MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2cnALT Structured version   Visualization version   GIF version

Theorem 2cnALT 12371
Description: Alternate proof of 2cn 12370. Shorter but uses more axioms. Similar proofs are possible for 3cn 12376, ... , 9cn 12395. (Contributed by NM, 30-Jul-2004.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
2cnALT 2 ∈ ℂ

Proof of Theorem 2cnALT
StepHypRef Expression
1 2re 12369 . 2 2 ∈ ℝ
21recni 11306 1 2 ∈ ℂ
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  cc 11184  2c2 12350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-resscn 11243  ax-1cn 11244  ax-icn 11245  ax-addcl 11246  ax-addrcl 11247  ax-mulcl 11248  ax-mulrcl 11249  ax-i2m1 11254  ax-1ne0 11255  ax-rrecex 11258  ax-cnre 11259
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6527  df-fv 6583  df-ov 7453  df-2 12358
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator