![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2cnALT | Structured version Visualization version GIF version |
Description: Alternate proof of 2cn 12348. Shorter but uses more axioms. Similar proofs are possible for 3cn 12354, ... , 9cn 12373. (Contributed by NM, 30-Jul-2004.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
2cnALT | ⊢ 2 ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2re 12347 | . 2 ⊢ 2 ∈ ℝ | |
2 | 1 | recni 11282 | 1 ⊢ 2 ∈ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ℂcc 11160 2c2 12328 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-i2m1 11230 ax-1ne0 11231 ax-rrecex 11234 ax-cnre 11235 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-iota 6522 df-fv 6577 df-ov 7441 df-2 12336 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |