MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2cnALT Structured version   Visualization version   GIF version

Theorem 2cnALT 12288
Description: Alternate proof of 2cn 12287. Shorter but uses more axioms. Similar proofs are possible for 3cn 12293, ... , 9cn 12312. (Contributed by NM, 30-Jul-2004.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
2cnALT 2 ∈ ℂ

Proof of Theorem 2cnALT
StepHypRef Expression
1 2re 12286 . 2 2 ∈ ℝ
21recni 11228 1 2 ∈ ℂ
Colors of variables: wff setvar class
Syntax hints:  wcel 2107  cc 11108  2c2 12267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-i2m1 11178  ax-1ne0 11179  ax-rrecex 11182  ax-cnre 11183
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-iota 6496  df-fv 6552  df-ov 7412  df-2 12275
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator