Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  icceuelpart Structured version   Visualization version   GIF version

Theorem icceuelpart 44888
Description: An element of a partitioned half-open interval of extended reals is an element of exactly one part of the partition. (Contributed by AV, 19-Jul-2020.)
Hypotheses
Ref Expression
iccpartiun.m (𝜑𝑀 ∈ ℕ)
iccpartiun.p (𝜑𝑃 ∈ (RePart‘𝑀))
Assertion
Ref Expression
icceuelpart ((𝜑𝑋 ∈ ((𝑃‘0)[,)(𝑃𝑀))) → ∃!𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))))
Distinct variable groups:   𝑖,𝑀   𝑃,𝑖   𝑖,𝑋   𝜑,𝑖

Proof of Theorem icceuelpart
Dummy variables 𝑗 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iccpartiun.p . . . 4 (𝜑𝑃 ∈ (RePart‘𝑀))
21adantr 481 . . 3 ((𝜑𝑋 ∈ ((𝑃‘0)[,)(𝑃𝑀))) → 𝑃 ∈ (RePart‘𝑀))
3 iccpartiun.m . . . . 5 (𝜑𝑀 ∈ ℕ)
4 iccelpart 44885 . . . . 5 (𝑀 ∈ ℕ → ∀𝑝 ∈ (RePart‘𝑀)(𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1)))))
53, 4syl 17 . . . 4 (𝜑 → ∀𝑝 ∈ (RePart‘𝑀)(𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1)))))
65adantr 481 . . 3 ((𝜑𝑋 ∈ ((𝑃‘0)[,)(𝑃𝑀))) → ∀𝑝 ∈ (RePart‘𝑀)(𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1)))))
7 fveq1 6773 . . . . . . . . 9 (𝑝 = 𝑃 → (𝑝‘0) = (𝑃‘0))
8 fveq1 6773 . . . . . . . . 9 (𝑝 = 𝑃 → (𝑝𝑀) = (𝑃𝑀))
97, 8oveq12d 7293 . . . . . . . 8 (𝑝 = 𝑃 → ((𝑝‘0)[,)(𝑝𝑀)) = ((𝑃‘0)[,)(𝑃𝑀)))
109eleq2d 2824 . . . . . . 7 (𝑝 = 𝑃 → (𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑀)) ↔ 𝑋 ∈ ((𝑃‘0)[,)(𝑃𝑀))))
11 fveq1 6773 . . . . . . . . . 10 (𝑝 = 𝑃 → (𝑝𝑖) = (𝑃𝑖))
12 fveq1 6773 . . . . . . . . . 10 (𝑝 = 𝑃 → (𝑝‘(𝑖 + 1)) = (𝑃‘(𝑖 + 1)))
1311, 12oveq12d 7293 . . . . . . . . 9 (𝑝 = 𝑃 → ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))) = ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))))
1413eleq2d 2824 . . . . . . . 8 (𝑝 = 𝑃 → (𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))) ↔ 𝑋 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1)))))
1514rexbidv 3226 . . . . . . 7 (𝑝 = 𝑃 → (∃𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))) ↔ ∃𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1)))))
1610, 15imbi12d 345 . . . . . 6 (𝑝 = 𝑃 → ((𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1)))) ↔ (𝑋 ∈ ((𝑃‘0)[,)(𝑃𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))))))
1716rspcva 3559 . . . . 5 ((𝑃 ∈ (RePart‘𝑀) ∧ ∀𝑝 ∈ (RePart‘𝑀)(𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))))) → (𝑋 ∈ ((𝑃‘0)[,)(𝑃𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1)))))
1817adantld 491 . . . 4 ((𝑃 ∈ (RePart‘𝑀) ∧ ∀𝑝 ∈ (RePart‘𝑀)(𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))))) → ((𝜑𝑋 ∈ ((𝑃‘0)[,)(𝑃𝑀))) → ∃𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1)))))
1918com12 32 . . 3 ((𝜑𝑋 ∈ ((𝑃‘0)[,)(𝑃𝑀))) → ((𝑃 ∈ (RePart‘𝑀) ∧ ∀𝑝 ∈ (RePart‘𝑀)(𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))))) → ∃𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1)))))
202, 6, 19mp2and 696 . 2 ((𝜑𝑋 ∈ ((𝑃‘0)[,)(𝑃𝑀))) → ∃𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))))
213adantr 481 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑀 ∈ ℕ)
221adantr 481 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑃 ∈ (RePart‘𝑀))
23 elfzofz 13403 . . . . . . . . . . 11 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀))
2423adantl 482 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀))
2521, 22, 24iccpartxr 44871 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑃𝑖) ∈ ℝ*)
26 fzofzp1 13484 . . . . . . . . . . 11 (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀))
2726adantl 482 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀))
2821, 22, 27iccpartxr 44871 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑃‘(𝑖 + 1)) ∈ ℝ*)
2925, 28jca 512 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑃𝑖) ∈ ℝ* ∧ (𝑃‘(𝑖 + 1)) ∈ ℝ*))
3029adantrr 714 . . . . . . 7 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → ((𝑃𝑖) ∈ ℝ* ∧ (𝑃‘(𝑖 + 1)) ∈ ℝ*))
31 elico1 13122 . . . . . . 7 (((𝑃𝑖) ∈ ℝ* ∧ (𝑃‘(𝑖 + 1)) ∈ ℝ*) → (𝑋 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) ↔ (𝑋 ∈ ℝ* ∧ (𝑃𝑖) ≤ 𝑋𝑋 < (𝑃‘(𝑖 + 1)))))
3230, 31syl 17 . . . . . 6 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → (𝑋 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) ↔ (𝑋 ∈ ℝ* ∧ (𝑃𝑖) ≤ 𝑋𝑋 < (𝑃‘(𝑖 + 1)))))
333adantr 481 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0..^𝑀)) → 𝑀 ∈ ℕ)
341adantr 481 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0..^𝑀)) → 𝑃 ∈ (RePart‘𝑀))
35 elfzofz 13403 . . . . . . . . . . 11 (𝑗 ∈ (0..^𝑀) → 𝑗 ∈ (0...𝑀))
3635adantl 482 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0..^𝑀)) → 𝑗 ∈ (0...𝑀))
3733, 34, 36iccpartxr 44871 . . . . . . . . 9 ((𝜑𝑗 ∈ (0..^𝑀)) → (𝑃𝑗) ∈ ℝ*)
38 fzofzp1 13484 . . . . . . . . . . 11 (𝑗 ∈ (0..^𝑀) → (𝑗 + 1) ∈ (0...𝑀))
3938adantl 482 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0..^𝑀)) → (𝑗 + 1) ∈ (0...𝑀))
4033, 34, 39iccpartxr 44871 . . . . . . . . 9 ((𝜑𝑗 ∈ (0..^𝑀)) → (𝑃‘(𝑗 + 1)) ∈ ℝ*)
4137, 40jca 512 . . . . . . . 8 ((𝜑𝑗 ∈ (0..^𝑀)) → ((𝑃𝑗) ∈ ℝ* ∧ (𝑃‘(𝑗 + 1)) ∈ ℝ*))
4241adantrl 713 . . . . . . 7 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → ((𝑃𝑗) ∈ ℝ* ∧ (𝑃‘(𝑗 + 1)) ∈ ℝ*))
43 elico1 13122 . . . . . . 7 (((𝑃𝑗) ∈ ℝ* ∧ (𝑃‘(𝑗 + 1)) ∈ ℝ*) → (𝑋 ∈ ((𝑃𝑗)[,)(𝑃‘(𝑗 + 1))) ↔ (𝑋 ∈ ℝ* ∧ (𝑃𝑗) ≤ 𝑋𝑋 < (𝑃‘(𝑗 + 1)))))
4442, 43syl 17 . . . . . 6 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → (𝑋 ∈ ((𝑃𝑗)[,)(𝑃‘(𝑗 + 1))) ↔ (𝑋 ∈ ℝ* ∧ (𝑃𝑗) ≤ 𝑋𝑋 < (𝑃‘(𝑗 + 1)))))
4532, 44anbi12d 631 . . . . 5 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → ((𝑋 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) ∧ 𝑋 ∈ ((𝑃𝑗)[,)(𝑃‘(𝑗 + 1)))) ↔ ((𝑋 ∈ ℝ* ∧ (𝑃𝑖) ≤ 𝑋𝑋 < (𝑃‘(𝑖 + 1))) ∧ (𝑋 ∈ ℝ* ∧ (𝑃𝑗) ≤ 𝑋𝑋 < (𝑃‘(𝑗 + 1))))))
46 elfzoelz 13387 . . . . . . . . . 10 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ ℤ)
4746zred 12426 . . . . . . . . 9 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ ℝ)
48 elfzoelz 13387 . . . . . . . . . 10 (𝑗 ∈ (0..^𝑀) → 𝑗 ∈ ℤ)
4948zred 12426 . . . . . . . . 9 (𝑗 ∈ (0..^𝑀) → 𝑗 ∈ ℝ)
5047, 49anim12i 613 . . . . . . . 8 ((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀)) → (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ))
5150adantl 482 . . . . . . 7 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ))
52 lttri4 11059 . . . . . . 7 ((𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ) → (𝑖 < 𝑗𝑖 = 𝑗𝑗 < 𝑖))
5351, 52syl 17 . . . . . 6 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → (𝑖 < 𝑗𝑖 = 𝑗𝑗 < 𝑖))
543, 1icceuelpartlem 44887 . . . . . . . . . 10 (𝜑 → ((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀)) → (𝑖 < 𝑗 → (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑗))))
5554imp31 418 . . . . . . . . 9 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) ∧ 𝑖 < 𝑗) → (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑗))
56 simpl 483 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋 ∈ ℝ* ∧ (𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀)))) → 𝑋 ∈ ℝ*)
5728adantrr 714 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → (𝑃‘(𝑖 + 1)) ∈ ℝ*)
5857adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋 ∈ ℝ* ∧ (𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀)))) → (𝑃‘(𝑖 + 1)) ∈ ℝ*)
5937adantrl 713 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → (𝑃𝑗) ∈ ℝ*)
6059adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋 ∈ ℝ* ∧ (𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀)))) → (𝑃𝑗) ∈ ℝ*)
61 nltle2tri 44805 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋 ∈ ℝ* ∧ (𝑃‘(𝑖 + 1)) ∈ ℝ* ∧ (𝑃𝑗) ∈ ℝ*) → ¬ (𝑋 < (𝑃‘(𝑖 + 1)) ∧ (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑗) ∧ (𝑃𝑗) ≤ 𝑋))
6256, 58, 60, 61syl3anc 1370 . . . . . . . . . . . . . . . . . . . . 21 ((𝑋 ∈ ℝ* ∧ (𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀)))) → ¬ (𝑋 < (𝑃‘(𝑖 + 1)) ∧ (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑗) ∧ (𝑃𝑗) ≤ 𝑋))
6362pm2.21d 121 . . . . . . . . . . . . . . . . . . . 20 ((𝑋 ∈ ℝ* ∧ (𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀)))) → ((𝑋 < (𝑃‘(𝑖 + 1)) ∧ (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑗) ∧ (𝑃𝑗) ≤ 𝑋) → 𝑖 = 𝑗))
64633expd 1352 . . . . . . . . . . . . . . . . . . 19 ((𝑋 ∈ ℝ* ∧ (𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀)))) → (𝑋 < (𝑃‘(𝑖 + 1)) → ((𝑃‘(𝑖 + 1)) ≤ (𝑃𝑗) → ((𝑃𝑗) ≤ 𝑋𝑖 = 𝑗))))
6564ex 413 . . . . . . . . . . . . . . . . . 18 (𝑋 ∈ ℝ* → ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → (𝑋 < (𝑃‘(𝑖 + 1)) → ((𝑃‘(𝑖 + 1)) ≤ (𝑃𝑗) → ((𝑃𝑗) ≤ 𝑋𝑖 = 𝑗)))))
6665com23 86 . . . . . . . . . . . . . . . . 17 (𝑋 ∈ ℝ* → (𝑋 < (𝑃‘(𝑖 + 1)) → ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → ((𝑃‘(𝑖 + 1)) ≤ (𝑃𝑗) → ((𝑃𝑗) ≤ 𝑋𝑖 = 𝑗)))))
6766com25 99 . . . . . . . . . . . . . . . 16 (𝑋 ∈ ℝ* → ((𝑃𝑗) ≤ 𝑋 → ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → ((𝑃‘(𝑖 + 1)) ≤ (𝑃𝑗) → (𝑋 < (𝑃‘(𝑖 + 1)) → 𝑖 = 𝑗)))))
6867imp4b 422 . . . . . . . . . . . . . . 15 ((𝑋 ∈ ℝ* ∧ (𝑃𝑗) ≤ 𝑋) → (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) ∧ (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑗)) → (𝑋 < (𝑃‘(𝑖 + 1)) → 𝑖 = 𝑗)))
6968com23 86 . . . . . . . . . . . . . 14 ((𝑋 ∈ ℝ* ∧ (𝑃𝑗) ≤ 𝑋) → (𝑋 < (𝑃‘(𝑖 + 1)) → (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) ∧ (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑗)) → 𝑖 = 𝑗)))
70693adant3 1131 . . . . . . . . . . . . 13 ((𝑋 ∈ ℝ* ∧ (𝑃𝑗) ≤ 𝑋𝑋 < (𝑃‘(𝑗 + 1))) → (𝑋 < (𝑃‘(𝑖 + 1)) → (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) ∧ (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑗)) → 𝑖 = 𝑗)))
7170com12 32 . . . . . . . . . . . 12 (𝑋 < (𝑃‘(𝑖 + 1)) → ((𝑋 ∈ ℝ* ∧ (𝑃𝑗) ≤ 𝑋𝑋 < (𝑃‘(𝑗 + 1))) → (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) ∧ (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑗)) → 𝑖 = 𝑗)))
72713ad2ant3 1134 . . . . . . . . . . 11 ((𝑋 ∈ ℝ* ∧ (𝑃𝑖) ≤ 𝑋𝑋 < (𝑃‘(𝑖 + 1))) → ((𝑋 ∈ ℝ* ∧ (𝑃𝑗) ≤ 𝑋𝑋 < (𝑃‘(𝑗 + 1))) → (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) ∧ (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑗)) → 𝑖 = 𝑗)))
7372imp 407 . . . . . . . . . 10 (((𝑋 ∈ ℝ* ∧ (𝑃𝑖) ≤ 𝑋𝑋 < (𝑃‘(𝑖 + 1))) ∧ (𝑋 ∈ ℝ* ∧ (𝑃𝑗) ≤ 𝑋𝑋 < (𝑃‘(𝑗 + 1)))) → (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) ∧ (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑗)) → 𝑖 = 𝑗))
7473com12 32 . . . . . . . . 9 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) ∧ (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑗)) → (((𝑋 ∈ ℝ* ∧ (𝑃𝑖) ≤ 𝑋𝑋 < (𝑃‘(𝑖 + 1))) ∧ (𝑋 ∈ ℝ* ∧ (𝑃𝑗) ≤ 𝑋𝑋 < (𝑃‘(𝑗 + 1)))) → 𝑖 = 𝑗))
7555, 74syldan 591 . . . . . . . 8 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) ∧ 𝑖 < 𝑗) → (((𝑋 ∈ ℝ* ∧ (𝑃𝑖) ≤ 𝑋𝑋 < (𝑃‘(𝑖 + 1))) ∧ (𝑋 ∈ ℝ* ∧ (𝑃𝑗) ≤ 𝑋𝑋 < (𝑃‘(𝑗 + 1)))) → 𝑖 = 𝑗))
7675expcom 414 . . . . . . 7 (𝑖 < 𝑗 → ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → (((𝑋 ∈ ℝ* ∧ (𝑃𝑖) ≤ 𝑋𝑋 < (𝑃‘(𝑖 + 1))) ∧ (𝑋 ∈ ℝ* ∧ (𝑃𝑗) ≤ 𝑋𝑋 < (𝑃‘(𝑗 + 1)))) → 𝑖 = 𝑗)))
77 2a1 28 . . . . . . 7 (𝑖 = 𝑗 → ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → (((𝑋 ∈ ℝ* ∧ (𝑃𝑖) ≤ 𝑋𝑋 < (𝑃‘(𝑖 + 1))) ∧ (𝑋 ∈ ℝ* ∧ (𝑃𝑗) ≤ 𝑋𝑋 < (𝑃‘(𝑗 + 1)))) → 𝑖 = 𝑗)))
783, 1icceuelpartlem 44887 . . . . . . . . . . 11 (𝜑 → ((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑗 < 𝑖 → (𝑃‘(𝑗 + 1)) ≤ (𝑃𝑖))))
7978ancomsd 466 . . . . . . . . . 10 (𝜑 → ((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀)) → (𝑗 < 𝑖 → (𝑃‘(𝑗 + 1)) ≤ (𝑃𝑖))))
8079imp31 418 . . . . . . . . 9 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) ∧ 𝑗 < 𝑖) → (𝑃‘(𝑗 + 1)) ≤ (𝑃𝑖))
8140adantrl 713 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → (𝑃‘(𝑗 + 1)) ∈ ℝ*)
8281adantl 482 . . . . . . . . . . . . . . . . . . . . 21 ((𝑋 ∈ ℝ* ∧ (𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀)))) → (𝑃‘(𝑗 + 1)) ∈ ℝ*)
8325adantrr 714 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → (𝑃𝑖) ∈ ℝ*)
8483adantl 482 . . . . . . . . . . . . . . . . . . . . 21 ((𝑋 ∈ ℝ* ∧ (𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀)))) → (𝑃𝑖) ∈ ℝ*)
85 nltle2tri 44805 . . . . . . . . . . . . . . . . . . . . 21 ((𝑋 ∈ ℝ* ∧ (𝑃‘(𝑗 + 1)) ∈ ℝ* ∧ (𝑃𝑖) ∈ ℝ*) → ¬ (𝑋 < (𝑃‘(𝑗 + 1)) ∧ (𝑃‘(𝑗 + 1)) ≤ (𝑃𝑖) ∧ (𝑃𝑖) ≤ 𝑋))
8656, 82, 84, 85syl3anc 1370 . . . . . . . . . . . . . . . . . . . 20 ((𝑋 ∈ ℝ* ∧ (𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀)))) → ¬ (𝑋 < (𝑃‘(𝑗 + 1)) ∧ (𝑃‘(𝑗 + 1)) ≤ (𝑃𝑖) ∧ (𝑃𝑖) ≤ 𝑋))
8786pm2.21d 121 . . . . . . . . . . . . . . . . . . 19 ((𝑋 ∈ ℝ* ∧ (𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀)))) → ((𝑋 < (𝑃‘(𝑗 + 1)) ∧ (𝑃‘(𝑗 + 1)) ≤ (𝑃𝑖) ∧ (𝑃𝑖) ≤ 𝑋) → 𝑖 = 𝑗))
88873expd 1352 . . . . . . . . . . . . . . . . . 18 ((𝑋 ∈ ℝ* ∧ (𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀)))) → (𝑋 < (𝑃‘(𝑗 + 1)) → ((𝑃‘(𝑗 + 1)) ≤ (𝑃𝑖) → ((𝑃𝑖) ≤ 𝑋𝑖 = 𝑗))))
8988ex 413 . . . . . . . . . . . . . . . . 17 (𝑋 ∈ ℝ* → ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → (𝑋 < (𝑃‘(𝑗 + 1)) → ((𝑃‘(𝑗 + 1)) ≤ (𝑃𝑖) → ((𝑃𝑖) ≤ 𝑋𝑖 = 𝑗)))))
9089com23 86 . . . . . . . . . . . . . . . 16 (𝑋 ∈ ℝ* → (𝑋 < (𝑃‘(𝑗 + 1)) → ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → ((𝑃‘(𝑗 + 1)) ≤ (𝑃𝑖) → ((𝑃𝑖) ≤ 𝑋𝑖 = 𝑗)))))
9190imp4b 422 . . . . . . . . . . . . . . 15 ((𝑋 ∈ ℝ*𝑋 < (𝑃‘(𝑗 + 1))) → (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) ∧ (𝑃‘(𝑗 + 1)) ≤ (𝑃𝑖)) → ((𝑃𝑖) ≤ 𝑋𝑖 = 𝑗)))
9291com23 86 . . . . . . . . . . . . . 14 ((𝑋 ∈ ℝ*𝑋 < (𝑃‘(𝑗 + 1))) → ((𝑃𝑖) ≤ 𝑋 → (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) ∧ (𝑃‘(𝑗 + 1)) ≤ (𝑃𝑖)) → 𝑖 = 𝑗)))
93923adant2 1130 . . . . . . . . . . . . 13 ((𝑋 ∈ ℝ* ∧ (𝑃𝑗) ≤ 𝑋𝑋 < (𝑃‘(𝑗 + 1))) → ((𝑃𝑖) ≤ 𝑋 → (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) ∧ (𝑃‘(𝑗 + 1)) ≤ (𝑃𝑖)) → 𝑖 = 𝑗)))
9493com12 32 . . . . . . . . . . . 12 ((𝑃𝑖) ≤ 𝑋 → ((𝑋 ∈ ℝ* ∧ (𝑃𝑗) ≤ 𝑋𝑋 < (𝑃‘(𝑗 + 1))) → (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) ∧ (𝑃‘(𝑗 + 1)) ≤ (𝑃𝑖)) → 𝑖 = 𝑗)))
95943ad2ant2 1133 . . . . . . . . . . 11 ((𝑋 ∈ ℝ* ∧ (𝑃𝑖) ≤ 𝑋𝑋 < (𝑃‘(𝑖 + 1))) → ((𝑋 ∈ ℝ* ∧ (𝑃𝑗) ≤ 𝑋𝑋 < (𝑃‘(𝑗 + 1))) → (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) ∧ (𝑃‘(𝑗 + 1)) ≤ (𝑃𝑖)) → 𝑖 = 𝑗)))
9695imp 407 . . . . . . . . . 10 (((𝑋 ∈ ℝ* ∧ (𝑃𝑖) ≤ 𝑋𝑋 < (𝑃‘(𝑖 + 1))) ∧ (𝑋 ∈ ℝ* ∧ (𝑃𝑗) ≤ 𝑋𝑋 < (𝑃‘(𝑗 + 1)))) → (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) ∧ (𝑃‘(𝑗 + 1)) ≤ (𝑃𝑖)) → 𝑖 = 𝑗))
9796com12 32 . . . . . . . . 9 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) ∧ (𝑃‘(𝑗 + 1)) ≤ (𝑃𝑖)) → (((𝑋 ∈ ℝ* ∧ (𝑃𝑖) ≤ 𝑋𝑋 < (𝑃‘(𝑖 + 1))) ∧ (𝑋 ∈ ℝ* ∧ (𝑃𝑗) ≤ 𝑋𝑋 < (𝑃‘(𝑗 + 1)))) → 𝑖 = 𝑗))
9880, 97syldan 591 . . . . . . . 8 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) ∧ 𝑗 < 𝑖) → (((𝑋 ∈ ℝ* ∧ (𝑃𝑖) ≤ 𝑋𝑋 < (𝑃‘(𝑖 + 1))) ∧ (𝑋 ∈ ℝ* ∧ (𝑃𝑗) ≤ 𝑋𝑋 < (𝑃‘(𝑗 + 1)))) → 𝑖 = 𝑗))
9998expcom 414 . . . . . . 7 (𝑗 < 𝑖 → ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → (((𝑋 ∈ ℝ* ∧ (𝑃𝑖) ≤ 𝑋𝑋 < (𝑃‘(𝑖 + 1))) ∧ (𝑋 ∈ ℝ* ∧ (𝑃𝑗) ≤ 𝑋𝑋 < (𝑃‘(𝑗 + 1)))) → 𝑖 = 𝑗)))
10076, 77, 993jaoi 1426 . . . . . 6 ((𝑖 < 𝑗𝑖 = 𝑗𝑗 < 𝑖) → ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → (((𝑋 ∈ ℝ* ∧ (𝑃𝑖) ≤ 𝑋𝑋 < (𝑃‘(𝑖 + 1))) ∧ (𝑋 ∈ ℝ* ∧ (𝑃𝑗) ≤ 𝑋𝑋 < (𝑃‘(𝑗 + 1)))) → 𝑖 = 𝑗)))
10153, 100mpcom 38 . . . . 5 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → (((𝑋 ∈ ℝ* ∧ (𝑃𝑖) ≤ 𝑋𝑋 < (𝑃‘(𝑖 + 1))) ∧ (𝑋 ∈ ℝ* ∧ (𝑃𝑗) ≤ 𝑋𝑋 < (𝑃‘(𝑗 + 1)))) → 𝑖 = 𝑗))
10245, 101sylbid 239 . . . 4 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → ((𝑋 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) ∧ 𝑋 ∈ ((𝑃𝑗)[,)(𝑃‘(𝑗 + 1)))) → 𝑖 = 𝑗))
103102ralrimivva 3123 . . 3 (𝜑 → ∀𝑖 ∈ (0..^𝑀)∀𝑗 ∈ (0..^𝑀)((𝑋 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) ∧ 𝑋 ∈ ((𝑃𝑗)[,)(𝑃‘(𝑗 + 1)))) → 𝑖 = 𝑗))
104103adantr 481 . 2 ((𝜑𝑋 ∈ ((𝑃‘0)[,)(𝑃𝑀))) → ∀𝑖 ∈ (0..^𝑀)∀𝑗 ∈ (0..^𝑀)((𝑋 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) ∧ 𝑋 ∈ ((𝑃𝑗)[,)(𝑃‘(𝑗 + 1)))) → 𝑖 = 𝑗))
105 fveq2 6774 . . . . 5 (𝑖 = 𝑗 → (𝑃𝑖) = (𝑃𝑗))
106 fvoveq1 7298 . . . . 5 (𝑖 = 𝑗 → (𝑃‘(𝑖 + 1)) = (𝑃‘(𝑗 + 1)))
107105, 106oveq12d 7293 . . . 4 (𝑖 = 𝑗 → ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) = ((𝑃𝑗)[,)(𝑃‘(𝑗 + 1))))
108107eleq2d 2824 . . 3 (𝑖 = 𝑗 → (𝑋 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) ↔ 𝑋 ∈ ((𝑃𝑗)[,)(𝑃‘(𝑗 + 1)))))
109108reu4 3666 . 2 (∃!𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) ↔ (∃𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) ∧ ∀𝑖 ∈ (0..^𝑀)∀𝑗 ∈ (0..^𝑀)((𝑋 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) ∧ 𝑋 ∈ ((𝑃𝑗)[,)(𝑃‘(𝑗 + 1)))) → 𝑖 = 𝑗)))
11020, 104, 109sylanbrc 583 1 ((𝜑𝑋 ∈ ((𝑃‘0)[,)(𝑃𝑀))) → ∃!𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3o 1085  w3a 1086   = wceq 1539  wcel 2106  wral 3064  wrex 3065  ∃!wreu 3066   class class class wbr 5074  cfv 6433  (class class class)co 7275  cr 10870  0cc0 10871  1c1 10872   + caddc 10874  *cxr 11008   < clt 11009  cle 11010  cn 11973  [,)cico 13081  ...cfz 13239  ..^cfzo 13382  RePartciccp 44865
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-ico 13085  df-fz 13240  df-fzo 13383  df-iccp 44866
This theorem is referenced by:  iccpartdisj  44889
  Copyright terms: Public domain W3C validator