![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2cnALT | Structured version Visualization version GIF version |
Description: Alternate proof of 2cn 12287. Shorter but uses more axioms. Similar proofs are possible for 3cn 12293, ... , 9cn 12312. (Contributed by NM, 30-Jul-2004.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
2cnALT | ⊢ 2 ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2re 12286 | . 2 ⊢ 2 ∈ ℝ | |
2 | 1 | recni 11228 | 1 ⊢ 2 ∈ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2107 ℂcc 11108 2c2 12267 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-i2m1 11178 ax-1ne0 11179 ax-rrecex 11182 ax-cnre 11183 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-iota 6496 df-fv 6552 df-ov 7412 df-2 12275 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |