MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2cnALT Structured version   Visualization version   GIF version

Theorem 2cnALT 12324
Description: Alternate proof of 2cn 12323. Shorter but uses more axioms. Similar proofs are possible for 3cn 12329, ... , 9cn 12348. (Contributed by NM, 30-Jul-2004.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
2cnALT 2 ∈ ℂ

Proof of Theorem 2cnALT
StepHypRef Expression
1 2re 12322 . 2 2 ∈ ℝ
21recni 11257 1 2 ∈ ℂ
Colors of variables: wff setvar class
Syntax hints:  wcel 2107  cc 11135  2c2 12303
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-i2m1 11205  ax-1ne0 11206  ax-rrecex 11209  ax-cnre 11210
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-iota 6494  df-fv 6549  df-ov 7416  df-2 12311
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator