧ (𝑃‘𝑗) ≤ 𝑋 ∧ 𝑋 < (𝑃‘(𝑗 + 1)))) → 𝑖 = 𝑗))) |
78 | 3, 1 | icceuelpartlem 44839 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑗 < 𝑖 → (𝑃‘(𝑗 + 1)) ≤ (𝑃‘𝑖)))) |
79 | 78 | ancomsd 465 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀)) → (𝑗 < 𝑖 → (𝑃‘(𝑗 + 1)) ≤ (𝑃‘𝑖)))) |
80 | 79 | imp31 417 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) ∧ 𝑗 < 𝑖) → (𝑃‘(𝑗 + 1)) ≤ (𝑃‘𝑖)) |
81 | 40 | adantrl 712 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → (𝑃‘(𝑗 + 1)) ∈
ℝ*) |
82 | 81 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑋 ∈ ℝ*
∧ (𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀)))) → (𝑃‘(𝑗 + 1)) ∈
ℝ*) |
83 | 25 | adantrr 713 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → (𝑃‘𝑖) ∈
ℝ*) |
84 | 83 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑋 ∈ ℝ*
∧ (𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀)))) → (𝑃‘𝑖) ∈
ℝ*) |
85 | | nltle2tri 44757 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑋 ∈ ℝ*
∧ (𝑃‘(𝑗 + 1)) ∈
ℝ* ∧ (𝑃‘𝑖) ∈ ℝ*) → ¬
(𝑋 < (𝑃‘(𝑗 + 1)) ∧ (𝑃‘(𝑗 + 1)) ≤ (𝑃‘𝑖) ∧ (𝑃‘𝑖) ≤ 𝑋)) |
86 | 56, 82, 84, 85 | syl3anc 1369 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑋 ∈ ℝ*
∧ (𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀)))) → ¬ (𝑋 < (𝑃‘(𝑗 + 1)) ∧ (𝑃‘(𝑗 + 1)) ≤ (𝑃‘𝑖) ∧ (𝑃‘𝑖) ≤ 𝑋)) |
87 | 86 | pm2.21d 121 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑋 ∈ ℝ*
∧ (𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀)))) → ((𝑋 < (𝑃‘(𝑗 + 1)) ∧ (𝑃‘(𝑗 + 1)) ≤ (𝑃‘𝑖) ∧ (𝑃‘𝑖) ≤ 𝑋) → 𝑖 = 𝑗)) |
88 | 87 | 3expd 1351 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑋 ∈ ℝ*
∧ (𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀)))) → (𝑋 < (𝑃‘(𝑗 + 1)) → ((𝑃‘(𝑗 + 1)) ≤ (𝑃‘𝑖) → ((𝑃‘𝑖) ≤ 𝑋 → 𝑖 = 𝑗)))) |
89 | 88 | ex 412 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑋 ∈ ℝ*
→ ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → (𝑋 < (𝑃‘(𝑗 + 1)) → ((𝑃‘(𝑗 + 1)) ≤ (𝑃‘𝑖) → ((𝑃‘𝑖) ≤ 𝑋 → 𝑖 = 𝑗))))) |
90 | 89 | com23 86 |
. . . . . . . . . . . . . . . 16
⊢ (𝑋 ∈ ℝ*
→ (𝑋 < (𝑃‘(𝑗 + 1)) → ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → ((𝑃‘(𝑗 + 1)) ≤ (𝑃‘𝑖) → ((𝑃‘𝑖) ≤ 𝑋 → 𝑖 = 𝑗))))) |
91 | 90 | imp4b 421 |
. . . . . . . . . . . . . . 15
⊢ ((𝑋 ∈ ℝ*
∧ 𝑋 < (𝑃‘(𝑗 + 1))) → (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) ∧ (𝑃‘(𝑗 + 1)) ≤ (𝑃‘𝑖)) → ((𝑃‘𝑖) ≤ 𝑋 → 𝑖 = 𝑗))) |
92 | 91 | com23 86 |
. . . . . . . . . . . . . 14
⊢ ((𝑋 ∈ ℝ*
∧ 𝑋 < (𝑃‘(𝑗 + 1))) → ((𝑃‘𝑖) ≤ 𝑋 → (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) ∧ (𝑃‘(𝑗 + 1)) ≤ (𝑃‘𝑖)) → 𝑖 = 𝑗))) |
93 | 92 | 3adant2 1129 |
. . . . . . . . . . . . 13
⊢ ((𝑋 ∈ ℝ*
∧ (𝑃‘𝑗) ≤ 𝑋 ∧ 𝑋 < (𝑃‘(𝑗 + 1))) → ((𝑃‘𝑖) ≤ 𝑋 → (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) ∧ (𝑃‘(𝑗 + 1)) ≤ (𝑃‘𝑖)) → 𝑖 = 𝑗))) |
94 | 93 | com12 32 |
. . . . . . . . . . . 12
⊢ ((𝑃‘𝑖) ≤ 𝑋 → ((𝑋 ∈ ℝ* ∧ (𝑃‘𝑗) ≤ 𝑋 ∧ 𝑋 < (𝑃‘(𝑗 + 1))) → (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) ∧ (𝑃‘(𝑗 + 1)) ≤ (𝑃‘𝑖)) → 𝑖 = 𝑗))) |
95 | 94 | 3ad2ant2 1132 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ ℝ*
∧ (𝑃‘𝑖) ≤ 𝑋 ∧ 𝑋 < (𝑃‘(𝑖 + 1))) → ((𝑋 ∈ ℝ* ∧ (𝑃‘𝑗) ≤ 𝑋 ∧ 𝑋 < (𝑃‘(𝑗 + 1))) → (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) ∧ (𝑃‘(𝑗 + 1)) ≤ (𝑃‘𝑖)) → 𝑖 = 𝑗))) |
96 | 95 | imp 406 |
. . . . . . . . . 10
⊢ (((𝑋 ∈ ℝ*
∧ (𝑃‘𝑖) ≤ 𝑋 ∧ 𝑋 < (𝑃‘(𝑖 + 1))) ∧ (𝑋 ∈ ℝ* ∧ (𝑃‘𝑗) ≤ 𝑋 ∧ 𝑋 < (𝑃‘(𝑗 + 1)))) → (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) ∧ (𝑃‘(𝑗 + 1)) ≤ (𝑃‘𝑖)) → 𝑖 = 𝑗)) |
97 | 96 | com12 32 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) ∧ (𝑃‘(𝑗 + 1)) ≤ (𝑃‘𝑖)) → (((𝑋 ∈ ℝ* ∧ (𝑃‘𝑖) ≤ 𝑋 ∧ 𝑋 < (𝑃‘(𝑖 + 1))) ∧ (𝑋 ∈ ℝ* ∧ (𝑃‘𝑗) ≤ 𝑋 ∧ 𝑋 < (𝑃‘(𝑗 + 1)))) → 𝑖 = 𝑗)) |
98 | 80, 97 | syldan 590 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) ∧ 𝑗 < 𝑖) → (((𝑋 ∈ ℝ* ∧ (𝑃‘𝑖) ≤ 𝑋 ∧ 𝑋 < (𝑃‘(𝑖 + 1))) ∧ (𝑋 ∈ ℝ* ∧ (𝑃‘𝑗) ≤ 𝑋 ∧ 𝑋 < (𝑃‘(𝑗 + 1)))) → 𝑖 = 𝑗)) |
99 | 98 | expcom 413 |
. . . . . . 7
⊢ (𝑗 < 𝑖 → ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → (((𝑋 ∈ ℝ* ∧ (𝑃‘𝑖) ≤ 𝑋 ∧ 𝑋 < (𝑃‘(𝑖 + 1))) ∧ (𝑋 ∈ ℝ* ∧ (𝑃‘𝑗) ≤ 𝑋 ∧ 𝑋 < (𝑃‘(𝑗 + 1)))) → 𝑖 = 𝑗))) |
100 | 76, 77, 99 | 3jaoi 1425 |
. . . . . 6
⊢ ((𝑖 < 𝑗 ∨ 𝑖 = 𝑗 ∨ 𝑗 < 𝑖) → ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → (((𝑋 ∈ ℝ* ∧ (𝑃‘𝑖) ≤ 𝑋 ∧ 𝑋 < (𝑃‘(𝑖 + 1))) ∧ (𝑋 ∈ ℝ* ∧ (𝑃‘𝑗) ≤ 𝑋 ∧ 𝑋 < (𝑃‘(𝑗 + 1)))) → 𝑖 = 𝑗))) |
101 | 53, 100 | mpcom 38 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → (((𝑋 ∈ ℝ* ∧ (𝑃‘𝑖) ≤ 𝑋 ∧ 𝑋 < (𝑃‘(𝑖 + 1))) ∧ (𝑋 ∈ ℝ* ∧ (𝑃‘𝑗) ≤ 𝑋 ∧ 𝑋 < (𝑃‘(𝑗 + 1)))) → 𝑖 = 𝑗)) |
102 | 45, 101 | sylbid 239 |
. . . 4
⊢ ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → ((𝑋 ∈ ((𝑃‘𝑖)[,)(𝑃‘(𝑖 + 1))) ∧ 𝑋 ∈ ((𝑃‘𝑗)[,)(𝑃‘(𝑗 + 1)))) → 𝑖 = 𝑗)) |
103 | 102 | ralrimivva 3116 |
. . 3
⊢ (𝜑 → ∀𝑖 ∈ (0..^𝑀)∀𝑗 ∈ (0..^𝑀)((𝑋 ∈ ((𝑃‘𝑖)[,)(𝑃‘(𝑖 + 1))) ∧ 𝑋 ∈ ((𝑃‘𝑗)[,)(𝑃‘(𝑗 + 1)))) → 𝑖 = 𝑗)) |
104 | 103 | adantr 480 |
. 2
⊢ ((𝜑 ∧ 𝑋 ∈ ((𝑃‘0)[,)(𝑃‘𝑀))) → ∀𝑖 ∈ (0..^𝑀)∀𝑗 ∈ (0..^𝑀)((𝑋 ∈ ((𝑃‘𝑖)[,)(𝑃‘(𝑖 + 1))) ∧ 𝑋 ∈ ((𝑃‘𝑗)[,)(𝑃‘(𝑗 + 1)))) → 𝑖 = 𝑗)) |
105 | | fveq2 6768 |
. . . . 5
⊢ (𝑖 = 𝑗 → (𝑃‘𝑖) = (𝑃‘𝑗)) |
106 | | fvoveq1 7291 |
. . . . 5
⊢ (𝑖 = 𝑗 → (𝑃‘(𝑖 + 1)) = (𝑃‘(𝑗 + 1))) |
107 | 105, 106 | oveq12d 7286 |
. . . 4
⊢ (𝑖 = 𝑗 → ((𝑃‘𝑖)[,)(𝑃‘(𝑖 + 1))) = ((𝑃‘𝑗)[,)(𝑃‘(𝑗 + 1)))) |
108 | 107 | eleq2d 2825 |
. . 3
⊢ (𝑖 = 𝑗 → (𝑋 ∈ ((𝑃‘𝑖)[,)(𝑃‘(𝑖 + 1))) ↔ 𝑋 ∈ ((𝑃‘𝑗)[,)(𝑃‘(𝑗 + 1))))) |
109 | 108 | reu4 3669 |
. 2
⊢
(∃!𝑖 ∈
(0..^𝑀)𝑋 ∈ ((𝑃‘𝑖)[,)(𝑃‘(𝑖 + 1))) ↔ (∃𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑃‘𝑖)[,)(𝑃‘(𝑖 + 1))) ∧ ∀𝑖 ∈ (0..^𝑀)∀𝑗 ∈ (0..^𝑀)((𝑋 ∈ ((𝑃‘𝑖)[,)(𝑃‘(𝑖 + 1))) ∧ 𝑋 ∈ ((𝑃‘𝑗)[,)(𝑃‘(𝑗 + 1)))) → 𝑖 = 𝑗))) |
110 | 20, 104, 109 | sylanbrc 582 |
1
⊢ ((𝜑 ∧ 𝑋 ∈ ((𝑃‘0)[,)(𝑃‘𝑀))) → ∃!𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑃‘𝑖)[,)(𝑃‘(𝑖 + 1)))) |