| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2cnALT | Structured version Visualization version GIF version | ||
| Description: Alternate proof of 2cn 12207. Shorter but uses more axioms. Similar proofs are possible for 3cn 12213, ... , 9cn 12232. (Contributed by NM, 30-Jul-2004.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 2cnALT | ⊢ 2 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2re 12206 | . 2 ⊢ 2 ∈ ℝ | |
| 2 | 1 | recni 11133 | 1 ⊢ 2 ∈ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2113 ℂcc 11011 2c2 12187 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-i2m1 11081 ax-1ne0 11082 ax-rrecex 11085 ax-cnre 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-iota 6442 df-fv 6494 df-ov 7355 df-2 12195 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |