| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2cnALT | Structured version Visualization version GIF version | ||
| Description: Alternate proof of 2cn 12323. Shorter but uses more axioms. Similar proofs are possible for 3cn 12329, ... , 9cn 12348. (Contributed by NM, 30-Jul-2004.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 2cnALT | ⊢ 2 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2re 12322 | . 2 ⊢ 2 ∈ ℝ | |
| 2 | 1 | recni 11257 | 1 ⊢ 2 ∈ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2107 ℂcc 11135 2c2 12303 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-i2m1 11205 ax-1ne0 11206 ax-rrecex 11209 ax-cnre 11210 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-iota 6494 df-fv 6549 df-ov 7416 df-2 12311 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |