![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2cnALT | Structured version Visualization version GIF version |
Description: Alternate proof of 2cn 12370. Shorter but uses more axioms. Similar proofs are possible for 3cn 12376, ... , 9cn 12395. (Contributed by NM, 30-Jul-2004.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
2cnALT | ⊢ 2 ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2re 12369 | . 2 ⊢ 2 ∈ ℝ | |
2 | 1 | recni 11306 | 1 ⊢ 2 ∈ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ℂcc 11184 2c2 12350 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-resscn 11243 ax-1cn 11244 ax-icn 11245 ax-addcl 11246 ax-addrcl 11247 ax-mulcl 11248 ax-mulrcl 11249 ax-i2m1 11254 ax-1ne0 11255 ax-rrecex 11258 ax-cnre 11259 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6527 df-fv 6583 df-ov 7453 df-2 12358 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |